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Abstract

We consider the robust linear regression problem in the online setting where we
have access to the data in a streaming manner, one data point after the other. More
specifically, for a true parameter θ∗, we consider the corrupted Gaussian linear
model y = 〈x, θ∗〉+ ε+ b where the adversarial noise b can take any value with
probability η and equals zero otherwise. We consider this adversary to be oblivious
(i.e., b independent of the data) since this is the only contamination model under
which consistency is possible. Current algorithms rely on having the whole data at
hand in order to identify and remove the outliers. In contrast, we show in this work
that stochastic gradient descent on the `1 loss converges to the true parameter vector
at a Õ(1/(1− η)2n) rate which is independent of the values of the contaminated
measurements. Our proof relies on the elegant smoothing of the non-smooth `1 loss
by the Gaussian data and a classical non-asymptotic analysis of Polyak-Ruppert
averaged SGD. In addition, we provide experimental evidence of the efficiency of
this simple and highly scalable algorithm.

1 Introduction

Robust learning is a critical field that seeks to develop efficient algorithms that can recover an
underlying model despite possibly malicious corruptions in the data. In recent decades, being
able to deal with corrupted measurements has become of crucial importance. The applications
are considerable, to name a few settings: computer vision [87, 90, 5], economics [85, 73, 92],
astronomy [72], biology [89, 76] and above all, safety-critical systems [15, 40, 33].

Linear regression being one of the most fundamental statistical model, the robust regression problem
has naturally drawn substantial attention. In this problem, we wish to recover a signal from noisy
linear measurements where an unknown proportion η has been arbitrarily perturbed. Various models
have been proposed to illustrate such contaminations. The broadest is to consider that the adversary is
adaptive and is allowed to inspect the samples before changing a fraction η. In this general framework,
exact model recovery is not possible and several robust algorithms have been proposed [19, 49, 22,
68, 77, 17, 55, 54]. The information-theoretic optimal recovery guarantee has recently been reached
by [28]. Another model is to consider an oblivious adversary, in this simpler context it is possible to
consistently recover the model parameter and several algorithms have been proposed [8, 79].

However, none of these algorithms are suitable for online or large-scale problems [58, 36]. Indeed,
all of the suggested algorithms require handling the complete dataset, which is simply unrealistic in
such settings. This is a considerable problem when we know that modern problems involve colossal
datasets and that current machine learning methods are limited by the computing time rather than the
amount of data [12]. Such considerations advocate the necessity of proposing practical, online and
highly scalable robust algorithms, hence we ask the following question:

Can we design an efficient online algorithm for the robust regression problem ?
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In this paper we answer by the affirmative for the online oblivious response corruption model where
we are given a stream of i.i.d. observation (xi, yi)i∈N from the following generative model:

y = 〈x, θ∗〉+ ε+ b,

where θ∗ ∈ Rd is the true parameter we wish to recover, x is the Gaussian feature, ε is the Gaussian
noise of variance σ2 and b is an adversarial ’sparse’ noise assumed independent of the data (x, ε)
such that P(b 6= 0) = η. In order to recover the parameter θ∗, we perform averaged SGD on the
expected `1 loss E [|y − 〈x, θ〉|]. Though this algorithm is very simple, we show that it successively
handles the outliers in an online manner and recovers the true parameter at the optimal non-asymptotic
convergence rate Õ(1/n) for any outlier proportion η < 1. Such an algorithm is useful for abundant
practical applications such as : (a) detection of irrelevant measurements and systematic labelling
errors [52], (b) real time detection of system attacks such as frauds by click bots [41] or malware
recommendation rating-frauds [95], and (c) online regression with heavy-tailed noise [79].

