
Supplementary Material: Structured Prediction for
Conditional Meta-Learning
The Appendix is organized in two main parts:

• Appendix A proves the formal version of Theorem 1 and provides additional details on the
connection between structured prediction and conditional meta-learning investigated in this
work.
• Appendix B provides additional details on the model hyperparameters and additional experi-

mental evaluation.

A Structured Prediction for Conditional Meta-learning

We first recall the general formulation of the structured prediction approach in [13], followed by
showing how the conditional meta-learning problem introduced in Section 3 can be cast within this
setting.

A.1 General Structured Prediction

In this section, we borrow from the notation of [13]. Consider X ,Y and Z three spaces, respectively
the input, label and output sets of our problem. We make a distinction between label and output space
since conditional meta-learning can be formulated within the setting described below by taking Z to
be the meta-parameter space Θ and Y the space D of datasets.

Structured prediction methods address supervised learning problems where the goal is to learn a
function f : X → Z taking values in a “structured” space Z . Here, the term structured is general and
essentially encompasses output sets of strings, graphs, points on a manifold, probability distributions,
etc. Formally, these are all spaces that are not linear or do not have a canonical embedding into a
linear space Rk.

As we will discuss in the following, the lack of linearity on Z poses concrete challenges on modeling
and optimization. In contrast, formally, the target learning problem is cast as a standard supervised
learning problem of the form (1). More precisely, given a distribution ρ on X × Y

min
f :X→Z

E(f) with E(f) =

∫
4(f(x), y|x) dρ(x, y), (A.1)

where4 : Z ×Y ×X → R is a loss function measuring prediction errors. Note that4(z, y|x) does
not only compare the predicted output z ∈ Z with the label y ∈ Y , but does that also depending
or conditioned on the input x ∈ X (hence the notation 4(z, y|x) rather than 4(z, y, x)). These
conditioned loss functions were originally introduced to account for structured prediction settings
where prediction errors depend also on properties of the input. For instance in ranking problems or in
sequence-to-sequence translation settings, as observed in [13].

Structured Prediction Algorithm2. Given a finite number n ∈ N of points (xi, yi)
n
i=1 independently

sampled from ρ, the structured prediction algorithm proposed in [13] is an estimator f̂ : X → Z
such that, for every x ∈ X

f̂(x) = argmin
z∈Z

n∑
i=1

αi(x)4(z, yi|xi). (A.2)

where, given a reproducing kernel k : X × X → R, the weighs α are obtained as

α(x) = (α1(x), . . . , αn(x))> ∈ Rn with α(x) = (K + λI)−1 v(x), (A.3)

2We note that in the original work, the authors considered a further parametrization of the loss4 leveraging
the concept of locality and parts. This led to the derivation of a more general (and involved) characterization
of the estimator f̂ . However, for the setting considered in this work we consider a simplified scenario (see
Appendix A.2 below) and we can therefore restrict to the case where the loss does not assume a factorization
into parts, namely the set of parts P corresponds to P = {1} the singleton, leading to the structured prediction
estimator (A.2).
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where K ∈ Rn×n is the empirical kernel matrix with entries Kij = k(xi, xj) and v(x) ∈ Rn
is the evaluation vector with entries v(x)i = k(x, xi), for any i, j = 1, . . . , n and λ > 0 is a
hyperparameter.

The estimator above has a similar form to the TASML algorithm proposed in this work in (7). In the
following, we show that the latter is indeed a special case of (A.2).

A.2 A Strucutred Prediction perspective on Conditional Meta-learning

In the conditional meta-learning setting introduced in Section 3 the goal is to learn a function
τ : D → Θ where D is a space of datasets and Θ a space of learning algorithms. We define the
conditional meta-learning problem according to the expected risk (5) as

min
τ :D→Θ

E(τ) with E(τ) =

∫
L
(

Alg
(
τ(Dtr), Dtr

)
, Dval

)
dπ(Dtr, Dval), (A.4)

where π is a probability distribution sampling the pair of train and validation datasets Dtr and Dval.
We recall that the distribution π samples the two datasets according to the process described in
Section 2, namely by first sampling ρ a task-distribution (on X × Y) from µ and then obtaining
Dtr and Dval by independently sampling points (x, y) from ρ. Therfore π = πµ can be seen as
implicitly induced by µ. In practice, we have only access to a meta-training set S = (Dtr

i , D
val
i )Ni=1

of train-validation pairs sampled from π.

