A Proof of the upper bound

Complete proof of the Theorem [I] In the following subsections, we hierarchically build the
construction for our proof of Theorem [I] We have shown how we approximate a single weight
in Subsection [3.2] This first step is slightly different than the sketch above, in the sense that we
approximate a single weight with a ReLU random network, rather than a linear one. We then
approximate a single ReL U neuron in Subsection and a single layer in Subsection[A.2] Finally,
we approximate the whole network in Subsection@ which completes the proof of Theorem T}

A.1 Approximating a single neuron

In this subsection we prove the following lemma on approximating a (univariate) linear function

w’x, which highlights the main idea in approximating a (multivariate) linear function Wx (see

Lemma 3]in Subsection[A.2).

Lemma 2. (Approximating a univariate linear function) Consider a randomly initialized neural

network g(x) = vZo(Mx) with x € R? such that M € R824 gng v € ROM8 £ \where each
weight is initialized independently from the distribution U[—1, 1].

Let §(z) = (s ©v)To((T © M)x) be the pruned network for a choice of binary vector s and matrix
T. If fw(x) = w' x be the linear function, then with probability at least 1 — e,

Yw: || Wl <1,3 s, T: sup  |lfw(x) —gx)| <e.

xX: %00 <1

T

Proof. We will approximate w* x coordinate-wise. See Figure for illustration.

Figure 3: Approximating a single neuron o(w” x): A diagram showing our construction to approximate a single
neuron (w7 x). We construct the first hidden layer with d blocks (shown in blue), where each block contains
k=0 (log g) neurons. We first pre-process the weights by pruning the first layer so that it has a block structure
as shown. For ease of visualization, we only show two connections per block, i.e., each neuron in the i" block is
connected to x; and (before pruning) the output neuron. We then use Lemma|[T]to show that second layer can
be pruned so that 7 block approximates w;z;. Overall, the construction approximates w x. Note that, after
an initial pre-processing of the first layer, we only prune the second layer so that we can re-use the weights to
approximate other neurons in a layer.
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Step 1: Pre-processing M We first begin by pruning M to create a block-diagonal matrix M.
Specifically, we create M’ by only keep the following non-zero entries:

u 0 ... 07
0 Uz ... 0

M= |. ol WhereuieRCIOg(%)
(') 0 Uy |

We choose the binary matrix T to be such that M’ = T © M. We also decompose v and s as

S1 Vi

So Vo q
s=1|.]1, v=| .|, wheres;,v; e RCWs(%),

Sd Vdl

Using this notation, we can express our network as the following:

d

(sov)lo(M'x) = Z(sz ovi)lo(wz;). (10)

i=1

Step 2: Pruning v Let n = C'log(d/¢) and define the event E; . be the following event from the
Lemma It

Eic:= sup inf  sup |wz — (v; ©@s;)To(wz)| < e
wel-1,1] si€{0,1}" z:|z|<1

Define the event F, := ﬂl E; ., the intersection of all the events. We consider the event Ei’ where
the approximation parameter is 5. For each ¢, Lemma|l|shows that event E; < holds with probability
at least 1 — § because the dimension of v; and w; is at least C'log(d/¢). Taking a union bound we

get that the event E'< holds with probability at least 1 — €. On the event E'c, we obtain the following
series of inequalities:

sup inf sup |[wlx— (sp ®@v) o ((S1®M)x)|
IWlloo <18 T fIx]lo0 <1

< sup inf sup |wix — (s @ v)To(M'x)|
Iwlloo <1801} f1x]| e <1

(Pruning M according to Step 1 (Pre-processing M).)

d
= sup inf W;T; — s; ©vi)To(wz;)| (Using Eq. (T0))
llwlfco <1515 .,84€{0, 1}n Ime<1 Z (e ; i 1) ( g 7,) .
< sup inf sup Z fw,xl —(s8;® Vz‘)TU(uixi)|

[Wlloo <1815:8a €01} 1x|| o <1 5=

— Z sup inf  sup |wlxl — (s, ® vi)TJ(uizi)|
T lwi|<18i€H0,1}" 2 <1

< Z d; (By definition of the event E'<)

<e.

