
Appendix for
Riemannian Continuous Normalizing Flows

A Constant curvature manifolds

In the following, we provide a brief overview of Riemannian geometry and constant curvature
manifolds, specifically the Poincaré ball and the hypersphere models. We will use ‖·‖ and 〈·, ·〉 to
denote the Euclidean norm and inner product. For norms and inner products on tangent spaces TzM,
we write ‖·‖z and 〈·, ·〉z where z ∈ M.

A.1 Review of Riemannian geometry

A real, smooth manifold M is a set of points z, which is "locally similar" to a linear space. For
every point z of the manifoldM is attached a real vector space of the same dimensionality asM
called the tangent space TzM. Intuitively, it contains all the possible directions in which one can
tangentially pass through z. Taking the disjoint union of all tangent spaces yields the tangent bundle
TM = ∩z∈MTzM. For each point z of the manifold, the metric tensor g(z) defines an inner product
on the associated tangent space as g(z) = 〈·, ·〉z : TzM×TzM→ R. The matrix representation of
the Riemannian metric G(z), is defined such that

∀u,v ∈ TzM×TzM, 〈u,v〉z = g(z)(u,v) = uT G(z)v.

A Riemannian manifold is then given as a tuple (M, g) (Petersen, 2006). The metric tensor gives
a local notion of angle, length of curves, surface area and volume, from which global quantities
can be derived by integrating local contributions. A norm is induced by the inner product on TzM:
‖·‖z =

√
〈·, ·〉z . An infinitesimal volume element is induced on each tangent space TzM, and thus

a measure dVol(z) =
√
|G(z)| dLeb(z) on the manifold, with Leb(z) being the Lebesgue measure.

The length of a curve γ : t 7→ γ(t) ∈ M is given by L(γ) =
∫ 1

0 ‖γ
′(t)‖γ(t)dt. The concept of straight

lines can then be generalized to geodesics, which are constant speed curves giving the shortest
path between pairs of points z,y of the manifold: γ∗ = arg min L(γ) with γ(0) = z, γ(1) = y and
‖γ′(t)‖γ(t) = 1. A global distance is thus induced onM given by

dM(z,y) = inf L(γ).

EndowingM with that distance consequently defines a metric space (M, dM). The concept of moving
along a "straight" curve with constant velocity is given by the exponential map. In particular, there
is a unique unit speed geodesic γ satisfying γ(0) = z with initial tangent vector γ′(0) = v. The
corresponding exponential map is then defined by expz(v) = γ(1). The logarithm map is the inverse
logz = exp−1

z : M → TzM. The expz map is well-defined on the full tangent space TzM for all
z ∈ M if and only ifM is geodesically complete, i.e. if all geodesics can "run" indefinitely. This is
the case for the Poincaré ball and hypersphere.

A.2 The Poincaré ball model of hyperbolic geometry

In the following, we provide a brief overview of key concepts related to hyperbolic geometry. A d-
dimensional hyperbolic space is a complete, simply connected, d-dimensional Riemannian manifold
with constant negative curvature K. The Poincaré ball is one model of this geometry, and is formally
defined as the Riemannian manifold Bd

K = (Bd
K , gK). Here Bd

K denotes the open ball of radius 1/
√
|K|,

and gK the metric tensor gK(z) = (λK
z )2
ge(z), where λK

z = 2
1+K‖z‖2

and ge denotes the Euclidean
metric tensor, i.e. the usual dot product. The induced invariant measure Vol is absolutely continuous
with respect to the Lebesgue measure Leb, and its density is given by dVol

dLeb (z) =
√
|G(z)| = (λK

z )d for
all z ∈ Bd

K . As motivated by Skopek et al. (2020), the Poincaré ball Bd
K can conveniently be described

through the formalism of gyrovector spaces (Ungar, 2008). These can be seen as an analogy to the
way vector spaces are used in Euclidean geometry, but in the non-Euclidean geometry setting. In
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particular, the Möbius addition ⊕K of z,y in Bd
K is defined as

z ⊕K y =
(1 − 2K 〈z,y〉 − K‖y‖2)z + (1 + K‖z‖2)y

1 − 2K 〈z,y〉 + K2‖z‖2‖y‖2
.