The minimisation problem minθ∈Rd E [|y − 〈x, θ〉|] is certainly not new and is also known as the
Least Absolute Deviations (LAD) problem. While originally suggested by Boscovich in the mid-
eighteenth century [10], it first appears in the work of Edgeworth [32]. In contrast with least-squares,
there is no closed form solution to the problem and, in addition, the non-differentiability of the
`1 loss prevents the use of fast optimisation solvers for large-scale applications [88]. However, if
successively dealt with, the LAD problem has many advantages. Indeed, the `1 loss is well known for
its robustness properties [48] and, unlike the Huber loss [46], it is parameter free which makes it more
convenient in practice. In this context, using the SGD algorithm in order to solve the LAD problem
is a very natural approach. We show in our analysis that, though the `1 loss is not strongly convex,
averaged SGD recovers a remarkable O(1/n) convergence rate instead of the classical O(1/

√
n)

which is ordinary in the non-strongly-convex framework

With a convergence rate depending on the variance as O(σ2d/(1− η̃)2n), the proposed algorithm
has several major benefits: a) it is highly scalable and statistically optimal, b) it depends on the
outlier contamination through an effective outlier proportion η̃ strictly smaller than η, which makes it
adaptive to the difficulty of the adversary, c) it is relatively insensitive to the ill conditioning of the
features and d) it is almost parameter free since it only requires in practice an upper-bound on the
covariates’ norm. Though the algorithm is simple, its analysis is not and requires several technical
manipulations based on recent advances in stochastic approximation [44]. Indeed, in the classical
non-strongly-convex framework which we are in, the usual convergence rate is O(1/

√
n) and not

O(1/n) as we obtain. Overall our analysis relies on the smoothing of the `1 loss by the Gaussian
data. This smoothing enables the retrieval of a fast O(1/n) rate thanks to the local strong convexity
around θ∗ and to Polyak-Ruppert averaging.

Our paper is organised as follows. We define the problem which we consider in Section 2. We then
describe the particular structure our function f(θ) := E[|y − 〈x, θ〉|] enjoys in Section 3. Our main
convergence guarantee result is given Section 4 followed by the sketch of proof in Section 5. Finally,
in Section 6, we provide experimental validation of the performances of our method.

1.1 Related work

Robust statistics. Classical robust statistics have a long history which begins with the seminal
work by Tukey and Huber [82, 46]. They mostly focus on the influence function [43], the asymptotic
efficiency [91] as well as on the concept of breakdown point [42, 29] which is the maximal proportion
of outliers an estimate can tolerate before it breaks down. However these approaches are purely
statistical and the proposed estimators are unfortunately either not computable in polynomial time
[70, 71] or purely heuristical [34].

Recent advances in robust statistics. [23, 51] are the first to propose robust estimators of the
mean that can be computed in polynomial time and that have near optimal sample complexities.
This leads to a recent line of work in the computer science community that provides recovery
guarantees for a range of different statistical problems such as mean estimation or covariance
estimation [24, 27, 25, 50, 45, 77, 17]. The robust linear regression problem is explored under
general corruption models in the works of [19, 49, 22, 28, 68, 77, 17, 55, 54]. The broadest and
therefore hardest contamination model considers that the adversary has access to all the samples and
can arbitrarily contaminate any fraction η. In this contamination framework the minimax optimal
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estimation rate on ‖θ̂ − θ∗‖ is Õ(σ(η +
√
d/n)) where σ2 is the variance of the Gaussian dense

noise [18]. In [28] this minimax bound is achieved under the assumption that the covariates follow a
centered Gaussian distribution of covariance identity. For a general covariance matrix H , the sample
complexity becomes O(d2/η2), however they provide a statistical query lower bound showing that it
may be computationally hard to approximate θ∗ with less than d2 samples. We highlight the fact that
if the computational issues are put aside, [39] provides for the weaker Huber ε contamination model1
a statistically optimal estimator which can however only be computed in exponential time. For more
details on the current advances, see the recent survey [26].

Response corrupted robust regression. A simpler contamination model is to consider that the
adversary can only corrupt the responses and not the features. In this framework two main approaches
have been considered.
a) The first approach is based on viewing the regression problem as minθ,b:‖b‖0≤ηn‖y −Xθ − b‖2.
However this is a non-convex and NP hard problem [78]. In order to deal with the problem, convex
relaxations based on the `1 loss [86, 64, 63] and second-order-conic-programming (SOCP) [14, 20]
have been proposed and studied. Simultaneously, hard thresholding techniques were considered [9,
8, 79]. However all of these approaches rely on manipulating the whole corruption vector b and are
therefore not easy to adapt to the online setting.
b) The second approach relies on using a so-called robust loss. This is designated as the M-estimation
framework [46]: the least-squares problem is replaced by minθ Ez[ρ(θ, z)] where the loss function ρ
is chosen for its robustness properties. The `1 loss or the Huber loss [46] are classical examples of
convex robust losses. The Huber loss is essentially an appropriate mix of the `2 and the `1 losses. On
the other hand the Tukey biweight [82] is an example of a non-convex robust loss. The idea behind
such losses is to give less weight to the outliers which have large residuals. Asymptotic normality of
these M-estimators have been well studied in the statistical literature [47, 6, 57, 65, 84, 83, 80] and
their non-asymptotic performance have been recently investigated [56, 94, 59, 48].