We are ready to formulate the conditional meta-learning problem within the structured prediction
setting introduced in Appendix A.1. In particular, we take the input and label spaces to correspond to
the set D and choose as output set the space Θ of meta-parameters. In this setting, the loss function is
of the form4 : Θ×D ×D → R and corresponds to

4(θ,Dval|Dtr) = L
(

Alg
(
θ,Dtr

)
, Dval

)
. (A.5)

Therefore, we can interpret the loss4 as the function measuring the performance of a meta-parameter
θ when the corresponding algorithm Alg(θ, ·) is trained on Dtr and then tested on Dval. Under this
notation, it follows that (A.4) is a special case of the structured predition problem (A.1). Therefore,
casting the general structured prediction estimator (A.2) within this setting yields the TASML
estimator proposed in this work and introduced in (7), namely τN : D → Θ such that, for any dataset
D ∈ D,

τN (D) = argmin
θ∈Θ

N∑
i=1

αi(D) L
(

Alg
(
θ,Dtr

)
, Dval

)
,

where α : D → RN is learned according to (A.3), namely

α(x) = (α1(x), . . . , αN (x))> ∈ RN with α(x) = (K + λI)−1 v(D),

with K and v(D) defined as in (7). Hence, we have recovered τN as it was introduced in this work.

A.3 Theoretical Analysis

In this section we prove Theorem A.1. Our result can be seen as a corollary of [Thm.5 14] applied to
the generalized structured prediction setting of Appendix A.1. The result hinges on two regularity
assumptions on the loss4 and on the meta-distribution π that we introduce below.
Assumption 1. The loss 4 is of the form (A.5) and admits derivatives of any order, namely 4 ∈
C∞(Z × Y × X ).

Recall that by (A.5) we have

L(θ,Dval, Dtr) =
1

|Dval|
∑

(x,y)∈Dval

`
( [

Alg(θ,Dtr)
]
(x), y

)
. (A.6)

Therefore, sufficient conditions for Assumption 1 to hold are: i) the inner loss function ` is smooth (e.g.
least-squares, as in this work) and ii) the inner algorithm Alg(·, ·) is smooth both with respect to the
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meta-parameters θ and the training dataset Dtr. For instance, in this work, Assumption 1 is verified if
the meta-representation network ψθ is smooth with respect to the meta-parametrization θ. Indeed, ` is
chosen to be the least-squares loss and the closed form solutionW (θ,Dtr) = X>θ (XθX

>
θ +λI)−1Y

in (B.2) is smooth for any λ > 0.

The second assumption below concerns the regularity properties of the meta-distribution π and its
interaction with the loss4. The assumption leverages the notion of Sobolev spaces. We recall that
for a set K ⊂ Rd the Sobolev space W s,2(K) is the Hilbert space of functions from K to R that have
square integrable weak derivatives up to the order s. We recall that if K satisfies the cone condition,
namely there exists a finite cone C such that each x ∈ K is the vertex of a cone Cx contained in K
and congruent to C [2, Def. 4.6], then for any s > d/2 the space W s,2(K) is a RKHS. This follows
from the Sobolev embedding theorem [2, Thm. 4.12] and the properties of RKHS [see e.g. 8, for a
detailed proof].

Given two Hilbert spacesH and F , we denote byH⊗F the tensor product ofH and F . In particular,
given two basis (h)i∈N and (fj)j∈N forH and F respectively, we have

〈hi ⊗ fj , hi′ ⊗ fj′〉H⊗F = 〈hi, hi′〉H · 〈fj , fj′〉F ,

for every i, i′, j, j′ ∈ N. We recall that H ⊗ F is a Hilbert space and it is isometric to the space
HS(F ,H) of Hilbert-Schmidt (linear) operators from F to H equipped with the standard Hilbert-
Schmidt 〈·, ·〉HS dot product. In the following, we denote by T : H⊗F → HS(F ,H) the isometry
between the two spaces.

We are ready to state our second assumption.

Assumption 2. Assume Θ ⊂ Rd1 and D ⊂ Rd2 compact sets satisfying the cone condition and
assume that there exists a reproducing kernel k : D × D → R with associated RKHS F and
s > (d1 + 2d2)/2 such that the function g∗ : D → H withH = W s,2(Θ×D), characterized by

g∗(Dtr) =

∫
4(·, Dval| ·) dπ(Dval|Dtr) ∀Dtr ∈ D, (A.7)

is such that g∗ ∈ H ⊗ F and, for any D ∈ D, we have that the application of the operator
T(g∗) : F → H to the function k(D, ·) ∈ F is such that T(g∗) k(D, ·) = g∗(D).

