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1 Program synthesis algorithm

The algorithmic engine behind our program synthesis method follows the approach introduced in
EC?2 [1]], and is based on the open source implementation of EC?’s successor, DreamCoder [2]]. Our
program induction model takes as input a corpus of black-and-white raster training images, and
seeks to synthesize a graphics program that generates each of them. The model estimates a prior over
programs for training images, to be deployed on held-out test images. Following [2] we now derive
this algorithm starting from a Bayesian viewpoint. With this probabilistic formalism in hand we
will then briefly outline the 3-step algorithm which performs inference in this model, but interested
readers should consult [2} [1] for a complete algorithmic exposition.

Notation. We write I to mean an image, and p to mean a graphics program. Programs are represented
in typed lambda calculus. Initially the graphics programming language contains the primitives
outlined in Table 1 of the main text. Primitives are expressions in typed lambda calculus.

We write [p] to mean the image output by program p. We write L to mean a library of primitives;
At the initial state of learning L contains the primitives in Table 1 of the main text. The library L acts
as a prior over the space of programs, written P(-|L) and defined formally in [2]. Intuitively, this
prior prefers programs which may be expressed compactly using the primitives in L. We write P(L)
to mean the prior probability of the library L, and this prior prefers libraries which overall contain
less code (smaller lambda calculus expressions).

From a Bayesian point of view our aim is to estimate the prior maximizing the joint probability,
which we will notate J:

P(LI{Ia}p-1) o P(L,{In}yy) = J(L) = P(L) [] > P(Lalp) P(p|L) (D

n=1 p

where P(I|p) = 1 [I = [p]]. Evaluating this objective is intractable because it requires marginalizing
over the infinite set of all programs. We define the following intuitive lower bound, written .Z’, on
this objective function:

J(L) = (LB, },) = P(L) [ D PLlp)PIL) 2)
1<n<N p€By,

N
n=1’

where the bound .& is expressed in terms of a collection of sets of programs, {5, } called
beams:
Definition. A beam for image [ is a finite set of programs where, for any p € B;, we have

P(I]p) > 0. In other words, every program in the beam for image I correctly draws I.

Making the beams finite ensures that calculation of . is tractable. In our experiments we bounded
the size of the beams to 5.
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We alternate maximization of . with respect to the beams and the library. In reference to figure 2 of
the main text, these alternate maximization steps are called the Explore and Compress steps.
Explore: Maxing . w.r.t. the beams. Here L is fixed and we want to find new programs to add to
the beams so that .Z increases the most. . most increases by finding programs where P[I|p|P[p|L]
is largest.

Compress: Maxing . w.r.t. the library. Here {B;, }7]:[:1 is held fixed, and so we can evaluate ..
Now the problem is that of searching the discrete space of libraries and finding one maximizing .Z.

Searching for programs is hard because of the large combinatorial search space. We ease this difficulty
by training a neural recognition model, Q(+|-), during the Compile step: @ is trained to approximate
the posterior over programs, Q(p|I) =~ P(p|I, L), thus amortizing the cost of finding programs with
high posterior probability.

Compile: learning to tractably maximize . w.r.t. the beams. Here we train Q(p|I) to assign
high probability to programs p where P(I|p)P(p|L) is large, because including those programs in
the beams will most increase .. We train () both on programs found during the Explore step and on
samples from the current library, i.e. P(-|L). Assuming that @) successfully converges to the true
posterior estimates, then incorporating these top programs as measured by () into the beams will
maximally increase .Z .

1.1 Algorithmic details

Having introduced the probabilistic framing of our problem, and the 3-step inference procedure, we
now briefly outline the algorithmic implementation of the explore/compress/compile steps. A full
overview is contained in [2].

1.1.1 Explore

During the Explore step we enumerate programs in decreasing order under Q(+|1,,) for each image I,,,
and keep the top 5 within the beam B, as measured by the posterior P(p|I,,, L). This enumeration
is tractable given our parameterization of (), which can be expressed similarly to a PCFG over
programs; i.e., the neural network outputs a distribution over programs parameterized by the weights
of a probabilistic grammar, and we enumerate in decreasing order under that grammar. Thus, @
outputs the transition probabilities of a bigram model over program syntax trees, which may be
unrolled into a PCFG-like representation. Enumeration proceeds until a per-image timeout is reached;
we used a timeout of one hour.

1.1.2 Compress

Here we seek to update the library by increasing the probability it assigns to programs in the beams,
hence “compressing” those programs. Indeed the compress objective can be rewritten in terms of a
sum of description lengths:

argmax.? =argmin  —log P(L) + z —log Z P(I,|p)P(p|L) 3)
L L N——

description length of library l<n<N pEBI,

description length of program generating image I,

To heuristically minimize this description length we search locally through the space of libraries L
until the above objective fails to improve. Our search moves consist of incorporating new subex-
pressions obtained from automatically refactoring programs in the beams—intuitively, refactoring
programs that we found explaining images so as to minimize the total size of the library plus the total
size of those programs. See Supplemental Figures [T]and [2] for new subexpressions learned during
training. This refactoring process combines version space algebra [3] with equivalence graphs [4],
which are two approaches from the programming languages and program synthesis community;
see [2]] for details.
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Figure 1: New functions learned after training on Task set 1. Each learned function is a new primitive
that can be reused to build increasingly complex functions (indicated by arrows). The starting
primitive functions (e.g., transform, repeat, ...) are described in the main text (Table 1), which
“transmat” here equivalent to “affine” in Table 1. The parameters whose names begin with “scale”,
“angle”, “dist”, “rep” correspond to sampled values for s, 8, d, N in Table 1.
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Figure 2: New functions learned after training on Task set 2. See legend for Figure[]

1.1.3 Compile

Here we train a neural network to guide the search over programs, seeking to minimize its divergence
from the true posteriors over programs. Writing ¢ for the parameters of (), we aim to maximize

arg max E [Q¢ ((argmax P(p|L,I)> ’ I)] 4)
@ P

where the expectation is taken over images . Taking this expectation over the empirical distribution
of images trains the network on programs found during the Explore step; taking the expectation over
samples, or “dreams,” from the learned prior L is critical for sample efficiency: just like humans our
model learns from at most a few dozen images, which is too little training data for a high-capacity

neural network. But as we learn our prior, we can then draw unlimited dreams to train the neural
network.



