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We thank all the reviewers for their time and effort in providing feedback. We are encouraged by the universally
positive scores (7 7 7 6) and that all the reviewers appreciated the paper for the following: (i) theoretical contributions
(R1,R2,R3,RS), (ii) advancing our understanding of the LTH (R2,R3), (iii) novel connection to SubSetSum(R3,RS),
(iv) clear exposition (R1,R2,R3,RS), and (v) relation with prior work (R1,R2,R3,R5). Moreover, R3 thinks this
connection with SubsetSum can be applicable in other areas.

For clarity, we would like to reiterate the goal and motivation of the paper. We provide theoretical justifications
for the striking empirical observations in Ramanujan et al. [1]: Do good subnetworks provably exist with a small
factor of overparameterization? Our main theoretical contribution in this paper is to characterize the required over-
parameterization (up to logarithmic factors) for fully connected networks, offering an exponential improvement in
the oveparameterization bounds by Malach et al.

We address the individual concerns below. We thank R3 for pointing out the typo.

SubsetSum is NP-Hard (R2): We note that the connection to the SubsetSum problem is made so we can establish
an existential rather than an algorithmic result: in this work we prove the existence of a subnetwork that performs as
well as any target network, but do not claim to offer a “good algorithm” to do so. In general, we do not have access
to the target network, but only to the labeled training data. Thus, an important—yet orthogonal to our goal in this
paper—question is whether there exist poly-time pruning algorithms with provable performance. As optimizing ReLU
neural network is itself NP-Hard in general, we expect all algorithms to be inefficient in the worst case. However,
similar to the success of backpropagation on standard tasks, the findings of [1]] suggest that a pruning-based algorithm
is potentially practical. Understanding the effectiveness of pruning given certain data/model assumptions is an important
future direction that we are currently working on.

Experimental comparison of target, subsetsum, and edge-popup pruned models (R2): We believe that a signif-
icant level of network isomorphism between the two pruned networks (obtained from SubsetSum and edge-popup)
would be extremely unlikely, because the pruning algorithms are quite different. Because the networks differ in
both weight distribution and structure, we cannot hope for a significant level network isomorphism (even upto the
ordering of neurons in a layer), but we can still compare using some other metrics like sparsity (Figure 2 in our paper).
For a two-layer fully-connected network, our SubsetSum approximation utilized ~ 3.5 million out of ~ 8.3 million
coefficients in total. Thus, the approximated network achieved 97.17% test set accuracy with ~ 44.69% sparsity.
On the other hand, one of our networks resulting from edge-popup achieved a 97.53% test set accuracy by retaining
~ 0.5 million of ~ 2 million parameters, thus giving ~ 25% sparsity, but on a much smaller network.

Lower bound for deeper networks (R3): We would like to emphasize that our lower bound controls the number of
parameters and thus is valid for any depth and architecture. In particular, for constant depth greater than 2, we directly
obtain d+/log 1/¢ lower bound on width. We agree that obtaining a tighter lower bound is an important question, and we
believe it should be possible with regards to the way that the depth and width appears in the logarithm. Answering this
question requires understanding the role of depth in the representation power of neural networks. This is a notoriously
difficult problem and, even after years of research, remains elusive [2]].

Other activation functions (R3): Although our paper (and prior work [3]]) focuses on ReLLU activations, the proof
strategy works for a general class of Lipschitz activations with a slight modification in the architecture. Specifically,
following the structure of Section 3.1, suppose that every alternate layer is linear. The proof then goes through exactly
as before by using the Lipschitz property in Eq. (13) (Line 468) in Appendix. We will add a comment regarding this in
the final version of the paper.

Experiments on other datasets (R5): We agree that experiments with datasets beyond MNIST would be beneficial
to further validate our findings. Currently, our “diamond” based architecture inspired by Lueker’s random SubsetSum
theorem is defined only for fully connected layers. Data sets like CIFAR10 and ImageNet require deeper convolutional
networks that contain very few fully-connected layers. A good test set accuracy on MNIST is obtainable with both
shallow fully connected networks and LeNet5, which has more fully connected layers than convolutional layers. Thus,
although somewhat limited, we believe that MNIST is an appropriate choice for experiments in this case. However,
deep convolutional networks such as ResNet and VGG generally contain up to three fully connected layers that our
structure shown in Figure 1c could be applied to, so we think that investigating the performance of our structure on
deep convolutional networks is valid and worth further investigation. We were not able to complete the design and
execution of these experiments by the rebuttal deadline, but are eager to do so for the camera ready version.

We would again like to thank the reviewers for the positive reviews.
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