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Abstract

Much recent work has focused on biologically plausible variants of supervised
learning algorithms. However, there is no teacher in the motor cortex that instructs
the motor neurons and learning in the brain depends on reward and punishment.
We demonstrate a biologically plausible reinforcement learning scheme for deep
networks with an arbitrary number of layers. The network chooses an action
by selecting a unit in the output layer and uses feedback connections to assign
credit to the units in successively lower layers that are responsible for this ac-
tion. After the choice, the network receives reinforcement and there is no teacher
correcting the errors. We show how the new learning scheme — Attention-Gated
Brain Propagation (BrainProp) — is mathematically equivalent to error backprop-
agation, for one output unit at a time. We demonstrate successful learning of
deep fully connected, convolutional and locally connected networks on classical
and hard image-classification benchmarks; MNIST, CIFAR10, CIFAR100 and
Tiny ImageNet. BrainProp achieves an accuracy that is equivalent to that of stan-
dard error-backpropagation, and better than state-of-the-art biologically inspired
learning schemes. Additionally, the trial-and-error nature of learning is associated
with limited additional training time so that BrainProp is a factor of 1-3.5 times
slower. Our results thereby provide new insights into how deep learning may be
implemented in the brain.

1 Introduction

Artificial neural networks with many layers of neural units now attain human-level performance in
speech and image recognition [[1, 2} 3] and in complex computer games like Chess, Go and Starcraft
[4)15,16]]. Central to this success is the application of the error-backpropagation algorithm (EBP) [7] to
efficiently assign credit to individual weights between the layers in deep networks. EBP computes the
error gradient for connections between all the layers. Can the brain, with its hierarchically arranged
cortical areas, solve the credit assignment problem in a similar manner?

Recent studies proposed versions of EBP for the brain that required a teacher, studying the feasibility
of asymmetric feedback networks [} 9} 10, 111]] and developing variants of equilibrium propagation
(12, [13) 144 [15) [16], reviewed in [17, [18]. In equilibrium propagation [12| [18], activity is first
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propagated to the output layer, after which the output units are nudged in the direction of the desired
target values. Feedback connections then propagate the perturbed signals back to lower layers, which
can then compare activity before and after teacher intervention to estimate the error gradient for all
connections. The present work addresses a number of limitations of these previous schemes. First,
it avoids a teacher and replaces it by trial-and-error learning in a reinforcement learning context.
Second, the scheme takes the neuromodulatory systems in the brain, such as dopamine, into account
that provide a reward prediction error signal (RPE). The RPE is positive if an action selected by the
network is associated with more reward than expected or if the prospects of receiving reward increase,
and the RPE is negative if the outcome of the action is disappointing. These neuromodulatory
signals are accessible for all neurons in the brain [19, 20} 21} 22} 23], 124} [25]]. Third, it uses feedback
connections to propagate attentional “credit assignment” signals from higher to lower network levels
which are known to gate plasticity [26} 27, 28} 29]. When a network chooses an action, the feedback
signal is strongest for neurons and synapses that are responsible for the selected action. We show
how this combination of the attentional feedback signals and the neuromodulatory influence can be
combined at the level of a synapse to provide a learning scheme that is equivalent to EBP, for one
output unit at a time. The result is a biologically plausible synaptic update rule. The learning scheme
requires weight symmetry, which can occur as the result of the BrainProp learning scheme itself.
Furthermore, a previous study [30] demonstrated that the learning scheme can also function in spite
of delays between the signals propagated by feedforward and feedback connections.

BrainProp builds on previous learning rules like AGREL [31]] and AUGMENT [32], which also
combined RPEs with attentional feedback for networks of only three layers. They solved cognitive
tasks including delayed reward tasks relying on the formation of new working memories. BrainProp
extends AGREL and AuGMENT to much deeper networks (here up to 8 hidden layers). We test
BrainProp on MNIST, which is a standard classification task, and also on CIFAR10, CIFAR100 and
Tiny ImageNet, which are more challenging. The network is trained by providing a reward if the
network chooses the correct action and withholding it upon errors. On error trials, the correct class
is not revealed to the network so that less information is available than in EBP. Nevertheless, we
find that BrainProp is only a factor of 1-3.5 times slower across tasks. Remarkably, BrainProp’s
high degree of biological plausibility is associated with a performance boost compared to the other
contemporary biologically inspired learning rules. BrainProp outperforms these schemes and brings
complex tasks such as Tiny ImageNet into the realm of biologically plausible learning.