A.2 Approximating a single layer

In this subsection, we approximate a layer from the target network by pruning 2 layers of a randomly
initialized network. The overview of the construction is given in Figure
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Figure 4: Approximating a layer o(Wx): A diagram showing our construction to approximate a layer. Let
Wi, Wa,...,Wq be the d rows of W, i.e., the weights of d neurons. Our construction has an additional hidden
layer, which contains d blocks (highlighted in blue), where each unit contains k& = O(log(%) neurons. We
first pre-process the weights by pruning the first layer so that it has a block structure as shown. For ease of
visualization, we only show two connections per block, i.e., each neuron in the i" block is connected to z; and
(before pruning) all the output neurons.

Lemma 3. (Approximating a layer) Consider a randomly initialized two layer neural network
g(x) = No(Mx) with x € R% such that N has dimension (dy x Cdylog %1%2) and M has

€

dimension (C’ dy log % X dl), where each weight is initialized independently from the distribution
U[-1,1].

Let §(x) = (S ® N)To((T ® M)x) be the pruned network for a choice of pruning matrices S and
T. If fw(x) = Wx is the linear (single layered) network, where W has dimensions ds X d, then
with probability at least 1 — e,

sup 38, T: sup |fw(x)—gx)| <e
W:||W||<1,WeRd2xd1 x:|[x[leo <1

Proof. Our proof strategy is similar to the proof in Lemma 2]

Step 1: Pre-processing M Similar to Lemma[2] we begin by pruning M to get a block diagonal
matrix M.

up 0 0
0 Uz ... 0 1d2
M = |. . , where u; € R® log( 422 )
: L 0
0 0 RPN Uq,

Thus, T is such that M’ = T ® M. We also decompose N and S as following

T T T T

Si1 .- Sia Vii - Vig

shy ... sby Vi o v, o
S=1 . s N= . where v; ;, u; € R 1°%(

T T T T

Sd271 Sdg,dl Vd2,1 de,dl
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Using this notation, we get the following relation:

d
>k (s1, @ viy)To(ujz;)

(S © N)o (M'x) = : (1
YL (Sasj © Vay.) T (ujz;)

Step 2: Pruning N Note that v; ; and u; contain i.i.d. random variables from Uniform distribution.
Let n = C'log(didz/€) and define E; ; . be the following event from the Lemma

E;jc:=4q sup inf sup |wx — (vi; ©si;) o(wz)| <e
we[—1,1] 84, €{0,1}" z1z|<1

Define E, ==, <i<ds n1g i<ds E; ;. to be the intersection of all individual events. Lemma states

that each event E; ; __<_ holds with probability 1 — 7%~ because u; and v; ; have dimensions at
192

least C log(@). By a union bound, the event E_<_ holds with probability 1 — €. On the event

‘142

Edfd2 , we get the following inequalities:

sup inf sup |[Wx— (SON)To((ToM)x)|
W[ W< 5T x| <1

< sup inf sup [[Wx—(S;oN)To(M'x)|
Wi WII<1 8 [lx]| o0 <1
(Pruning M according to Step 1 (Pre-processing M))

do d1 dy

< sup inf sup Z Zwi’jxj — Z(Si’j o vij)o(ur;)

B W:[W]<1 si,;€{0,1}" %[0 <1%23 j=1 j=1
(Using Eq. (T1))

dy dy
. T
< sup inf . sup E E |wi7jxj — (si; ©®Vvij) O’(Ujl’j)|
wi,j:\wi,j\glsi,je{oﬂ} '$]':|wjlgl i=1 j=1
dy dy
. T
< sup inf § E E sup |wi7j1'j — (si; ©Vvij) a(ujxj)|
wi jilwi ;| <1865 €01} j=1%jlzi]<1
dy dy
. T
=) sw inf - osup Jwija; — (siy © vig)' o ()]
i=1j=1 w; 5i|w; 5| <1863 E{013 251025 <1
€ ..
< dyds <e. (By definition of the event E_<_)
d1d2 dyda
O

A.3 Proof of Theorem [Tl

We now state the proof of Theorem [I] with the help of the lemmas in the previous subsection.
Proof. (Proof of Theorem Let x; be the input to the 4-th layer of fw, ... w,)(x). Thus,

1. x1 =x,

2. forl <i<l—1,%11 =0(W;x;).
Thus fow,,.. w,)(x) = Wix.