We point out that the two mentioned approaches are related since they are duals. Minimising the Huber
Loss is equivalent to the `1 constrained problem minθ,b‖y −Xθ − b‖22+λ‖b‖1 for an appropriate λ
[37, 30]. The estimation rates of ‖θ̂−θ∗‖2 in both cases are similar and typically Õ(σ(

√
η+
√
d/n)).

These rates were later improved to the optimal rate Õ(σ(η +
√
d/n)) in [21]. When the adversary

is in addition oblivious, consistency is possible and [80, 8, 79] show that there exists a consistent
estimator with error O(σ(1− η)−1

√
d/n).

Finally we mention that a different approach to deal with response corruptions is proposed in [13].
They consider the noise as coming from a Student’s t-distribution and propose an EM-algorithm
to learn the number of degrees of freedom. However they do not give any convergence guarantee
and each step of their algorithm is computationally heavy, making it inappropriate for large-scale
problems.

Stochastic optimisation. Stochastic optimisation has been studied in a variety of different frame-
works such as that of machine learning [11, 93], optimisation [60] and stochastic approximation [7].
The optimal convergence rates are known since [61]: it is of O(1/

√
n) in the general convex case and

is improved to O(1/µn) if µ-strong convexity is additionally assumed. These rates are obtained using
the SGD algorithm. However the optimal step-size sequences depend on f ’s convexity properties.
The idea of averaging the SGD iterates first appears in the works of [66] and [74]. This method
is now referred to as Polyak-Ruppert averaging. Shortly after, [67] provides asymptotic normality
results on the probability distribution of the averaged iterates. This result is later generalised in
[3] where non-asymptotic guarantees are provided. In the smooth framework, the advantages of
averaging are numerous. Indeed, it improves the global convergence rate and leads to the statistically
optimal asymptotic variance rate which is independent of the conditioning µ [4]. Moreover it has
the significant advantage of providing an algorithm that adapts to the difficulty of the problem: with
averaging, the same step-size sequence leads to the optimal convergence rate whether the function is
strongly convex or not. Averaging also displays another important property which will prove to be
particularly relevant in our work: it leads to fast convergence rates in some cases where the function
is only locally strongly convex around the solution, as for logistic regression [2].

1This contamination model is weaker because the adversary is oblivious of the uncorrupted samples
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2 Problem formulation

Consider we have a stream of independent and identically distributed data points (xi, yi)i∈N sampled
from the following linear model:
(A.1) yi = 〈xi, θ∗〉+ εi + bi,

where θ∗ ∈ Rd is a parameter we wish to recover. The noises εi are considered as ’nice’ noise of finite
variance σ2. In contrast the outliers bi can be any adversarial ’sparse’ noise. In the online setting we
define a sparse random variable as a random variable that equals 0 with probability (1− η) ∈ (0, 1].

We investigate in this work the `1 minimisation problem (a.k.a least absolute deviation):
min
θ∈Rd

f(θ) := E [|y − 〈x, θ〉|] , (1)

using the stochastic gradient descent algorithm [69] defined by the following recursion initialised at
θ0 ∈ Rd:

θn = θn−1 + γnsgn (yn − 〈xn, θn−1〉)xn, (2)
where (γn)n≥1 is a positive sequence named step-size sequence. In this paper we mostly consider the
averaged iterate θ̄n = 1

n

∑n−1
i=0 θi which can easily be computed online as θ̄n = 1

nθn−1 + n−1
n θ̄n−1.

Note that SGD is an extremely simple and highly scalable streaming algorithm. There are no
parameters to tune, we will see further that a step-size sequence of the type γn = 1/R2

√
n leads to a

good convergence rate.