2  From Error Backpropagation to BrainProp

Starting from EBP, we first review the weight update equations under a single-action-at-a-time
reinforcement learning paradigm, and we then explain how it can map onto learning in the brain by
proposing specific roles for feedback connections and neuromodulatory systems.

We start with a description of the feedforward sweep in a network with N layers, where a pattern
is presented to the input layer and activity then propagates towards the output layer of the network.
Given a deep neural network with an arbitrary number of layers, each unit j in any layer / computes:
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where f* is the activation function of layer [, w;’ ; the synapse connecting the j-th unit in layer [ — 1

to the i-th unit of layer /, yi.’l the output of the j-th unit in layer / — 1. The activity vector in the

output layer is used to compute the error, which represents the distance between a target vector t and
the activity in the output layer y~. For networks with linear output units, which will be studied here,
the sum-squared-error loss function is convenient:
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The update of the weight wf_jl in Eq. follows gradient descent. It is straightforward to calculate the
weight update of the connections between layer N — 1 and N:
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Figure 1: (a) EBP traversing the network from output to input; (b) backpropagation through a
feedback network.

the local error &, of output unit n is then — (z, — y}) — another choice often used for EBP is the
softmax activation combined with the cross-entropy loss function, which gives rise to an equivalent
local error. In EBP the local error signals are propagated back from the higher layers back to the
lower layers of the network and used to update all the synapses (Fig.[Th). The local error of a unit i
in layer / depends on the local error signal of the units k in the layer / + 1 above, the derivative of

their activation functions, g := f*'(al), and the strength of the connections to these units:
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The weight update of all synapses follows gradient descent and it can be expressed as the product of
the local error signal 6} and the activity y/~' of neuron j in the lower layer [33]:

Awfjjl = 65g£y§-’1 . )
Supervised learning requires a teacher who reveals the correct class. We will use a simple example
with only three classes to compare EBP to BrainProp. Suppose for example that the network makes
an error by choosing class 1 for a particular stimulus whereas the correct choice is class 2:

0 -
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and the chosen class is the one with the highest activity so that y\' > yJ, y¥. EBP will change the

connections to push the activity of the first and third output unit towards zero and to increase the
activity of the second unit towards one.

BrainProp is a reinforcement learning scheme and it samples a class s using a stochastic action
selection process in the output layer. If s is correct, the network receives a reward, r, of 1 and rewards
are withheld upon errors, but there is no teacher that informs the network about the correct choice:

(7

_ |1 if the correct class is selected,
~ |0 if a wrong class is selected.

Furthermore, the activity yY of unit s in the output layer is interpreted as the current estimate of the

expected amount of reward if the network selects class s for the current input pattern. The difference

between the amount of reward obtained and expected is the reward prediction error (RPE) and this
difference will be minimized during learning:

1
E(w) =5 (r=2)". ®)

Suppose that the network chooses class 1. The reward expectancy is y)' and the RPE is —y} because

no reward is obtained. If class 2 is selected a reward of 1 is given and the RPE equals 1 — y}. The
local error signals are only computed for the selected class s:

1 0 0
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Figure 2: Details of the BrainProp algorithm: only one output unit, corresponding to the selected
action or class, is trained at a time by means of an attentional feedback signal.

Only synaptic weights that pertain to the activity of s will be updated (Fig.[2). In what follows we
will write & for 6%, because it is a scalar that represents the RPE. We know from neurophysiological
work that there are circuits in the brain that code for the RPE so that Eq. [0]is in accordance with
reinforcement learning [20]. Importantly, neuromodulators such as dopamine are released diffusely
into the neural tissue so that they can inform all the synapses about the RPE.

We will now first determine the weight update for connections w™! between layers N — 1 and N:

sy ifn=s
N1 _ m s
AWnm = {0 otherwise. (10)

If activity in the output layer becomes a one-hot vector for the selected class upon action selection,
the weight update corresponds to Hebbian learning, modulated by the RPE [31}34]]. A comparison
of Eq.[6and Eq. D]reveals that BrainProp’s weight update for these connections is identical to that of
EBP if all outputs are selected once and synaptic updates occur afterwards.