The function g∗ in (A.7) can be interpreted as capturing the interaction between 4 and the meta-
distribution π. In particular, Assumption 2 imposes two main requirements: i) for any D ∈ D the
output of g∗ is a vector in a Sobolev space (i.e. a function) of smoothness s > (d1 + 2d2)/2, namely
g∗(D) ∈ W s,2(Θ × D) and, ii) we require g∗ to correspond to a vector in W s,2(Θ × D) ⊗ F .
Note that the first requirement is always satisfied if Assumption 1 holds. The second assumption is
standard in statistical learning theory [see e.g. 11, 46, and references therein] and can be interpreted
as requiring the conditional probability π(·|Dtr) to not vary dramatically for small perturbations of
Dtr.

We are ready to state and prove our main theorem, whose informal version is reported in Theorem 1
in the main text.

Theorem A.1 (Learning Rates). Under Assumptions 1 and 2, let S = (Dtr
i , D

val
i )Ni=1 be a meta-

training set of points independently sampled from a meta-distribution π. Let τN be the estimator
in (7) trained with λ2 = N−1/2 on S. Then, for any δ ∈ (0, 1] the following holds with probability
larger or equal than 1− δ,

E(τN ) − inf
τ :D→Θ

E(τ) ≤ c log(1/δ) N−1/4, (A.8)

where c is a constant depending on κ2 = supD∈D k(D,D) and ‖g∗‖H⊗F but independent of N and
δ.

Proof. Let H = W s,2(Θ × D) and G = W s,2(D). Since s > (d1 + 2d2)/2, both G and H are
reproducing kernel Hilbert spaces (RKHS) [see discussion above or 8]. Let ψ : Θ × D → H and
ϕ : D → G be two feature maps associated toH and G respectively. Without loss of generality, we
can assume the two maps to be normalized.
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We are in the hypotheses3 of [32, Thm. 6 Appendix D], which guarantees the existence of a Hilbert-
Schmidt operator V : G → H, such that4 can be characterized as

4(θ,Dval| Dtr) =
〈
ψ(Θ, Dtr), V ϕ(Dval)

〉
H (A.9)

for any Dtr, Dval ∈ D and θ ∈ Θ. Since the feature maps ϕ and ψ are normalized [8], this implies
also ‖V ‖HS = ‖4‖s,2 < +∞, namely that the Sobolev norm of4 in W s,2(Θ×D ×D) is equal to
the Hilbert-Schmidt norm of V .

The result in (A.9) corresponds to the definition of Structure Encoding Loss Function (SELF) in [13,
Def. 1]. Additionally, if we denote ϕ̃ = V ϕ, we obtain the equality

g∗(Dtr) =

∫
ϕ̃(Dval) dπ(Dval|Dtr) =

∫
4(·, Dval|·) dπ(Dval|Dtr), (A.10)

for all Dtr ∈ D, where g∗ : D → H is defined as in Assumption 2, we are in the hypotheses of the
comparison inequality theorem [13, Thm. 9]. In our setting, this result states that for any measurable
function g : D → H and the corresponding function τg : D → Θ defined as

τg(D) = argmin
θ∈Θ

〈ψ(θ,D), g(D)〉H ∀D ∈ D, (A.11)

we have

E(τg)− inf
τ :D→Θ

E(τ) ≤

√∫
‖g(D)− g∗(D)‖2H dπD(D), (A.12)

where πD(Dtr) denotes the marginal of π(Dval, Dtr) with respect to training data. Note that the
constant c4 that appears in the original comparison inequality is upper bounded by 1 in our setting
since c4 = supD,θ ‖ψ(θ,D)‖ and the feature map ψ is normalized.

Let now gN : D → Θ be the minimizer of the vector-valued least-squares empirical risk minimization
problem

gN = argmin
g∈H⊗F

1

N

N∑
i=1

∥∥g(Dtr
i )− ϕ̃(Dval

i )
∥∥2

H + λ2 ‖g‖2H⊗F .

This problem can be solved in closed form and it can be shown [14, Lemma B.4] that gN is of the
form

gN (D) =

n∑
i=1

αi(D) ϕ̃(Dval
i ), (A.13)

for all D ∈ D, where αi(D) is defined as in (7). Due to linearity [see also Lemma 8 in 13] we have
τgN (D) = argmin

θ∈Θ
〈ψ(θ,D), gN (D)〉H (A.14)

= argmin
θ∈Θ

N∑
i=1

αi(D) L
(

Alg
(
θ,Dtr

)
, Dval

)
(A.15)

= τN (D), (A.16)
which corresponds to the estimator τN (D) studied in this work and introduced in (7). The comparison
inequality (A.12) above, becomes

E(τN )− inf
τ :D→Θ

E(f) ≤

√∫
‖gN (D)− g∗(D)‖2H dπD(D). (A.17)

Therefore, we can obtain a learning rate for the excess risk of τN by studying how well the vector-
valued least-squares estimator gN is approximating g∗. Since g∗ ∈ H ⊗F from the hypothesis, we
can replicate the proof in [14, Thm. 5] to obtain the desired result. Note that by framing our problem
in such context we obtain a constant c that depends only on the norm of g∗ as a vector inH⊗F . We
recall that g∗ captures the “regularity” of the meta-learning problem. Therefore, the more regular (i.e.
easier) the learning problem, the faster the learning rate of the proposed estimator.