We make here the following assumptions:

(A.2) Gaussian features. The features x are centered Gaussian ∼ N (0, H) where H is a positive
definite matrix. We denote by µ its smallest eigenvalue and R2 = trace(H).

(A.3) Independent Gaussian dense noise. The dense noise ε is a centered Gaussian N (0, σ2)
where σ > 0 and ε is independent of x.

(A.4) Independent sparse adversarial noise. The adversarial noise b is independent of (x, ε), it
satisfies E[|b|] < +∞ and P (b 6= 0) = η ∈ [0, 1). We denote by η̃ = η · (1 − Eb[ exp ( −
b2

2σ2 ) | b 6= 0]) ∈ [0, η).

Under these assumptions f ′(θ∗) = −E [sgn (ε+ b)x] = −E [sgn (ε+ b)]E [x] = 0. It therefore
makes sense to minimise f in order to recover the parameter θ∗. Note that contrary to least-squares
where a finite mean and variance are required, we do not make any assumptions on the moments of
the noise b. The Gaussian assumptions on data are technical and made for simplicity. However the
continuous aspect of the features and the noise is essential in order to have a differentiable loss f
after taking the expectation. We point that the Gaussian assumptions is a classical assumption which
is also made in the works of [9, 8, 79, 48, 28]. However we do not make any additional hypothesis
on matrix H concerning its conditioning. We point out that in our framework we must have ε and
the adversarial noise b independent of x in order to have argminθ∈Rd E [|y − 〈x, θ〉|] = θ∗. The
parameter η̃ ∈ [0, η) we introduce in Assumption A.4 is the effective outlier proportion. This quantity
expresses the pertinent corruption proportion and will prove to be more relevant than η. Indeed, notice
that in the simple case where P (b� σ) ∼ 1 then Eb[exp

(
−b2/σ2

)
] ∼ 1 and η̃ ∼ 0. Intuitively in

this situation it makes sense to have an effective outlier corruption close to zero: if b� σ a.s., then
the bi’s do not disturb the recursion and can therefore be considered as non-adversarial noises. This
last observation is however only valid in the oblivious framework.

3 Gaussian smoothing and structure of the objective function f

In this section we show that f and its derivatives enjoy nice properties and have closed forms which
prove to be useful in analysing the SGD recursion Section 5. We fist show that though the `1 loss is
not smooth, it turns out that by averaging over the continuous Gaussian features x and noise ε, the
expected loss f is continuously differentiable.
Lemma 1. Suppose that (A.1, A.2, A.3, A.4) hold and let erf (·) denote the Gauss error function.
Then for all θ ∈ Rd:

f(θ) = Eb
[√

2
π

√
σ2 + ‖θ − θ∗‖2H exp

(
− b2

2(σ2+‖θ−θ∗‖2H)

)
+ b erf

(
b√

2(σ2+‖θ−θ∗‖2H)

)]
.
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We point out that the expectation Eb [·] is taken only over the outlier distribution, the expectation over
the Gaussian features and Gaussian noise having already been taken. The proof relies on noticing that
since b is independent of x and ε, given outlier b, y− 〈x, θ〉 = ε+ b− 〈x, θ− θ∗〉 follows a normal
distribution N (b, σ2 + ‖θ − θ∗‖2H). The absolute value of this Gaussian random variable follows a
folded normal distribution whose expectation has a closed form [53]. Lemma 1 exhibits the fact that
though the `1 loss is not differentiable at zero, taking its expectation over a continuous density makes
the expected loss f continuously differentiable. This is reminiscent of Gaussian smoothing used in
gradient-free and non-smooth optimisation [62, 31].