1.2 Generalizing to test images

Prior to evaluation on test images we iterate this learning procedure for 20 cycles (of searching
for task solutions, updating the library, and training the neural network). The end state of learning
is not just a program for each training image but, critically, also a learned inductive bias L and a
learned inference/synthesis strategy (). When comparing with human data we infer a program for
test images by enumerating programs in decreasing order under Q)(-|I) and then rescoring under
Pest(I]p)P(p|L), where the likelihood Pes(I]p) o exp (—|I — [p]|2) is a relaxed version of the 0/1
likelihood during training to allow partial credit when the model cannot fully explain a test image.

2 Analysis of behavior

2.1 Converting a motor trajectory into a sequence of discrete strokes

Motor trajectories [raw data in the form of coordinates and corresponding times (z,y,t)] were
segmented into discrete “strokes”. Each stroke was a sequence of coordinates during which the
finger was continuously touching the screen; i.e., strokes were separated by no-touch gaps. Subjects
naturally tended to lift their finger between each discrete segment (i.e., line or circle) in the drawing.

Each stroke was summarized in a stroke-level feature vector ¥ss-oke = (category, startLocation,
center, row, column). category is the category of action represented by the stroke, either a “vertical
line” (LL), “horizontal line” (Lh), or “circle” (C). startLocation is the (z,y) position of the stroke
onset. row and column were discretized values defined by "snapping" a stroke onto its position in
a3 x N (row x column) grid, where N is the number of vertical lines in the “grating” for a given
stimulus.

An entire trajectory ¢ was therefore defined by the ordered list of strokes: (¥, . 92 . ...

To calculate frequencies of horizontal/vertical transitions in a given trajectory, stroke transitions were
classified as either horizontal (same row, different column), vertical (any row, same column), or
undefined (different row, different column).

2.2 Computing distance between two trajectories.

distirqj(t,t") computes a scalar distance between trajectories ¢ and t’, based on a string-edit distance.
Each trajectory was converted to four different strings (each with length equal to number of strokes),
each representing a sequence of a stroke-level feature: (1) action category (i.e., circle, horizontal
line, vertical line) (2) column location (3) row location; and (4) conjunction of the first three features.
These features are described in Suppl. Sect 2.1. Each feature contributed a scalar distance using the
Damerau—Levenshtein string-edit distance; these distances were averaged to compute distsrq;(t,t').

2.3 Motor Cost model: extracting motor cost features from motor trajectories

We define a feature extractor ¢(-) that maps a trajectory ¢ to a trajectory-level real-valued feature
vector ¢(t) with four elements based a priori on previously described drawing biases [3,[6]: start,
distance, direction, and one meant to capture biases reflecting learning in this task verticality.

start is position of first touch, represented as distance from the top-left corner. distance is the
summed distance traveled, measured as the path between stroke centers, direction is the summed
distance travelled, but projected onto the diagonal from top-left to bottom-right, a direction chosen
because it is a common bias in sketching and writing. verticality is the cumulative distance moved
projected onto the y-axis subtracting distance projected onto the x-axis, and was included to allow the
Motor Cost models trained on separate groups (MC1 and MC2) to capture learned directional biases.

2.4 Extending motor cost features to quantify program-like structure in behavior

In order to quantify variation in behavior across subjects, we fit Motor Cost model parameters to each
subject, but with the model extended with two parameters in addition to the four described above,
chunking and skewers. chunking was the count of the number of transitions between strokes of
identical categories (e.g., circle -> circle), which reflects a bias to group similar objects together.
skewers quantifies whether transitions away from “long vertical line” tend to be vertical (reflecting



a bias to draw skewers) or horizontal (reflecting a bias to draw gratings); this was implemented
similarly to verticality. Each subject was therefore described by a single 6-dimensional feature
vector 6.

Subjects exhibited program-like structure as described in Figure 4 in the main text. Assignment of
subjects to different strategies was supported both by visual inspection of their behavior and clustering
of subject-level feature vectors 6, from fitting this extended Motor Cost model (Supplemental Figure
[3). We found the outcomes of these two methods to be largely in agreement. We note that subjects did
tend to form a continuum between these four strategies, and so we attempted to assign each subject to
their dominant strategy.
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Figure 3: Quantitation of diversity of program-like strategies. Left scatter plots: datapoints represent
values of Motor Cost model features for individual subjects along three dimensions: “skewers”,
“vertical”, and “typechunking” are Motor Cost model features. Top row: first, subjects were grouped
into those drawing “skewers” and those drawing “gratings” (Step 1). Bottom row: second, the
“gratings” group was split into three groups based on what they drew immediately after drawing
gratings (Step 2). These two steps led to four mutually exclusive groups. Colored boxes allow for
comparison between the scatterplots (left) and example motor sequences (right).

3 Code and datasets

Code and datasets can be downloaded from: https://www.dropbox.com/s/ehy6w0j1sippt95/code.zip?dl=0
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