In general, Hebbian learning gated by the RPE has been called perturbation learning [35] and is
known to perform poorly for deeper networks and for networks with many units, because synapses not
involved in action selection are also modified so that the correlation between the actual and desired
weight updates is diluted [31} [18]. BrainProp greatly improves the variance of the weight updates by
using feedback connections from the selected actions to lower processing levels, enabling plasticity
of relevant synapses only. As we will outline below, the feedback connections of BrainProp propagate
activity and not error signals, consistent with neuroscientific observations. In neurophysiology,
feedback influences are usually characterized as effects of top-down attention. If an action is chosen
in the brain, neurons in sensory areas that provided input to this action receive an attentional feedback
signal from the motor selection stage that increases their activity level (i.e. [36,27]). The hypothesis
that feedback connections gate learning is supported by psychological literature demonstrating that
attention gates learning as well as the effects of feedback on synaptic plasticity [37].

We will now compute the weight update of BrainProp for the connections between layers N — 2
and N — 1, and then provide a recursive formula that governs the weight updates in all lower layers.
In what follows we will assume that the strength of the feedback connection w " between unit i in
layer [ and unit j in layer / — 1 is identical to the strength of the feedforward connectlon wh FJ This
reciprocity of feedforward and feedback connections does not hold at the level of single neurons in
the brain, but we hypothesize that it is true at the level of cortical columns. Hence, a unit of BrainProp
corresponds to a cortical column in the brain with both feedforward and feedback units (Fig. [Tp).
In previous work, it was demonstrated that symmetrical weights emerge during learning using the
proposed learning scheme [31] and recent studies have suggested specialized learning rules to refine
this reciprocity [9]. In what follows we will use the notation w;_ ; both for w i F and wj , in particular
if there is no ambiguity. We define the amount of feedback activity at the level of the output layer as:

1 ifn=s
N _ ’
n = {0 otherwise, (1n

where unit s has activity 1 upon action selection and the other output units are silent (see Fig. [2).
Then, we can compute the amount of feedback that arrives from the selected action s at unit m in the
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Figure 3: Gating mechanisms in BrainProp. (a) The activity of the feedforward neuron is above 0
and the feedback neuron propagates activity and plasticity is on; (b) if the activity of the feedforward
neuron is above 0 but the feedback neuron does not receive activity, plasticity is off; (c) if the activity
of the feedforward neuron is not above 0, no feedback activity is propagated.

penultimate layer N — 1 as:

o= D WA = WY (12
n
where the derivative of the activation is not included as output neurons are linear. The weight update
for the connection between unit p in layer N — 2 and unit m in layer N — 1 is gated both by ¢! and
the derivative gl\;' of the activation function of unit m and equals:

Awy2, =85 g v (13)

This a form of Hebbian learning, which is modulated by the RPE § and the amount of feedback #%;'
from the higher layer arriving at unit m. We will come back to the role of g, at the end of this section,
and will explain how it conforms to what we know about the effect of top-down attention. The same
learning rule is used for all other layers below. The amount of attentional feedback arriving at unit
in layer / from units k in layer / + 1 equals:

oi= > wil o e, (14)
k
which only depends on feedback signals from the next higher layer and the derivatives in that layer,
in contrast with Eq. 4] where error signals and not activity is propagated. The weight update of a
connection between a unit i in layer / and a unit j in layer / — 1 is given by:
Awfjjl =50 gl yifl = RPE - feedback! - derivative! - feedforward activityifl , (15)
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where the error vector 6£ needed in Eq. [5|is now split into the broadcasted scalar RPE and the net
feedback activity ¢f.

We note again that this represents a form of Hebbian learning, in which plasticity is modulated by the
global RPE and feedback received from the next higher layer. The weight updates of all synapses in
BrainProp are identical to those of EBP, if EBP would only take the local error ¢ of the selected action
into account and ignore other local errors ¢, for n # s in the output layer. Furthermore, the weight
updates of BrainProp would be identical to those of EBP if all output units are selected exactly once
and weight updates applied thereafter. Thus, if BrainProp would use a suboptimal action sampling
policy by first trying all C classes once before updating the weights, the weight updates would be
identical to those of EBP although it would require C times the number of stimulus presentations.
However, we will here use an action sampling strategy in which output units that receive much input
(i.e. with higher activations) are more likely selected: in 98% of the cases the output neuron with
the highest activity is selected and for the remaining 2% the network selects an output unit using
a Boltzmann distribution over the output activations, i.e. a Max-Boltzmann controller [38]. Our
simulations below show how BrainProp initially goes through a phase in which it needs to find the
categories of stimuli by trial and error. Once classification starts to work, however, the learning
focuses on those stimuli that are still erroneously classified and that are therefore presumably close to
the category boundaries. In our experiments, the convergence rate of BrainProp turned out to be only
a factor of 1-3.5 slower than that of EBP, even if there were tens to hundreds of classes.