Then the exponential map can be expressed via this Möbius addition as

expK
z (v) = z ⊕K

(
tanh

(
√
−K

λK
z ‖v‖

2

)
v

√
−K‖v‖

)
where x = −z ⊕K y for all x,y ∈ Bd

K .

A.3 The hypersphere model of elliptic geometry

In the following, we discuss key concepts related to positively curved spaces known as elliptic spaces,
and in particular to the hypersphere model. The d-sphere, or hyperpshere, is a compact submanifold of
Rd+1 with positive constant curvature K whose support is defined by Sd

K = {z ∈ Rd+1 | 〈z, z〉 = 1/K}.
It is endowed with the pull-back metric of the ambient Euclidean space.

Sphere In the two-dimensional setting d = 2, we rely on polar coordinates to parametrize the
sphere S2. These coordinates consist of polar θ ∈ [0, π] and azimuth ϕ ∈ [0, 2π) angles. The
ambient Cartesian coordinates are then given by r(θ, ϕ) = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)). We
have

√
|G(θ, ϕ)| = sin(θ). Applying the generic divergence formula (see Equation 11) yields the

celebrated spherical divergence formula

div(g) =
1

sin(θ)
∂

∂θ

(
sin(θ) gθ(θ, ϕ)

)
+

1
sin(θ)

∂

∂ϕ
(gϕ(θ, ϕ)) .

Hypersphere For higher dimensions, we can rely on the n-spherical coordinate system in which the
coordinates consist of d − 1 angular coordinates ϕ1, . . . , ϕd−2 ∈ [0, π] and ϕd−2 ∈ [0, 2π) (Blumenson,
1960). Then we have

√
|G(ϕ)| = sind−2(ϕ1) sind−3(ϕ2) . . . sin(ϕd−2).

Using the ambient cartesian coordinates, the exponential map is given by

expc
µ(v) = cos

(√
K‖v‖

)
µ + sin

(√
K‖v‖

) v
√

K‖v‖

for all z ∈ Sd
K and v ∈ TzSd

K .

B Probability measures on Riemannian manifolds

In what follows, we discuss core concepts of probability measures on Riemannian manifolds and
show how naive methods lead to ill- and mis-specified models on manifolds.

Probability measures and random vectors can intrinsically be defined on Riemannian manifolds so as
to model uncertainty on non-flat spaces (Pennec, 2006). The Riemannian metric G(z) induces an
infinitesimal volume element on each tangent space TzM, and thus a measure on the manifold,

d Vol(z) =
√
|G(z)| d Leb,

with Leb the Lebesgue measure. Manifold-valued random variables would naturally be characterized
by the Radon-Nikodym derivative of a measure ν w.r.t. the Riemannian measure Vol (assuming
absolute continuity)

p(z) =
dν

d Vol
(z).

B.1 Ambient Euclidean probability distributions

Unfortunately, conventional probabilistic models implicitly assume a flat geometry. This in turn cause
these models to either be misspecified or ill-suited to fit manifold distributions. Below we discuss the
reasons why.
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Let PD be a target probability measure that we aim to approximate, and which is defined on a
d-dimensional manifoldM ⊆ RD. Furthermore, we assume it admits a Radon-Nikodym derivative
pD with respect to the manifold invariant measure Vol, denoting PD � Vol with� denoting absolute
continuity. Conventional normalizing flows implicitly assume the parametrized probability measure
Pθ to have support on the ambient space RD and to be absolutely continuous with respect to the
Lebesgue measure LebRD . We denote its density by pθ.

Next, assume D = d, such as forM = Bd ⊆ Rd. With z the d-dimensional Cartesian coordinates, we
have d Vol

d LebRd
(z) =

√
|G(z)|. One could then see the manifold-valued target PD as being a probability

measure on Rd with a density w.r.t. the Lebesgue measure given by
dPD

d LebRd
(z) = pD(z)

√
|G(z)| , p̃D(z).