3the original theorem was applied to the case where Z × X = Y was the probability simplex in finite
dimension. However the proof of such result requires only that H and G are RKHS and can therefore be
applied to the general case where Z × X and Y are different from each other and they do not correspond to the
probability simplex but are rather subset of Rk (possibly with different dimension for each space) and satisfy the
boundary condition [8]. Therefore in our setting we can take Z = Θ and X = Y = D to obtain the desired
result.
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B Model and Experiment Details

We provide additional details on the model architecture, experiment setups, and hyperparameter
choices. We performed only limited mode tuning, as it is not the focus on the work.

B.1 Details on LS META-LEARN

Meta-representation learning methods formulate meta-learning as the process of finding a shared
representation to be fine-tuned for each task. Formally, they model the task predictor as a composite
function fW ◦ ψθ : X → Y , with ψθ : X → Rp a shared feature extractor meta-parametrized by
θ, and fW : Rp → Y a map parametrized by W . The parameters W are learned for each task as a
function W (θ,D) via the inner algorithm

fW (θ,D) ◦ ψθ = Alg(θ,D). (B.1)

[9] proposed Alg(θ,D) to perform empirical risk minimization of fW over D = (xi, yi)
m
i=1 with

respect to the least-squares loss `(y, y′) = ‖y − y′‖2. Assuming4 Y = RC and a linear model for
fW , this corresponds to performing ridge-regression on the features ψθ, yielding the closed-form
solution

W (θ,D) = X>θ (XθX
>
θ + λθI)−1Y, (B.2)

where λ1 > 0 is a regularizer. Xθ ∈ Rm×p and Y ∈ Rm×C are matrices with i-th row corresponding
to the i-th training input ψθ(xi) and output yi in the dataset D, respectively. The closed-form
solution (B.2) has the advantage of being i) efficient to compute and ii) suited for the computation
of meta-gradients with respect to θ. Indeed, ∇θW (θ,D) can be computed in closed-form or via
automatic differentiation.

LS META-LEARN is a meta-representation learning algorithm consists of:

• The meta-representation architecture ψθ : X → Rp is a two-layer fully-connected network
with residual connection [21].
• The task predictor fW : Rp → Y is a linear model fW

(
ψθ(x)

)
= Wψθ(x) with W ∈

RC×p the model parameters. We assume Y = RC (e.g. one-hot encoding of C classes in
classification settings).

• The inner algorithm is fW (θ,D) ◦ ψθ = Alg(θ,D), where W (θ,D) is the least-squares
closed-form solution introduced in (B.2).

We note that [9] uses the cross-entropy ` to induce L. Consequently, when optimizing the meta-
parameters θ, the performance of W (θ,D) is measured on a validation set D′ with respect to a loss
function (cross-entropy) different from the one used to learn it (least-squares). We observe that such
incoherence between inner- and meta-problems lead to worse performance than least-square task
loss.

B.2 Model Architecture

Given the pre-trained representation ϕ(x) ∈ R640, the proposed model is fθ(ϕ(x)) = ϕ(x) +
gθ(ϕ(x)), a residual network with fully-connected layers. Each layer of the fully-connected network
gθ(ϕ(x)) is also 640 in dimension.

We added a `2 regularization term on θ, with a weight of λθ reported below.

For top-M values from α(D), we normalize the values such that they sum to 1.

B.3 Experiment Setups

We use the same experiment setup as LEO [44] by adapting its official implementation5. For both 5-
way-1-shot and 5-way-5-shot settings, we use the default environment values from the implementation,
including a meta-batch size of 12, and 15 examples per class for each class in Dval to ensure a fair
comparison.

4For instance, C is the total number of classes, and y ∈ Y the one-hot encoding of a class in classification
tasks

5https://github.com/deepmind/leo
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B.4 Model Hyperparameters

Models across all settings share the same hyperparameters, listed in Table 5.

