
We thank the reviewers for their time, helpful feedback, and advice. We are pleased that overall, reviewers praised the1

clarity, rigour and contributions of the work. We are encouraged that reviewers acknowledged novelty (R3, R4) and2

appreciated our work as a principled contribution in the development of machine learning methods for non-Euclidean3

data (R1, R2). We thank reviewers for their kind words, and hope to address any remaining concerns below.4

(R1, R2, R3) Uni-modal distributions. We thank the reviewers for raising this question. The goal of our two5

experiments with unimodal target distributions is to demonstrate specific pathologies of previously introduced methods.6

We believe this is most clearly demonstrated by a unimodal distribution at the point (or the limit) of the pathology as it7

removes additional modelling artefacts that are introduced through more complex distributions. We further evaluate the8

capacity of our method to model highly multi-modal distributions in our real-world experiments in which we can show9

substantial improvements to baselines. We will clarify the different purpose of these experiments in the paper.10

We agree with (R2) that "the stereographic projection is known to lead to problems in its singular point." Yet, current11

SOTA methods are actively using such a parametrization (e.g., Gemici et al. (2016)) and we believe it is important12

to show and evaluate this aspect. Moreover, most manifolds of interest similarly have a non-Euclidean topology, so13

applying previous projected methods on these manifolds would also yield a similar pathology.14

(R2, R3) Real-world data. Our experiments on real-world data are motivated from problems in climate and earth15

science, hence leading to empirical assessments on S2. We believe these experiments to be informative since they show16

that our method is a) scalable and b) can fit highly complex and multi-modal distributions more accurately than previous17

methods. Moreover, please note that our model can straightforwardly be applied on higher dimensional manifolds.18

We agree with reviewers that our model would be strengthened by an additional experiment on a high dimensional19

manifold. To achieve this we will run a fourth experiment by first computing hyperbolic multi-dimensional embeddings20

of WordNet graph data, and then fitting our model to the obtained empirical distribution.21

(R4) Optimal transport (OT) and flows. As reminded by (R4), the field of OT is core for the study of flow – known22

as transport map – transforming one distribution into another. Indeed, we develop this connection in Appendix D.123

and show that the dynamical formulation of OT still holds in the manifold setting. Regarding (R4)’s concern that our24

method "can not model the transformation for a white noise to multi-mode distributions": Our method is theoretically25

sound as it able to model multi-modal distributions as long as supports are connected (see Cornish et al. (2019, Theorem26

2.1)), and is empirically shown to model well multi-modal earth data (cf Table 3 and Figure 6).27

(R1, R2) Computational aspects. We thank (R1) for suggesting to expand on the limitations of our method. As28

reminded by (R2), projections required by our approach can increase the computational cost. With our current29

implementation, we empirically find that this additional cost amounts to ∼ 20% for the Poincaré ball and ∼ 30% for30

S2. This cost can be further reduced by only projecting the output of the ODE solver steps. We thank (R2) for the31

suggestion and we will rigorously compute and include wall-clock time comparisons in the next draft.32

(R1, R2) Empirical comparison to related methods. We thank (R2) for suggesting the mixture of von Mises-Fisher33

(vMF) baseline. Indeed, we found in our early empirical assessments that high multi-modality (e.g., as occurring in the34

different the earth datasets) would prevent a mixture of vMF distributions from being a competitive baseline. We will35

re-run this baseline and include its performance in Table 3.36

We also agree with (R1) that comparing our method to Rezende et al. (2020) would indeed be valuable. Unfortunately,37

the code and necessary experimental details have not yet been released, preventing us from a detailed comparison.38

(R2, R4) Additional manifolds. We agree with (R4) that applying the proposed method to more exotic manifolds39

is an exciting direction. We are currently exploring applications on several Lie groups such as orthogonal or positive40

definite matrices. As reminded by (R2) we indeed assume that the manifold is known beforehand. We agree that41

learning the manifold is an exciting task, but indeed a harder one as shown by the field of topological data analysis.42

(R2) VAE experiments. We thank (R2) for suggesting to leverage our model in a VAE setting. We agree that this is43

indeed a promising application of our method (e.g., see also Bose et al. (2020)) and plan to explore this in future work.44

(R2) Naive Euclidean method. We thank (R2) for highlighting the potential risk for non-careful readers to compare45

manifold-valued densities against RD valued ones. We updated the introduction to better refer this.46
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