In general PD � Pθ which implies that the forward Kullback-Leibler divergence, or negative
log-likelihood up to constants, is defined and given by

LLike(θ) = DKL (PD ‖ Pθ) + H(PD) = EPD

[
log

(
p̃D(z)
pθ(z)

)]
+ H(PD) = −EPD

[
log

pθ(z)
√
|G(z)|

]
.

Minimising LLike(θ) amounts to pushing-forward Pθ’s mass so that empirical observations zi ∼ PD
have a positive likelihood under Pθ. Yet, in general the model (Pθ) has (most of his) mass outside the
manifold’s support which may cause such a naive approach to be ill-suited. More crucially it implies
that in general the model’s mass is not covering the full target’s support. In that case, the reverse
Kullback-Leibler divergence DKL (Pθ ‖ PD) = LKL(θ) is not even defined.

Next, consider the case whereM is a submanifold embedded in RD with D > d, such asM = Sd

where D = d + 1. In this setting the naive model Pθ is even misspecified since it is defined on a
different probability space than the target. In the limit supp(Pθ)→M, Pθ is not defined because we
have that

∫
RD Pθ → ∞. The target does consequently not belong to the model’s class.

C Instantaneous change of variable

In the following we derive the instantaneous change of density that a manifold-valued random variable
induces when its dynamics are governed by an ODE. We show that in the Riemannian setting this
instantaneous change of density can be expressed in terms of the manifold’s metric tensor.

Proof of Proposition 2

Proof. For a time dependant particles z(t), whose dynamics are given by the following ODE
dz(t)

dt
= f (z(t), t)

the change in density is given by the Liouville equation (or Fokker–Planck equation without the
diffusion term); ∀z ∈ M,∀t ∈ [0,T ]

∂

∂t
p(z, t) = − div(p(z, t)f (z, t))

= −
〈 ∂
∂z

p(z, t),f (z, t)
〉
z
− p(z, t) div(f (z, t))

where the last step was obtained by applying the divergence product rule. By introducing the time
dependence in z(t) and differentiating with respect to time we get
∂

∂t
p(z(t), t) =

〈 ∂
∂z

p(z(t), t),
∂

∂t
z(t)

〉
z(t)

+
∂

∂t
p(z(t), t)

=
〈 ∂
∂z

p(z(t), t),f (z(t), t)
〉
z(t)
−

〈 ∂
∂z

p(z(t), t),f (z(t), t)
〉
z(t)
− p(z(t), t) div(f (z(t), t))

= −p(z(t), t) div(f (z(t), t))
Hence the evolution of the log density is given by

∂

∂t
log p(z(t), t) = − div(f (z(t), t)). (8)

�
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Divergence computation For a Riemannian manifold (M, g), with local coordinates z, the diver-
gence of a vector field f is given by

div(f (z, t)) =
1

√
|G(z)|

d∑
i=1

∂

∂zi

( √
|G(z)| f i(z, t)

)
(9)

=
1

√
|G(z)|

d∑
i=1

(√
|G(z)|

∂

∂zi f i(z, t) + f i(z, t)
∂

∂zi

√
|G(z)|

)

=

d∑
i=1

∂

∂zi f i(z, t) +
1

√
|G(z)|

d∑
i=1

f i(z, t)
∂

∂zi

√
|G(z)|

= tr
(
∂

∂z
f (z, t)

)
+

1
√
|G(z)|

〈
f (z, t),

∂

∂z

√
|G(z)|

〉
. (10)

We note that in Equation 9, fi are the components of the vector field f with respect to the local
unnormalized covariant basis (ei)d

i=1 =
((

∂
∂zi

)
z

)d

i=1
. However it is convenient to work with local basis

having unit length vectors. If we write êi for this normalized basis, and f̂ i for the components of f
with respect to this normalized basis, we have that

f =
∑

i

f i ei =
∑

i

f i ‖ei‖
ei

‖ei‖
=

∑
i

f i
√

Gii
ei

‖ei‖
=

∑
i

f̂ i êi

using one of the properties of the metric tensor. By dotting both sides of the last equality with the
contravariant element êi we get that f̂ i = f i √Gii. Substituting in Equation 9 yields

div
(
f̂ (z, t)