For it" layer weights W, let So; and S,;_; be the binary matrices that achieve the guarantee in
Lemma Lemma|§| states that with probability 1 — 57 the following event holds:

sup 3S2i,S2i—1: sup [[Wix — (Mg; ® Sg;)0((S2; © Mai_1)x)|| < ¢/2L.
Wi eR%i+1 X4 W, <1 x:[|x|| <1
(12)
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As ReLU is 1-Lipschitz, the above event implies the following:

sup 389i,82i-1: sup [[o(W;x) — o((Mz; © Sa;)0((S2i © My 1)x))]| < €/2l.
W, eR®i+1% 4 |[W,[|<1 x:[|x(| <1
(13)

Taking a union bound, we get that with probability 1 — ¢, the above inequalities (12)) and (T3) hold
for every layer simultaneously. For the remainder of the proof, we will assume that this event holds.
For the any fixed function f, let gy = g(w,,...,-w,) be the pruned network constructed layer-wise,
by pruning with binary matrices satisfying Eq. and Eq. (T3), and let these pruned matrices be
M. Let x/ be the input to the 2¢ — 1-th layer of g;. We note that x/ satisfies the following recurrent
relations:

!
1. x] =x,

2. forl <i<1—-1,xj, ;= 0o(Mjo(Msj;_xj)).

Because the input x has [|x|| < 1, Equation (T3) also states that [|x]|| < (1+ i)i_l. To see this,
note that we use Equation (13) to get for 1 <4 <[ —1as
lo(Waxi) — il < lIxill(e/2D)

=[xl < lIxill(e/20) + o (Wixi)l| < lIxill(e/20) + [Waxg]| < [Ixill(e/21) + [Ixi]]-

Applying this inequality recursively, we get the claim that for 1 <i <1 —1, [|x}|| < (1 + 2%)2'—1-
Using this, we can bound the error between x; and x}. For 1 <14 <[ —1,
[xi+1 — Xj || =[lo(Wix;) — o (Mo (M, _1x;))||
<llo(Wix;) — o(Wixi)|| + [[o(Wix;) — o(Mj;0(Mj;_1x;))|
<|lx; — x| + [Wix; — Mj;0(Mp; _;x;) ||
i1 ¢

€
el (16 5) 7

21
where we use Equation (T2). Unrolling this we get
-1

, eNi—1 ¢
I —xil <> (14 5;) 5

=
Finally using the inequality above, we get that with probability at least 1 — ¢,

[fowr,ow) (%) = 9wy, w ()| = [Wixg — Myo(My,_;x)|
< Wixp = Wixg|| 4 [Wix; — Mo (MY, xp) ||

< s = | + Wi — Mo (M)
<+ (14 5) o

X; — X — —

P 21) 2

A e\i—! € eN!-1 €
S(;(”ﬁ 2z>+(1+21> 2

i=1
en!
=(1+5) -1
(1+3
<e/? -1
< e (Since € < 1.)
Replacing ¢ in this proof with min{e, d} gives us the statement of the theorem. O
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B Proof of Lower Bound

Proof. (Proof xof Theorem Firstly, note that hw (x) = Wx. Another fact we use in this proof
is that matrices W of dimension d x d can be considered as points in the space R?*? = R The
metric that we would be using on this space would be the operator norm of matrices || - ||. Note that
G is a random set of functions, but we abuse the notation by using |G| denote the maximum number
of sub-networks that can be formed, starting from any initialization with the given architecture.

Step 1: Packing argument. Consider the normed space of d x d matrices, W = {W € Rx? .
[I[W|| < 1}, with the operator norm || - ||. Let P be a 2e-separated set of (W, || - ||), i.e. P C W and
[IM — M| > 2¢ for all distinct M, M’ € P.

Note that any function ¢’ can only approximate at most one member of P. To see this, let us assume

on the contrary that a ¢’ can approximate two distinct members W1 and Wy of P. Then a triangle

inequality states that

[Wi—Wy| = sup [[Wix—Wox| < sup [¢'(x)—Wix|[[+ sup |[|¢g'(x)—Wax| < 2,
x:[|x[ <1 xi[|x[ <1 x:[|x|[<1

which is a contradiction to the definition of a 2¢-separated set. Hence, ¢’ can approximate at most
only one member of P.

Step 2: Relation between |G| and [P|. The goal of this step is to show that, under the theorem
assumptions, |P| < 2|G|. If |P| > 2|G|, then we show that one of the matrices in P is the difficult
matrix W that we’re looking for.