In the absence of contamination, i.e., when b = 0 almost surely, the function simplifies to the pseudo-
Huber loss function [16] with parameter σ, f(θ) =

√
2/π(σ2 + ‖θ − θ∗‖2H)1/2. More broadly,

notice that f(θ)∼
√

2/π ‖θ − θ∗‖H when ‖θ − θ∗‖H → +∞ and f(θ)− f(θ∗)∼ 1−η̃√
2πσ
‖θ − θ∗‖2H

for ‖θ − θ∗‖H � σ. This highlights the quadratic behaviour of f around the solution θ∗ and its
linear behaviour far from it. This shows that though f is not strongly convex on Rd, it is locally
strongly convex around θ∗. Actually the two criteria f(θ)− f(θ∗) and ‖θ − θ∗‖H are closely related
and we show that the prediction error ‖θ − θ∗‖2H is in fact O

(
f(θ)− f(θ∗) + (f(θ)− f(θ∗))2

)
(see Lemma 12 in Appendix).

The next lemma exhibits the fact that f ′ has a surprisingly neat structure.
Lemma 2. Suppose that (A.1, A.2, A.3, A.4) hold. Then for every θ ∈ Rd:

f ′(θ) = α(‖θ − θ∗‖H) H(θ − θ∗),

with α(z) =
√

2
π

1√
σ2+z2

Eb
[
exp

(
− b2

2(σ2+z2)

)]
for z ∈ R.

This result is immediately obtained by deriving f ’s closed form. The gradient f ′ benefits from a very
specific structure: it is exactly the gradient of the `2 loss with a scalar factor in front which depends
on σ, the outlier distribution and the prediction loss ‖θ − θ∗‖H . Note that the gradient is proportional
to H , this proves to be useful in our analysis. Also note that the gradients are uniformly bounded
over Rd since ‖f ′(θ)‖22 ≤ R2. This fact, already predictable from the expression of the stochastic
gradients, stands in sharp contrast with the `2 loss and illustrates the `1 loss’s robustness property.

Finally the following lemma highlights f ’s local strong convexity around θ∗ which is essential to
obtain the O(1/n) convergence rate.
Lemma 3. Suppose that (A.1, A.2, A.3, A.4) hold. Then

f ′′(θ∗) =

√
2

π

1− η̃
σ

H.

Lemma 3 shows that f is locally strongly convex around θ∗ with local strong convexity constant√
2/π (1−η̃)µ

σ . Note that without additional gaussian noise ε, which corresponds to σ → 0, then there
is no smoothing of the `1 loss anymore and the problem becomes non-smooth.

4 Convergence guarantee

The nice properties the function f enjoys enables a clean analysis of the SGD recursion with
decreasing step sizes. The convergence rate we obtain on the averaged iterate θ̄n = 1

n

∑n−1
i=0 θi is

given in the following theorem.
Theorem 4. Let (A.1, A.2, A.3, A.4) hold and consider the SGD iterates following Eq. (2). Assume
γn = γ0√

n
. Then for all n ≥ 1:

E
[∥∥θ̄n − θ∗∥∥2H] = O

( σ2d

(1− η̃)2n

)
+ Õ

( ‖θ0 − θ∗‖4
γ20(1− η̃)2n

)
+ Õ

( γ20R
4

(1− η̃)2n

)
+ Õ

( σ2

γ20µ
2(1− η̃)3n3/2

(‖θ0 − θ∗‖2
γ0

+ γ0R
2
))
.

For clarity the exact constants are not given here but can be found in the Appendix. Note that the
result is given in terms of the Mahalanobis distance associated with the covariance matrix H which
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corresponds to the classical prediction error. The overall bound has a dependency in the number of
iterations of O(1/n), this is optimal for stochastic approximation even with strong-convexity [61].
We also point out that by a purely naive analysis that does not exploit the specificities of our problem
we could easily obtain a O(1/

√
n) rate, which is the common rate for non-strongly-convex functions.

Notice that the convergence rate is not influenced by the magnitude of the outliers but only by their
effective proportion η̃ ∈ [0, η) which is, as we could anticipate, more relevant than η. This effective
outlier proportion can be considerably smaller than η if a portion of the outliers behave correctly.
Therefore the algorithm adapts to the difficulty of the adversary. We also point out that we recover the
same dependency in the proportion of outliers as in [80, 8, 79] but with η̃ in our case, which is strictly
better. The question of the optimality of the 1/(1− η̃)2 constant is unknown and is an interesting
open problem, a trivial lower bound being 1/(1− η̃). Furthermore, in the finite horizon framework
where we have N samples, the breakdown point we obtain is η̃ = 1− Ω( ln3/2N√

N
). This is better than

what is obtain in [79] ( 1− Ω( 1
lnN ) ) and the same (to a ln factor) as the asymptotic result from [80].