)
=

1
√
|G(z)|

d∑
i=1

∂

∂zi


√
|G(z)|
Gii(z)

f̂ i(z, t)

 . (11)

Combining Equations 8 and 11 and we finally get

∂ log p(z(t), t)
∂t

= −
1

√
|G(z)|

d∑
i=1

∂

∂zi


√
|G(z)|
Gii(z)

f̂ i(z, t)

 . (12)

We rely on this Equation 12 for practical numerical experiments.

D regularization

D.1 l2-norm

Henceforth we motivate the use of an l2 norm regularization in the context of continuous normalizing
flows. We do so by highlighting a connection with the dynamical formulation of optimal transport,
and by proving that this formulation still holds in the manifold setting.

Monge-Kantorovich mass transfer problem Let (M, dM) be a metric space, and c :M×M→
[0,+∞) a measurable map. Given probability measures p0 and pT onM, Monge’s formulation of the
optimal transportation problem is to find a transport map φ∗ :M→M that realizes the infimum

inf
φ

∫
M

c(φ(z), z) p0(dz) s.t. pT ] = p0.

It can be shown that this yields a metric on probability measures, and for c = d2
M

, it is called the L2

Kantorovich (or Wasserstein) distance

dW2 (p0, pT )2 = inf
φ

∫
M

dM(φ(z), z)2 p0(dz). (13)

By reintroducing the time variable in the L2 Monge-Kantorovich mass transfer problem, the optimal
transport map φ∗ can be reformulated as the generated flow from an optimal vector field f .
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Proposition 3 (Dynamical formulation from (Benamou and Brenier, 2000)). Indeed we have

dW2 (p0, pT )2 = inf
1
T

∫ T

0
‖f‖2pt

dt = inf
1
T

∫ T

0

∫
M

〈f (z, t),f (z, t)〉z pt(dz) dt (14)

where the infimum is taken among all weakly continuous distributional solutions of the continuity
equation ∂

∂t pt = − div(ptf ) such that p(0) = p0 and p(T ) = pT . Writing φ∗t = φ∗(·, t) the flow
generated by the optimal ODE, then the optimal transport map is given by φ∗ = φ∗T .

The RHS of Equation (14) can then be approximated with no extra-cost with a Monte Carlo estimator
given samples from pt = φt]p0.

Manifold Setting Let’s now focus on the setting whereM is a Riemannian manifold.
Proposition 4 (Optimal map (Ambrosio, 2003)). Assume that M is a C3, complete Riemannian
manifold with no boundary and dM is the Riemannian distance. If p0, pT have finite second order
moments and p0 is absolutely continuous with respect to volM, then there exists a unique optimal
transport map φ for the Monge-Kantorovich problem with cost c = d2

M
. Moreover there exists a

potential h :M 7→ R such that
φ∗(z) = expz(−∇h(z)) volM − a.e..

Proposition 3 has been stated and proved for the caseM = Rd. Below we extend the proof given by
Benamou and Brenier (2000) for the manifold setting.

Proof of Proposition 3. We follow the same reasoning as the one developed for the Euclidean setting.
Let’s first upper bound the Wasserstein distance, and then state the optimal flow which yields equality.
We have

1
T

∫ T

0

∫
M

‖f (z, t)‖2z pt(dz) dt =
1
T

∫ T

0

∫
M

‖f (φ(z, t)), t)‖2z p0(dz) dt

=
1
T

∫ T

0

∫
M

∥∥∥∥∥ ∂∂t
φ(z, t)

∥∥∥∥∥2

z
p0(dz) dt

≥

∫
M

dM(φ(z,T ), φ(z, 0))2 p0(dz) dt

=

∫
M

dM(φ(z,T ), z)2 p0(dz) dt

≥

∫
M

dM(φ(z), z)2 p0(dz) dt

= dW2 (p0, pT )2.