Table 5: Hyperparameter values used in the experiments

SYMBOL DESCRIPTION VALUES

λ IN (7) REGULARIZER FOR LEARNING α(D) 10−8

λθ IN (B.2) REGULARIZER FOR THE LEAST-SQUARE SOLVER, 0.1
σ IN (10) KERNEL BANDWIDTH 50
η META LEARNING RATE 10−4

N TOTAL NUMBER OF META-TRAINING TASKS 30, 000
M NUMBER OF TASKS TO KEEP IN ALGORITHM 1 500

C Additional Ablation Study

C.1 Structured Prediction from Random Initialization

We note that the unconditional initialization of θ from Section 4 is optional and designed for improving
computational efficiency. Figure 3 reports how TASML performs, starting from random initialization.
The results suggest that structured prediction takes longer to converge with random initialization,
but achieves performance comparable to Table 1. In addition, structured prediction appears to work
well, despite having access to only a small percentage of meta-training tasks (M = 1000 in this
experiment).
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Figure 3: Average test task performance over 1000 structured prediction steps. Structured prediction
takes longer to converge from random initialization, but achieves comparable performance.

C.2 Top-M Filtering

Table 6 reports the performance of structured prediction by varying the number M of tasks used. We
use 5-way-5-shot on miniIMAGENET and tieredIMAGENET as the experiment settings.

The results show that TASML is robust to the choice ofM . AsM increases, its impact on performance
is small as most tasks have tiny weights with respect to the objective function.
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M 100 500 1000 10000 30000

miniIMAGENET (%) 77.60± 0.30 78.22± 0.47 78.43± 0.39 78.47± 0.37 78.51± 0.42
tieredIMAGENET (%) 81.95± 0.23 82.62± 0.31 82.95± 0.27 83.01± 0.29 83.03± 0.35

Table 6: The effects of top-M filtering on structured prediction accuracy. TASML is robust to the
choices of M .

C.3 Explicit Dependence on Target Tasks

In (9), we introduced an additional L
(
Alg(θ,D), D

)
, such that the objective function explicitly

depends on target task D. To study the contribution of each term towards test accuracy, we modify
(9) by weighting the contribution of each term by the weights β1, β2 ≥ 0

τ(D) = argmin
θ∈Θ

β1

N∑
i=1

αi(D) L
(
Alg(θ,Dtr

i ), Dval
i

)
+ β2L

(
Alg(θ,D), D

)
, (C.1)

We report the test accuracy on miniIMAGENET and tieredIMAGENET on 5-way-5-shot below.

β1 = 0, β2 = 1 β1 = 1, β2 = 0 β1 = 1, β2 = 1 β1 = 1, β2 = 2

miniIMAGENET (%) 73.59± 0.49 77.32± 0.36 78.22± 0.47 78.51± 0.32
tieredIMAGENET (%) 79.74± 0.62 81.63± 0.47 82.62± 0.31 83.01± 0.43

Table 7: Test accuracy on miniIMAGENET and tieredIMAGENET by adjusting the importance of each
term in (C.1)

Table 7 suggests that the explicit dependence on target task D, combined with other relevant tasks,
provides the best training signal for TASML. In particular, optimizing with respect to the target task
alone (i.e. β1 = 0, β2 = 1) leads to overfitting while excluding the target task (i.e. β1 = 1, β2 = 0)
ignores valuable training signal, leading to underfitting. Ultimately, both extremes lead to sub-optimal
performance. The results in Table 7 show that both terms in (9) are necessary to achieve good test
accuracy.

C.4 Choice of Kernel for Structured Prediction

Lastly, we study how the choice of kernel from (10) affects test accuracy. In addition to the Gaussian
kernel considered in this work, we include both the linear kernel

k(D,D′) = 〈Φ(D),Φ(D′)〉+ c

with c > 0 a hyperparameter, and the Laplace kernel

k(D,D′) = exp(−‖Φ(D)− Φ(D′)‖ /σ)
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Figure 4: Test performance with different choices of kernel for structured prediction. Gaussian kernel
obtains the best performance
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with σ > 0 a hyperparameter. We considered the 5-way-5-shot task on miniIMAGENET and
tieredIMAGENET to compare the impact of the kernel on TASML.

Figure 4 shows that the Gaussian kernel overall obtains the best performance among the three
candidates. In our experiments, we observed that Gaussian kernels are most robust with respect to
bandwidth parameters, while Laplace kernels appeared sensitive to the bandwidth parameter. Careful
model selection for the bandwidth parameter might lead to better or comparable performance, but it
is beyond the scope of this work. In addition, we observed the linear kernel to perform well in some
settings but less expressive in general.
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