Let us assume that [P| > 2|G|. Recall that the previous step states that, for any realization of g, the
corresponding G can only approximate at most |G| matrices in P. Therefore, for a fixed realization of
G, we get that

Swepl (3 €6 swuir l9x) - Wl <) g
S =<
P P
Taking the expectation over the distribution of g, we get that
SwerP (39 €9t subs i< l9'(x) — Wxl <€) 4
< —.
P 2
As the minimum is less than the average, there exists a W & P such that
P (Elg’ € G 1 8upyx <1 19'(x) — Wx][| < e) < %, which is a contradiction to Eq. (9). Therefore,
29[ > [P].

N |

Step 3: Lower bound on |P|.  We will now choose P with the maximum cardinality of all
2e-separated sets, i.e., that achieves the packing number. As packing number is lower bounded by
the covering number, we will try to find a lower bound on the size of an 2¢-net of WV 38, Lemma

4.2.8]. Now, any 2e-cover has has to have at least W elements, where the volume

is the Lebesgue measure in R4*? = R%*. We also have that Vol({W : ||W] < ¢} > 0 because

. Vol({W:|| W <1 —d?
{W.: IW| < c} contains {W : ||W/||Frobenius < ¢}. Thus, we get that W = (2¢)~ 7.
Putting everything together, we get that

—d?
1
261> [Pl > WOV, 1,201 = (5:) -

Case [ = 2 Let the dimension of M5 be d x s and the dimension of M be s x d. We need a lower
bound on s. Now, the number of matrices that can be created by pruning M are 2°¢ and similarly
the number of matrices that can be created by pruning M are 2°¢. Thus, the total number of ReLUs
that can be formed by pruning M and M is at most 22*¢, Thus, |G| < 225?. Therefore, we get that

—d2
1
92sd+1 o L )
2e

This shows that s = © (dlog (4 )) is needed to approximate every function in F by pruning g with
probability 1/2.
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Case [ > 2 Let the total number of parameters be m. Therefore, we get that |G| < 2™. Following
the same arguments as before, we get that m = Q (d?log (5-)). O

C Subset sum results

C.1 Product of uniform distributions contains a uniform distribution

Lemmad. Let X ~ UJ0,1] (or X ~ U[—1,0])andY € U[—1, 1] be independent random variables.
Then the PDF of the random variable XY is

Llog & |21 <1
={2 |2] =
Fxr(2) {0 otherwise

Proof. 1t is easy to see why fxy(z) = 0 for z > 1. We prove for X ~ UJ0,1]. The proof for
X ~ U[-1,0] is similar.

Let us first try to find the CDF of XY'.

Let 0 < z < 1 be a real number. Note that XY < 1. Now, if XY < z,and if Y > z,then X < 2/Y.
However, if Y < z, then X can be anything in its support [0, 1]. Thus,

Z1q 1 1 1 z/y
:/ 7/ ldzdy + - 1dzdy
0 2 0 z 2 0

z 1 [tz
= -+ = —d
2t Q/Z y
2z zlogz
2 2
Differentiating this, the pdf for 0 < z < 1is
1 1
= —log —.
fxv(2) =3 0g

Now, because XY is symmetric around 0, we get that for |2| < 1

1 1
— Zlog —.
Ixy(2) 5 log P

O

Corollary 1. Let X ~ UJ0,1] (or X ~ U[-1,0]) and Y € U[—1,1] be independent random
variablles. Lelt P be the distribution of XY . Let §q be the Dirac-delta function. Define a distribution
D = 500+ 5P.

-2
Then, there exists a distribution QQ such that

1 11 1
P={(zlog2)U|—=,=| +(1-=1log2

Proof. The corollary follows from the observation that Lemma [4] shows that pdf of P is lower
bounded by (log 2)U [—l l] on [_l 1]_ =

272 272
C.2 Subset sum problem with product of uniform distributions

Corollary 2 ([31))). Let X1,..., X, bei.i.d. from the distribution in the hypothesis of Corollary][l]
where n > C'log % (for some universal constant C'). Then, with probability at least 1 — €, we have

€S

Vz e [-1,1], 3S C [n] such that <e

19



Proof. This is a direct application of Markov’s inequality on Corollary 3.3 from [31]] applied to the
distribution in the hypothesis of Corollary [T} O
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