Thus, the optimal choice of flow φ is given by

φ(z, t) = expz
( t
T

logz(φ∗(z))
)
, (15)

since φ(z, 0) = z, φ(z,T ) = φ∗(z) and∥∥∥∥∥ ∂∂t
φ(z, t)

∥∥∥∥∥
z

=

∥∥∥∥∥ ∂∂t
φ(z, t = 0)

∥∥∥∥∥
z

=
∥∥∥logz(φ∗(z)

∥∥∥
z

= dM(φ∗(z), z).

�

Note that the optimal flow from Equation 15 yields integral paths γ(t) = φ(z, t) that are geodesics and
have constant velocity.

Motivation Regularizing the vector field with the RHS of Equation 14 would hence tend to make
the generated flow φT closer to the optimal map ψ∗. By doing so, one hopes to increase smoothness
of f and consequently lower the solver NFE given a fixed tolerance.

This has been observed in the Euclidean setting by Finlay et al. (2020). They empirically showed that
regularizing the loss of a CNF with the vector field’s l2 norm improves training speed. Motivated
by the successful use of gradient regularization (Novak et al., 2018; Drucker and Cun, 1992), they
showed that additionally regularizing the Frobenius norm of the vector field’s Jacobian helps. In
the following subsection we remind that this regularization term can also be motivated from an
estimator’s variance perspective.
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D.2 Frobenius norm

Hutchinson’s estimator Hutchinson’s estimator (Hutchinson, 1990) is a simple way to obtain a
stochastic estimate of the trace of a matrix. Given a d-dimensional random vector ε ∼ p such that
E[ε] = 0 and Cov(ε) = Id, we have

tr(A) = Eε∼p[εT Aε].

Rademacher and Gaussian distributions have been used in practice. For a Rademacher, the variance
is given by (Avron and Toledo, 2011)

Vε∼p[εT Aε] = 2 ‖A‖F − 2
∑

i

A2
ii,

whereas for a Gaussian it is given by

Vε∼p[εT Aε] = 2 ‖A‖F .

Divergence computation As reminded in Appendix C by Equation 10, computing the vector field
divergence div(f (z, t)) involves the computation of the trace of vector field’s Jacobian tr

(
∂
∂zf (z, t)

)
.

As highlighted in Grathwohl et al. (2019); Salman et al. (2018), one can rely on the Hutchinson’s
estimator to estimate this trace with A = ∂

∂zf (z, t).

The variance of this estimator thus depends on the Frobenius norm of the vector’s field Jacobian
‖ ∂
∂zf (z, t)‖F , as noted in Grathwohl et al. (2019). Regularizing this Jacobian should then improve

training by reducing the variance of the divergence estimator.

E Vector flows and neural architecture

Hereafter we discuss about flows generated by vector fields, and neural architectural choices that we
make for their parametrization. Properties of vector fields have direct consequences on the properties
of the generated flow and in turn on the associated pushforward probability distributions. In particular
we derive sufficient conditions on the flow so that it is global, i.e. is a bijection mapping the manifold
to itself.

E.1 Existence and uniqueness of a global flow

We start by discussing about vector flows and sufficient conditions on their uniqueness and existence.

Local flow First we remind the Fundamental theorem of flows (Lee, 2003) which gives the existence
and uniqueness of a smooth local flow.
Proposition 5 (Fundamental theorem of flows). LetM be a smooth complete manifold with local
coordinates z. Let fθ :M× R 7→ TM a C1 time- dependent vector field and z0 ∈ M. Then there
exists an open interval I with 0 ∈ I, an open subset U ⊆ M containing z0, and a unique smooth map
φ : I × U 7→ M called local flow which satisfies the following properties. We write φt(z) = φ(z, t).

1. ∂
∂tφ(z, t) = fθ(φ(z, t), t) for all z, t ∈ U × I, and φ0 = idM.