We now take a closer look at each term. The first term is the dominant variance term and is of the form
σ2d
n . It is statistically optimal in terms of d and n since it is also optimal in the simpler framework

where there are no outliers [81]. The second term is the dominant bias term which only depends on the
distance between the initial point θ0 and the solution θ∗. Notice that it is proportional to ‖θ0 − θ∗‖4
as in [2], however we believe the dependency in ‖θ0 − θ∗‖ could be improved to O(‖θ0 − θ∗‖2) by
further exploiting the local strong-convexity property. The third term is a by-product of our analysis
and comes from the bound on the norm of the stochastic gradients. We conjecture that it could be
possible to get rid of it. We highlight that the three dominant O(1/n) terms are independent of the
data conditioning constant µ. Finally, the two last terms are higher order terms that depend on µ, they
are correcting terms as in [3] due to the fact that our function is not quadratic. Note that all three
dominant O(1/n) terms are independent of µ, this is obtained thanks to f ’s structure and is due to
the fact that f ′ is proportional to H around θ∗, as in the least-squares framework. We clearly see the
benefits of this result in the experiments Section 6: unlike the algorithms from [8, 79] which solve
successive least-squares problems and are therefore very sensitive to H’s conditioning, our algorithm
is way less impacted by the ill conditioning.

We underline the fact that the algorithm is parameter free: neither the knowledge of σ nor of the
outlier proportion η are required. Also, note that there is no restriction on the value of γ0 but in
practice setting it to O(1/R2) leads to the best results. We believe that instead of considering the `1
loss we could have considered the Huber loss and followed the same technical analysis to obtain a
O(1/n) rate. However as shown in the experiments Section 6, considering the Huber loss does not
improve the rate and requires an extra parameter that must be tuned.

5 Sketch of proof

We provide an overview of the arguments that constitute the proof of Theorem 4, the full details can
be found in the Appendix. We bring out three key steps. First, using the structure of our problem we
relate the behaviour of the averaged iterate θ̄n to the average of the gradient f̄ ′(θn) = 1

n

∑n−1
i=0 f

′(θi)

(see Lemma 14). Then we show that f̄ ′(θn) converges to 0 at the rate O(1/n) (see Lemma 6).
Finally we control the additional terms using generic results that hold for non-strongly-convex and
non-smooth functions (see Lemma 7). Technical difficulties arise from (a) the fact that we consider a
decreasing step-size sequence, which is necessary in order to have a fully online algorithm and (b) the
fact that we want to obtain a leading order term O(1/n) independent of the conditioning constant µ.

First we use f ’s specific structure to bound the distance between θ̄n and the solution θ∗.

Lemma 5. Let (A.1, A.2, A.3, A.4) hold. Then for any sequences (θi)
n−1
i=0 ∈ Rdn their average

θ̄n = 1
n

∑n−1
i=0 θi satisfies:

E
[∥∥θ̄n − θ∗∥∥2H] ≤ 2σ2

(1−η̃)2E
[∥∥∥ 1

n

∑n−1
i=0 f

′(θi)
∥∥∥2
H−1

]
+ 800

(1−η̃)2

(
ln 2

1−η

)2
E
[(

1
n

∑n−1
k=0〈f ′(θi), θi − θ∗〉

)2]
.

This result follows from the inequality ‖f ′(θ)− f ′′(θ∗)(θ − θ∗)‖H−1≤ 20
σ1

(ln 2
1−η )〈f ′(θ), θ − θ∗〉

(see proof in Appendix) which upper-bounds the remainder of the first-order Taylor expansion of
the gradient by f ’s linear approximation 〈f ′(θ), θ − θ∗〉. This inequality is crucial in our analysis
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since in the non-strongly-convex framework, the averaged linear approximations always converge
to zero while the iterates θi a priori do not converge to θ∗. This inequality is highly inspired by the
self-concordance property of the logistic loss used in [2] but is simpler in our setting thanks to an ad
hoc analysis. Note that the result from Lemma 14 is valid for any sequence (θi)i≥0 and not only the
one issued from the SGD recursion. The two quantities that we therefore need to control are clear.
The first one is central as it leads to the final dominant variance term, the second one is technical and
less important, it is left for the end of the section. We first show that