We will now discuss the biological plausibility of g; in Eq.[I5] which is the derivative of the activation
function in the feedforward pathway. The factor g; influences plasticity of the column i as well as the



Table 1: Results on fully connected (dense), locally connected (Loccon) and convolutional (conv)
networks (averaged over 10 different seeds, the mean and standard deviation are indicated).

Dataset Architecture Rule Epochs [#]  Accuracy [%]
MNIST dense BrainProp 51(19) 98.68(0.07)
dense Error-BP 33(19) 98.54(0.16)
conv BrainProp 63(18) 99.31(0.04)
conv Error-BP 51(13)  99.39(0.03)
loccon BrainProp 65(19)  99.05(0.06)
loccon Error-BP 70(28)  99.06(0.06)
CIFAR10 conv BrainProp 125(47)  69.30(0.75)
conv Error-BP 145(44)  70.69(0.78)
loccon BrainProp 151(35) 64.92(0.32)
loccon Error-BP 171(48)  64.31(0.54)
CIFAR100 conv BrainProp 110(34) 34.07(0.50)
conv Error-BP 102(61) 36.56(0.87)
loccon BrainProp 229(30)  30.04(0.33)
loccon Error-BP 43(26) 31.53(0.48)

backward propagation of activity in the feedback pathway through column i. Clearly, the activity
level of a cortical column is a local signal, which is available to synapses and neurons in a column.
However, the biological plausibility of computing the derivative will depend on the precise shape
of the activation function. In simulations below, we used rectified linear units (ReLLUs), which have
a very simple derivative: if the feedforward units of a cortical column are not activated above their
threshold, g; = 0 and if they are active g; = 1. In other words, plasticity is switched on for those
columns that are activated by the feedforward connections (Fig.[3p and Fig.[3p), and is switched off
for silent columns, in accordance with a Hebbian plasticity rule. Importantly, the inactive columns
also do not propagate the feedback signal onwards to lower layers (Fig.[3c). This feature of BrainProp
conforms with neuroscientific evidence showing that attentional feedback effects on the firing rate of
sensory neurons is pronounced if the neurons are well driven by a stimulus and much weaker if they
are not [39, 140, 41]]. The plasticity rules for feedback connections are the same as for feedforward
connections so that they remain reciprocal. It is this reciprocity that ensures that plasticity is confined
to the connections between units that provided input that was pertinent to the selection of action s.

3 Experiments

We evaluated the performance of BrainProp on the MNIST, CIFAR10, CIFAR100 and Tiny ImageNet
[42] data sets. The MNIST dataset consists of 60,000 training samples (i.e. images of 28 by 28 pixels),
while the CIFAR datasets comprise 50,000 training samples (RGB images of 32 by 32 pixels) and
Tiny ImageNet has 100,000 images (of 64 by 64 pixels) equally divided across 200 classes. Hence, the
output layer had 10 units for MNIST and CIFAR10, 100 for CIFAR100 and 200 for Tiny ImageNet.
For convenient implementation, we used a batch stochastic gradient decent method, but the learning
scheme works equally well with learning after each trial. For each batch, we calculated the gradients,
divided by the batch size, and updated the weights. We presented batches until the whole training
dataset was processed, indicating the end of an epoch. At the end of each epoch, a validation accuracy
was calculated on the validation dataset. We used an early stopping criterion and stopped training if
the validation accuracy had not increased for 45 consecutive epochs (by the third decimal). We here
used a ReLU activation function for hidden units. We used softmax output units and a cross-entropy
loss for EBP and linear output units and a sum-squared-error loss for BrainProp. The code and
selected pre-trained models are available at https://github.com/isapome/BrainProp!

In these classification tasks reward feedback is given immediately upon the choice. These tasks
are simpler than more general RL settings that necessitate the learning of a number of intermediate
actions before a reward can be obtained. The performance of the BrainProp-like learning rules in
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Table 2: Results on the deeper architecture, averaged over 10 seeds, the mean(standard deviation)
are indicated.