2. For each t ∈ I, the map φt : U 7→ M is a local C1-diffeomorphism.

Note that with such assumptions, the existence and uniqueness of flows φt are only local.

Global flow We would like the flow φ to be defined for all times and on the whole manifold, i.e. a
global flow φ :M× R 7→ M. Fortunately, ifM is compact (such as n-spheres and torii), then the
flow is global (Lee, 2003). We show below that another sufficient condition for the flow to be global
is that the vector field be bounded.
Proposition 6 (Global Flow). LetM be a smooth complete manifold. Let fθ :M× R 7→ TM be
a C1 bounded time-dependent vector field. Then the domain of the flow φ is R ×M, i.e. the flow is
global.
Corollary 6.1. For each t ∈ R, the map φt :M 7→ M is a C1-diffeomorphism.
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Proof of Proposition 6. Let c > 0 s.t. ‖f‖ < c , and z0 ∈ M be an initial point. Proposition 5 gives the
existence of an open interval I = (a, b), a neighbourhood U of z0 and a local flow φ : (a, b)×U 7→ M.
We write γ = φ(z0, ·). The maximal interval of γ is (a, b), which means that γ cannot be extended
outside (a, b). Suppose that b < ∞.

The integral path γ is Lipschitz continuous on (a, b) since we have

dM(γ(t), γ(s)) ≤
∫ t

s
‖γ′(t)‖ dt =

∫ t

s
‖f (γ(t), t)‖ dt ≤ c |t − s| (16)

for all s < t ∈ (a, b).

Let (tn) be a sequence in (a, b) that converges to b. Then since (tn) is a convergent sequence, it must
also be a Cauchy sequence. Then γ(tn) is also a Cauchy sequence by Equation 16. Since M is
geodesically complete, it follows by Hopf-Rinow theorem that (M, dM) is complete, hence that γ(tn)
converges to a point p ∈ M.

Now suppose that (sn) is another sequence in (a, b) that converges to b. Then by Equation 16
limn→∞ d(γ(sn), γ(tn)) = 0, thus γ(sn) also converges to limn→∞ γ(tn) = p. So for every sequence
(tn) in (a, b) that converges to b, we have that (γ(tn)) converges to p. Therefore by the sequential
criterion for limits, we have that γ has the limit p at the point b. Therefore, define γ(b) = p and so γ
is continuous at b which is a contradiction. �

E.2 Geodesic distance layer

The expressiveness of CNFs directly depends on the expressiveness of the vector field and conse-
quently on its architecture. Below we detail and motivate the use of a geodesic distance layer, as an
input layer for the vector field neural architecture.

Linear layer A linear layer with one neuron can be written in the form ha,p(z) = 〈a, z − p〉, with
orientation and offset parameters a,p ∈ Rd. Stacking l such neurons h yields a linear layer with width
l. This neuron can be rewritten in the form

ha,p(z) = sign (〈a, z − p〉) ‖a‖ dE

(
z,HK

a,p

)
where Ha,p = {z ∈ Rp | 〈a, z − p〉 = 0} = p + {a}⊥ is the decision hyperplane. The third term is the
distance between z and the decision hyperplane HK

a,p and the first term refers to the side of HK
a,p

where z lies.

Poincaré ball Ganea et al. (2018) analogously introduced a neuron f K
a,p : Bd

K → Rp on the Poincaré
ball,

hK
a,p(z) = sign

(〈
a, logK

p(z)
〉
p

)
‖a‖p dK(z,HK

a,p) (17)

with HK
a,p =

{
z ∈ Bd

K |
〈
a, logK

p(z)
〉

= 0
}

= expK
p({a}⊥). A closed-formed expression for the distance

dK(z,HK
a,p) was also derived, dK(z,HK

a,p) = 1
√
|K|

sinh−1
(

2
√
|K||〈−p⊕Kz,a〉|

(1+K‖−p⊕Kz‖2)‖a‖

)
in the Poincaré ball. To

avoid an over-parametrization of the hyperplane, we set p = exp0(a0), and a = Γ0→p(a0) with Γ
parallel transport (under Levi-Civita connection). We observed that the term ‖a‖p from Equation
17 was sometimes causing numerical instabilities, and that when it was not it also did not improve
performance. We consequently removed this scaling term. The hyperplane decision boundary HK

a,p is
called gyroplane and is a semi-hypersphere orthogonal to the Poincaré ball’s boundary.