∥∥f̄ ′(θn)
∥∥2, the square norm of

the average of the gradients, converges at rate O(1/n).
Lemma 6. Let (A.1, A.2, A.3, A.4) and consider the SGD iterates following Eq. (2). Assume
γn = γ0√

n
. Then for all n ≥ 1 :

E

∥∥∥∥∥ 1

n

n−1∑
i=0

f ′(θi)

∥∥∥∥∥
2

H−1

 ≤ 16d

n
+

4

nγ20
E
[
‖θn − θ∗‖2H−1

]
+

4

n2γ20
‖θ0 − θ∗‖2H−1

+
4

n2

( n−1∑
i=1

E
[
‖θi − θ∗‖2H−1

]1/2( 1

γi+1
− 1

γi

))2
.

The proof technique of the inequality is similar to those of [67, 3, 35] and relies on the classical
expansion

∑n
i=1 f

′
i(θi−1) =

∑n
i=1

θi−1−θi
γi

. We stress out the fact that from here, one could simply

choose to upper bound E[‖θi − θ∗‖2H−1 ] using classical non-strongly convex bounds which would
lead to E[‖θi − θ∗‖2H−1 ] ≤ ‖θ0 − θ∗‖H−1 + γ20d ln ei (see Appendix for more details). However
re-injecting such general bounds into Lemma 6 would lead to a final bound on ‖θ̄n − θ∗‖2H with
a leading bias term O (1/µn). In order to get rid of this dependency in µ we need to exploit f ’s
structure and obtain a tighter bound on E[‖θn − θ∗‖2H−1 ]. In the following lemma we provide a
sharper bound on E[‖θn − θ∗‖2H ] as well as give a bound on the second residual term from Lemma 14.

Lemma 7. Let (A.1, A.2, A.3, A.4) and consider the SGD iterates following Eq. (2). Assume
γn = γ0√

n
. Then for all n ≥ 1:

E
[(

1
n

∑n−1
k=0〈f ′(θi), θi − θ∗〉

)2]
≤ ln(en)

n

[
‖θ0−θ∗‖2

γ0
+ 6γ0R

2 ln(en)
]2
,

and
E
[
‖θn − θ∗‖2H

]
= 3σ ln(en)

(1−η̃)
√
n

[
3‖θ0−θ∗‖2

γ0
+ 4γ0R

2 ln(en)
]

+O
(
1
n

)
.

The proof of the first inequality follows [2]. It uses classical moment bounds in the non-strongly-
convex and non-smooth case. The proof of the second inequality is more technical. It relies on the fact
that ‖θn − θ∗‖2H−1 can be upper bounded by O([f(θn)−f(θ∗)]+ [f(θn)−f(θ∗)]2) (see Lemma 12
in the Appendix) which is due to f ’s particular structure. We then upper bound [f(θn)− f(θ∗)]’s
first and second moment. To do so we follow the recent proof techniques on the convergence of the
final iterate from [75, 44]. In our framework there are a few additional technical difficulties coming
from the fact that: (a) a decreasing step-size sequence is considered, (b) our iterates are not restricted
to a predefined bounded set since no projection is used and (c) our gradients are not almost surely
bounded but have bounded second moments. We point out that f ’s local strong convexity around
θ∗ is not exploited to prove Lemma 7, hence we could expect a better dependency in n if this local
property was appropriately used, we leave this as future work.

Combining Lemma 7 with Lemma 6 and injecting into Lemma 14 concludes the proof.

6 Experiments

In this section we illustrate our theoretical results. We consider the experimental framework of [79]
using synthetic datasets. The inputs xi are i.i.d. from N (0, H) where H is either the identity matrix
(conditioning κ = 1) or a p.s.d matrix with eigenvalues (1/k)1≤k≤d and random eigenvectors
(κ = 1/d). The outputs yi are generated following yi = 〈xi, θ∗〉 + εi + bi where (εi)1≤i≤n are
i.i.d. from N (0, σ2) and the bi’s are defined according to the following contamination model: for

7



10
0

10
2

10
4

10
6

10
-4

10
-2

10
0

10
2

10
0

10
2

10
4

10
6

10
-4

10
-2

10
0

10
2

0.8 0.85 0.9 0.95 1

10
0

10
5

Figure 1: Online robust regression on synthetic data. Left and middle: Convergence rates for a fixed
η and for two different conditioning of H . The dashed line marks the first pass over the data. Right:
Estimation performance when varying the portion of corruption η.

