
We appreciate the valuable comments, which urged us to embody explicit connections to practices of learning. Apology1

that not all comments are replied here and our replies have to be short due to space, but they’ll be fully addressed in a2

revision. We plead a reconsideration based on the improvement, as our contribution is truly innovative and nontrivial.3

Re: connection to learning, and when Cond.1&2 hold. Here is an example (simplified and only briefly explained4

for length) in which the loss will be multiscale as considered in our paper: train a 2-layer neural network to fit data5

{xk, yk}k, where the output yk = yk0 + yk1 + ξk admits a decomposition into large scale behavior yk0 = g0(x
k),6

microscopic detail yk1 = εg1(εx
k), and i.i.d. noise ξk. Assume g0 and g1 are regular enough so that universal7

approximation (UA) works and they can be approximated by wide enough neural networks withO(1) weights. Consider8

MSE loss
∑
k ‖yk −

∑
i aiσ(Wix

k + bi)‖2 with σ being the periodic activation in a recent progress [Implicit Neural9

Representations with Periodic Activation Functions, 2020]. Then there exists a minimizer and in its neighborhood the10

loss satisfies Cond.1& 2: omit k WLOG, absorb bias into weight, and rewrite the loss as (denote by θ = [ai,Wi]i)11

f(θ) =
∥∥∥y0 −∑i∈I aiσ(Wix) + εy1 −

∑
j 6∈I ajσ(Wjx)

∥∥∥2 =
∥∥∥g0(x)−∑i∈I aiσ(Wix)

∥∥∥2
+ 2ε

〈
g0(x)−

∑
i∈I aiσ(Wix), g1(εx)−

∑
j 6∈I ajσ(Wjx)

〉
+ ε2

∥∥∥g1(εx)−∑j 6∈I ajσ(Wjx)
∥∥∥2

where I and Ic are sets of nodes, each large enough for UA to ensure vanishing loss. Renormalize by letting x̂ = εx so12

that UA works for g1(·), then the 2nd term rewrites as13

2ε
〈
g0(x)−

∑
i∈I aiσ(Wix), g1(x̂)−

∑
j 6∈I ajσ

(
Wj

ε x̂
)〉
.

This is in the form of εf̂1(θ/ε, θ) for some f̂1(φ, ϕ) that is quasiperiodic in φ (quasiperiodic because x̂ is multi-14

dim). The 3rd term rewrites similarly. Thus, we see f(θ) = f0(θ) + f1,ε(θ) where f0 is the 1st term and f1,ε(θ) =15

εf̂1(θ/ε, θ) + ε2f̂2(θ/ε, θ) for some f̂1, f̂2 quasiperiodic in the 1st argument. Such f1,ε satisfies Cond.1&2 due to its16

quasiperiodic small scale. �17

Like most theory papers, we also present numerical experiments in which our conclusions still hold although conditions18

for our theorems no longer apply. Thanks to the reviews the following will be added (and expanded):19

Neural network training. We use fully connected 5-16-2 MLP to regress UCI Airfoil Self-Noise Data Set, with leaky20

ReLU, MSE as loss, and batch gradient. Fig.1 shows large LR again produces stochasticity as our paper studies.21
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Figure 1: (a)-(f) use LR=0.0165 (large) and demonstrate stochasticity originated from chaos as GD converges to a
statistical distribution rather than a local min. (g,h) use LR=0.001 (small) and GD converges to a local min.

Re: f1,ε satisfying Cond.1&2 is like a random variable; tautology? f1,ε does contribute like a r.v., but this needs to22

be proved, which is one of our main contributions – note both x and f1,ε(x) are deterministic even under Cond.1&2!23

Cond.1&2 use auxiliary random variables to define the needed f1,ε, but f1,ε is a deterministic function.24

Re: weaken isotropic noise assumption? We don’t require isotropic ‘noise’. Kindly see e.g., Thm.2, which contains25

2 statements: (i) convergence to stochastic behavior for general covariance; (ii) explicit characterization of the limiting26

statistics when covariance is isotropic (note the same thing holds for SGD).27

Re: valid in multi-dim? Apology that multi-dim. and nonconvex demonstrations were left in Appendix C.2, C.3.3, &28

C.5. This rebuttal also adds a neural network example, which is high-dim. & nonconvex, and our conclusion still holds.29