Hypersphere In hyperspherical geometry, geodesics are great circles which can be parametrized
by a vector w ∈ Rd+1 as Hw = {z ∈ Sd | 〈w, z〉 = 0}. The geodesic distance between z ∈ Sd and the
hyperplane Hw is then given by

d(z,Hw) =

∣∣∣∣∣∣sin−1
(
〈w, z〉
√
〈w,w〉

)∣∣∣∣∣∣ .
In a similar fashion, a neuron is now defined by

hw(z) = ‖w‖2 sin−1
(
〈w, z〉
√
〈w,w〉

)
.
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Geodesic distance layer One can then horizontally-stack l neurons to make a geodesic distance
layer g : M 7→ Rl (Mathieu et al., 2019). Any standard feed-forward neural network can then be
vertically-stacked on top of this layer.

F Extensions

F.1 Product of manifolds

Having described CNFs for complete smooth manifolds in Section 2, we extend these for product
manifoldsM =M1 × · · · ×Mk. For instance a d-dimensional torus is defined as Td = S1 × · · · × S1︸          ︷︷          ︸

d

.

Any density pθ(z1, . . . ,zK) can decomposed via the chain rule of probability as

pθ(z1, . . . ,zK) =
∏

k
pθk (zk | z1, . . . ,zk−1)

where each conditional pθk (zk | z1, . . . ,zk−1) is a density on Mk. As suggested in Rezende et al.
(2020), each conditional density can be implemented via a flow φk :Mk 7→ Mk generated by a vector
field fk, whose parameters θk are a function of (z1, . . . ,zk−1). Such a flow φ = φ1 ◦ · · · ◦ φk is called
autoregressive (Papamakarios et al., 2017) and conveniently has a lower triangular Jacobian, which
determinant can be computed efficiently as the product of the diagonal term.

G Experimental details

Below we fully describe the experimental settings used to generate results introduced in Section 4.

Architecture The architecture of the vector field fθ is given by a multilayer perceptron (MLP) with
3 hidden layers and 64 hidden units – as in (Grathwohl et al., 2019) – for projected (e.g. stereographic
and wrapped cf Section 3) and naive (cf Appendix B.1) models. We rely on tanh activation. For
our Riemmanian continuous normalizing flow (RCNF), the input layer of the MLP is replaced by a
geodesic distance layer (Ganea et al., 2018; Mathieu et al., 2019) (see Appendix E.2).

Objectives We consider two objectives, a Monte Carlo (MC) estimator of the negative log-
likelihood

L̂Like(θ) = −

B∑
i=1

log pθ(zi) with zi ∼ PD

and a MC estimator of the reverse KL divergence

L̂KL(θ) =

B∑
i=1

log pθ(hθ(εi)) − log pD(hθ(εi))

with zi ∼ Pθ being reparametrized as zi = hθ(εi) and εi ∼ P.

Optimization All models are trained by the stochastic optimizer Adam (Kingma and Ba, 2015)
with parameters β1 = 0.9, β2 = 0.999, batch-size of 400 data-points and a learning rate set to 1e−3.

Training We rely on the Dormand-Prince solver (Dormand and Prince, 1980), an adaptive Runge-
Kutta 4(5) solver, with absolute and relative tolerance of 1e − 5 to compute approximate numerical
solutions of the ODE. Each solver step is projected onto the manifold. Models are trained on a cluster
of GeForce RTX 2080 Ti GPU cards.