η > 0.5, a set of n/4 corruptions are set to 1000, another n/4 are set to
√

1000 and the rest (to reach
proportion η > 0.5) are sampled from U([1, 10]). All results are averaged over five replications.

Online robust regression. We plot the convergence rate of averaged SGD on different loss functions:
the `1 loss, the `2 loss and the Huber loss for which we consider various parameters. We also consider
the AdaCRR-GD algorithm from [79]. These curves are compared to an oracle algorithm which
corresponds to least-squares regression using constant step-size averaged SGD [4] and where all
the corrupted points have been discarded (hence a rate of O(1/(1− η)n) ). Since AdaCRR-GD is
an offline algorithm that needs all the data to perform a single gradient step we let all algorithms
perform 5 passes over the dataset (passes without replacement). In the SGD setting this corresponds
to a total of 5n iterations. On the plots we represent by a vertical dashed line the first effective pass
over the dataset. Figure 1 in the left and middle plots are shown the experimental results for two
different conditioning of H: κ = 1 and κ = 1/d. Notice that independently of the conditioning
our algorithm converges at rate O(1/n) and almost matches the performance obtained by the oracle
algorithm. Using the Huber loss leads to mixed results: if the parameter is well tuned to τopt then
the performance is similar to that of the `1 loss, but if the parameter is set too large (5τopt) then
the convergence is slow and ends at a sup-optimal point, if it set too small (.2τopt) the convergence
is slow. Indeed the Huber loss with parameter τ is equivalent to τ‖·‖1 when the parameter τ goes
to 0. Therefore doing SGD on the Huber loss for τ → 0 is equivalent to performing SGD on the
`1 loss with the smaller step-size sequence (τγn)n≥0. On the other hand, SGD on the `2 loss is
as predicted not competitive at all. AdaCRR-GD needs to wait a full pass before performing one
single step and is in all cases much slower than SGD. Moreover notice that AdaCRR-GD is very
sensitive to the conditioning of the covariance matrix: the convergence is much slower for a badly
conditioned problem. Indeed in this case the convergence of the gradient descent subroutine used in
the algorithm becomes sublinear and it significantly degrades the overall performance. On the other
hand the performance of SGD on the `1 loss is not affected by the conditioning.

Breakdown point and recovery guarantees. In this setting, the number of samples n is fixed and
we modify the outlier proportion η. We compare our algorithm to different baselines: `2 regression,
Huber regression with a well tuned parameter τopt and with a larger parameter 30τopt, Torrent [9],
CRR [9], and AdaCRR [79]. The details on their implementation are provided in the Appendix. The
results are shown Figure 1, right plot. Notice that averaged SGD on the `1 obtains comparable results
to Huber regression with parameter τopt and to AdaCRR, this without having any hyperparameter
to tune. Note also that if the parameter of the Huber loss is set too high then the performance is
degraded. The other methods are as expected not competitive.

7 Conclusion

In this paper, we studied the response robust regression problem with an oblivious adversary. We
showed that by simply performing SGD with Polyak-Ruppert averaging on the `1 loss E[|y − 〈x, θ〉]
we successively recover the parameter θ∗ with an optimal O(1/n) rate. The experimental results on
synthetic data shows the superiority of our algorithm and its clear advantage for high-scale and online
settings.
There are several interesting future directions to our work. One would be to consider other corruption
models in the online setting. It would also be interesting to see if we can combine our approach
with [1, 38] in order to get results in the case where θ∗ is sparse.

8



8 Broader Impact

As discussed in the introduction, the algorithm we propose can be useful in many practical applications
such as : (a) detection of irrelevant measurements and systematic labelling errors [52], (b) detection
of system attacks such as frauds by click bots [41] or malware recommendation rating-frauds [95],
and (c) online regression with heavy-tailed noise [79].
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