Dataset Rule Epochs [#]  Accuracy [%]
CIFAR10 BrainProp 105(4) 88.88(0.27)
Error-BP 97(17)  88.48(0.55)
CIFAR100 BrainProp 218(22)  59.58(0.46)
Error-BP 101(1)  63.39(0.42)
Tiny ImageNet BrainProp 328(75) 47.50(1.30)
Error-BP 101(46)  47.35(3.06)

shallower networks that are trained on these types of tasks has been addressed elsewhere [32]]. This
previous work used highly pre-processed, compact and abstracted sensory representations. The
present work not only goes beyond these previous studies by generalizing the learning rule to deeper
networks but also by addressing much more complex input patterns.

Since we focus on biologically plausible learning, we implemented locally connected layers for
MNIST, CIFAR10 and CIFAR100 and compared performance to that of non-biological convolutional
networks for which synaptic weights are shared between different image locations. For these
simulations, we configured three hidden layers and for MNIST we also include a 3-layer fully
connected network. The locally connected networks contained one locally connected layer with 32
filters with 3x3 kernels with batch normalization, another locally connected layer with the same
parameters but with a 2x2 stride and a dropout rate of 0.3 and a fully connected layer of 500 neurons
with a 0.3 dropout rate. Convolutional networks were setup identically but with shared weights.
Memory limitations prevented us from implementing deeper networks with locally connected layers
due to the associated vast numbers of parameters. We note that the process of batch normalization
is compatible with what we know about homeostatic plasticity in the brain [43]]. Dropout is also
biologically plausible: by removing random hidden units in each training run, it simulates the
regularisation process carried out in the brain by the stochastic firing of neurons [44]]. The fully
connected network consisted of hidden layers with 1,500, 1,000 and 500 units.

For the fully connected network we used a schedule with a learning rate starting 1 which was halved
every 100 epochs. The weights were randomly initialized from a normal distribution with a zero
mean and 0.1 standard deviation. For all the other experiments presented in this paper we used a
learning rate of 0.1 as a starting value for the schedule and a standard deviation of 0.005 for the
weight initialization. To fit into GPU memory, we used a batch size of 32 for locally connected
networks while for all the other experiments we used a batch size of 128.

Table [T) compares the performance of EBP and BrainProp for the fully connected networks, the
locally connected networks and corresponding convolutional networks. For all the three datasets,
the accuracy of BrainProp was comparable to that of EBP (Table [I)); however, locally connected
networks reached a lower validation accuracy compared to convolutional networks, with a small gap
for MNIST, and larger one for CIFAR10 and CIFAR100. The speed of convergence (Epoch [#]) for
BrainProp compared to EBP was comparable, except for the locally connected CIFAR100 network.
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Figure 4: Architecture used for CIFAR10, CIFAR100 and Tiny ImageNet (the output layer, of
respectively 10, 100 and 200 units, is omitted). Figure made using [45]].
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Figure 5: Validation accuracy trend for EBP and BrainProp. The mean + standard deviation for 10
seeds is plotted. For dense MNIST, the trend obtained with a single seed is also shown.

We next ran experiments with BrainProp and EBP for CIFAR10, CIFAR100 and Tiny ImageNet with
a convolutional network with eight hidden layers, arranged as shown in Fig.[d We used the same
hyperparameters as in the more shallow networks, but added L2 regularization of 0.0005.

As shown in Table 2| BrainProp reached a relatively high classification accuracy of 88.88% on the
CIFAR10 task and BrainProp’s speed of convergence (Epochs [#]) was a factor of 1 to 1.5x slower
than that of EBP. The final accuracy obtained with BrainProp (59.58%) for CIFAR100 was slightly
lower than that with EBP (63.39%) and the convergence rate that was between 2 and 2.5x slower.
BrainProp’s accuracy on Tiny ImageNet was 47.50%, comparable to EBP’s accuracy of 47.35%, and
learning was a factor of 3 to 3.5x slower.

Fig.|5|compares BrainProp’s learning process to that of EBP for the MNIST, CIFAR100 and Tiny
ImageNet benchmarks (CIFAR10 not shown). The "steps" in the curve of BrainProp, which are
easiest to observe for MNIST, are of interest: the network appears to "discover" the classes, one at a
time. In contrast, EBP’s teacher will give feedback about the correct class the first time it presented
and these steps do not occur. Learning for BrainProp is slower than for EBP. This slowdown occurs
because BrainProp trains connections for only one output unit at any one time. This cost is offset
by the biological plausibility of BrainProp: the learning process matches what we know about how
top-down connections and neuromodulators determine plasticity in the brain [27]].