G.1 Hyperbolic geometry and limits of conventional and wrapped methods

In this experiment the target is set to be a wrapped normal on B2 (Nagano et al., 2019; Mathieu
et al., 2019) with density NW(exp0(α ∂x),Σ) = expµ]N(α ∂x,Σ) with Σ = diag(0.3, 1.0). The scalar
parameter α allows us to locate the target closer or further away from the origin of the disk. Through
this experiment we consider three CNFs:
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• Naive: PN
θ = φR2

]
N(0, 1)

• Wrapped: PW
θ = (exp0 ◦ φ

R2
)]N(0, 1)

• Riemannian: PR
θ = φB2

]
NW(0, 1)

with φR2
a conventional CNF on R2, φB2

our RCNF introduced in Section 2, N(0, 1) the standard
Gaussian and NW(0, 1) the standard wrapped normal. For the RCNF we scale the vector field as

fθ(z) = |G(z)|−1/2 neural_net(z) =

(
1 − ‖z‖2

2

)2

neural_net(z).

These three models are trained for 1500 iterations, by minimizing the negative log-likelihood (see Fig-
ure 4). The reported results are averaged over 12 runs. When training, the divergence is approximated
by the (Hutchinson) stochastic estimator from Equation 5.

G.2 Spherical geometry

Through the following spherical experiments we consider the two following models

• Stereographic: PS
θ = (ρ−1 ◦ φR2

)]N(0, 1)

• Riemannian: PR
θ = φS2

]
U(S2)

with ρ−1 the inverse of the stereographic projection, φR2
a conventional CNF on R2, φS2

our RCNF,
N(0, 1) the standard Gaussian andU(S2) the uniform distribution on S2. For the RCNF we project
the output layer of the vector field as

fθ(z) = projTzS2 neural_net(z) =
neural_net(z)
‖neural_net(z)‖2

so as to enforce output vectors to be tangent. All spherical experiments were performed using the
exact divergence estimator.

Limits of the stereographic projection model In this experiment the target is chosen to be a
vMF(µ, κ) located at µ = −µ0 with −{µ0} = (−1, 0, . . . , 0). Both models are trained for 3000
iterations by minimizing the negative log-likelihood and the reverse KL divergence. The reported
results are averaged over 4 runs.

Density estimation of spherical data Finally we consider four earth location datasets, representing
respectively volcano eruptions (NOAA, 2020b), earthquakes (NOAA, 2020a), floods (Brakenridge,
2017) and wild fires (EOSDIS, 2020). The reported results are averaged over 12 runs.

Concerning the CNFs, these models are trained by minimizing the negative log-likelihood for 1000
epochs, except for the volcano eruption dataset where 3000 epochs are required for convergence. We
observed that training models with a solver’s tolerance of 1e − 5 was computationally intensive so we
lowered the training tolerance to 1e − 3 for the volcano eruptions, earthquakes and wild fires datasets,
and 1e − 4 for the floods dataset, while keeping it to 1e − 5 during evaluation. We additionally
did not use the geodesic layer (presented in Appendix E.2) to lower the computational time. We
also observed that annealing the learning rate such that α(t) = 0.98(t/300)α0 with α0 = 1e−3 helped
stabilizing training convergence.

Concerning the mixture of von Mises-Fisher distributions, the parameters are learned by minimizing
the negative log-likelihood with Riemannian Adam (Becigneul and Ganea, 2019). The number of
epochs is set to 10000 for all datasets but for the volcano eruption one where 30000 epochs are
required for the vMF model to converge. The learning rate and number of mixture components
are selected by performing a hyperparameter grid search, over the following range: learning rate
∈ {1e − 1, 5e − 2, 1e − 2} and number of components ∈ {50, 100, 150, 200}.

H Additional figures
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Figure 7: Ablation study of the geodesic layer computational impact for the Riemannian model. Negative
Log-likelihood of Riemannian CNFs trained to fit a NW(exp0(α ∂x),Σ) target on B2.
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Figure 8: Density estimation for earth sciences data with Robinson projection. Blue and red dots represent
training and testing datapoints, respectively. Heatmaps depict the log-likelihood of the trained models.
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