4 Discussion

An important question in computational neuroscience is if and how the human brain with its many
layers between sensory input and motor uses plasticity rules that are as powerful as EBP. BrainProp
differs from previous biologically inspired learning schemes, which used a teacher to determine
the local errors in the output layer and to propagate these errors to lower network layers. Instead,
BrainProp is a reinforcement learning scheme in which a choice is made for an action in the output
layer and an attentional feedback signal determines which units at lower layers contributed to this
action. As a result, only relevant connections are changed, which causes variance of the weight
updates to be much smaller than schemes that only use the RPE, such as REINFORCE [46] [31]].
BrainProp is thus able to train deep networks for a wide range of challenging classification problems.

In BrainProp, only units that receive the backpropagated attentional feedback signal, ¢, that originates
from the selected action become sensitive to the RPE (i.e. the global §). In the brain, the RPE
is mediated by neuromodulatory signals that are released diffusely to make them available to all
synapses. These signals determine whether the relevant synapses (with high ¢) increase or decrease
in strength. Even though BrainProp is mathematically equivalent to EBP for one output unit at a
time, it is also biologically plausible. This biological plausibility derives from (1) its use of the
neuromodulatory signals known to determine plasticity [27]], (2) the use of attention known to gate
learning, (3) the availability of all signals that determine plasticity at the synapses and (4) trial-
and-error learning, so that it can work without a teacher providing a target signal to every output
unit.

BrainProp requires feedforward and feedback connections that are approximately reciprocal. In
previous work, it was demonstrated that such symmetrical weights can emerge during learning using
the proposed learning scheme [31] and recent studies have suggested that the brain may even have
specialized learning rules to calibrate this reciprocity [9]. In the brain, the approximate reciprocity
of connections may hold at the level of cortical columns, but not at the level of individual neurons.



Hence, the units of BrainProp should be identified with cortical columns that consist of hundreds of
cells and not with individual neurons.

BrainProp is a generalization of existing learning rules AGREL [31] and AuGMEnT [47, [32]], which
have been used previously to train networks with one hidden layer. The generalization to many
layers, achieved by developing a framework that gates the attention signals sent back through multiple
layers, greatly expanded BrainProp’s capacity as a learning scheme. We showed how it trains deep
networks to perform the MNIST, CIFAR10, CIFAR100 and Tiny ImageNet tasks. BrainProp attained
an accuracy that is on par with EBP, even for Tiny ImageNet with its 200 classes. BrainProp thereby
outperforms other biologically plausible learning schemes and it may be the first biologically plausible
scheme that can train networks on larger problems, such as Tiny ImageNet [[10]. A remarkable finding
is that the trial-and-error nature of learning of BrainProp incurred a very limited cost of 1-3.5x more
training epochs, even if there were 200 classes that had to be found by trial and error. BrainProp learns
about classes that are correctly or erroneously selected and will focus learning on miss-classified
stimuli. Whereas we used BrainProp to train network on classification tasks, defined as direct reward
problems, future work can use versions of the algorithm to train more complex cognitive tasks in
which rewards are delayed and depend on a number of consecutive actions. These explorations could
be based on the AuGMEnNT framework, which trains networks on delayed reward tasks and even
allows networks to form working memories if needed (such as e.g. in POMDPs).

We conclude that the present and related work on biologically plausible learning is starting to bridge
the gap between learning in machines and in the brain. Insights from the machine learning and
neuroscience fields is contributing to a genuine understanding of learning in the brain, with its many
processing stages between sensory neurons and the motor neurons that ultimately control behavior.

Broader Impact

Our research addresses how deep learning can be implemented by the brain. It does not only address
of the biggest unsolved mysteries related to how our brain, with its many layers between input and
output learns, but it may ultimately also shed light on conditions in which learning is impaired. For
example, our work suggests that attention is important for learning. It may thereby inspire new
research into how e.g. attention deficits impair learning. Our work also suggests an important role for
neuromodulatory signals, such as dopamine, in learning. Our work may provide insight into how
diseases that impair the neuromodulatory systems (e.g. Parkinson’s disease) cause learning deficits.
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