A Proof of GP Kernels of ResNets

A.1 Notation and Main Idea

For a fixed pair of inputs  and Z, we introduce two matrices for each layer
S (. 3) — |(Eexe)  (Te, Te)
(@, ) {@bw) (Zo,T0) |

and Ko(x,x) Kz(%i”)} .

(2, %) = {Ke(a},x) Ky(Z, %)

24(3&, %) is the empirical Gram matrix of the outputs of the ¢-th layer, while X, (x, Z) is the infinite-
width version. Theorem [3says that with high probability, for each layer ¢, the difference of these two
matrices measured by the entry-wise Lo, norm (denoted by || - ||max) is small.

The idea is to bound how much the /-th layer magnifies the input error to the output. Specifically, if
the outputs of (¢ — 1)-th layer satisfy

Hiu(x, F) - z@,l(x,:z)’

<,
max

we hope to prove that with high probability over the randomness of W, and V,, we have

(o))

Then the theorem is proved by first showing that w.h.p. Hﬁo(x,i’) — Yo(z, &)

Hi,g(x,:z) - zg(x,gz)]

< (1+

max

O(1/L))~ "¢ and then applying the result above for each layer.

A.2 Lemmas

We introduce the following lemmas. The first lemma shows the boundedness of Ky (z, Z).

Lemma 5. For the ResNet defined in Eqn. (3), Ki(z,z) = (1 + o) for all v € SP~1, ¢ =
0,1, -+, L. Also Ky(x, x) is bounded uniformly when 0.5 < v < 1.

Recall that ¢, (z) = y/ 200(Wz). Since Wy is Gaussian, we know that ¢y, (z,—1) and ¢y, (Z¢—1)

are both sub-Gaussian random vectors over the randomness of . Then their inner product enjoys
sub-exponential property.

Lemma 6 (Sub-exponential concentration). With probability at least 1 — &' over the randomness of
Wy ~ N(0,1I), when m > ¢ log(6/8"), the following hold simultaneously

N " log(6/6’

(owa (o), ow, (o)) — Vo Semr (. 0)] < | 2 oz, a2
"log(6/0’

Jow o) I? = recal?] < 4/ SO e e (13)
"log(6/6’

Jowi o)1 = Eea 7] < B Dz e (14

Lemma 7 (Locally Lipschitzness, based on [28]). 1, is (1 + %(ﬁ)Q)—Lipschitz W.LL. max norm in
M, = { {% lc)] la,c € [u—r,u+r];ac—b* > O}forallu > 0,0 < r < p/2. That means, if
(D). |Se—1(2, %) — So—1 (2, &) |lmax < 7 and (ii). Ko_1(x,2) = Ko_1(2, &) = p, for 7 < /2, we

have wg(izil(%fg)) — wg(zzfl(ﬂc,iﬁ))‘ < (1 + %(%)2)7'

A.3 Proof of Theorem 3|

Proof. In this proof, we also show the following hold with the same probability.

1. For{ =0,1,---, L, ||| and ||Z,] are bounded by an absolute constant Cy (C; = 4).
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2. Ford=1,--- L, ||¢w,(z¢—1)| and ||¢w,(Z¢—1)]|| are bounded by an absolute constant Cs
(Cy = 8).

3. |(ow, (i), dw, (2f2)) —

L', (K )(x(l),x(z))’ < 2 forall { = 1,---,L and
(@, 2®) € {(z,2), (z,2), (7, )}.

. Recall that 'y, (K¢—1)(z, %) =

max

We focus on the ¢-th layer. Let 7 = Hflg,l(;z;, Z) — X1 (=, i)’
1/)0(23—1 (Jf, 'i)) = E(XyX)NN(O,Eg_l(a:,i))o.(X)a(X)' Then

Ko(z,%) = Ko_1(2, %) + ¥y (Se_1 (2, ).

Since xp = xp_1 + \j%VMWZ (z¢—1), we have

(we,Tg) = (Tg_1,Tg—1) + %2<VZ¢W£ (we-1), Vedw, (Te-1))
+ a%(<w¢wz (mgfl),i’zfﬁ + <V€¢Wz (5:571)7‘“*1»
— <aj£,1,.i‘(,1> + o’P + a(Q + R)’
where
= (Vidwwe), Vidw, (50 1),
= %((VZ¢W[(W*1),@71>)7
R= %(<W¢W((@71)awfl>)‘

Under the randomness of Vj, P is sub-exponential, and ) and R are Gaussian random variables.
Therefore, for a given dg, if m > ¢ log(2/dy), with probability at least 1 — &y over the randomness
of V,, we have

~ (owiw), b, (Fe1)| < lowa el w, o)l S as)

for a given 8, with probability at least 1 — 26 over the randomness of V;, we have

. clog(2 )
Q1 < o, () 1y B2, (16)
and
- ¢log(2/6
1B < lw, o) lzely S2EED) (1)
where cg, ¢ > 0 are absolute constants.
Using the above result and Lemma and settlng (50 = (5 5 r_yg V=5 C L5+1) when m >
Clog(36(L + 1)/6), we have (15)), (16), and [14)) hold with probability at least
s

1- 3(L+1)°

. Conditioned on 7 < 0.5, we have
max

Recall that 7 = Hf)g,l(x,:ﬁ) — Y1 (z, :E)‘

|z | < Kpq(zy2) +7 <1+ o)+ 7 <ed T

Similarly we can show ||Z_ J |? is bounded by e + 7. By (13) and (T4) we have ||¢w, (z¢—1)||* <
2||xe—1]|? and || dw, (Te—1)|* < 2, which are both bounded.
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hen
’ﬁmbfiw (a wa(zl 1(.’£ (E)) + Ko 1 x, )‘
<7+ (P = o (Ze-1(2, 7)) + a(|Q| + | R])

¢log(2/4) (

gr—&-aQ‘P—<¢Wg($z—1)7¢vw(fé—1)>‘+a m

+a?

Vo (o1 (2, 7)) — 1/’0(22—1(39,:5))‘ + a2‘<¢Wl (e—1), dw, (Te—1)) — ¢g(f3g_1(z,j))’
B N

m K@ 1(
<7+ (a? +Oz)\/03 log(36(L 1 1)/9) +oz27'(1 + 1).
m 47

When oo = 7+, v € [0.5, 1], we have a? < 1/L. Then when

m> C3L* =) log(36(L + 1)/5)

we have
‘m,m - Kz(:v,i)‘ <r+-o7
As a byproduct, we have

[ (e1), 0w (Fe1) = o (S (2, )
- ¢o4 log(36(L + 1)/0) N (1 . l(i)z)T o

m T
Repeat the above for (xy_1,z¢—1) and (Zy_1, T¢—1), we have with probability at least 1 — § /(L + 1)
over the randomness of V; and W,

(3, F) — zz,l(x,gz)‘

<T7T=
) max (18)
’25(1«,5:) - Eg(a:,gz)Hmax < (1+4/L)r.

Finally, when m > W, with probability at least 1 — § /(L + 1) over the randomness of
A, we have R

So(w,7) — To(,7)|| < e/el.
Then the result follows by successively using (I8). ™** O

A4  proof of lemmal|7]
Proof. [28] showed that

vl a b 1a+c b b ., b s b

(o — o o .
cllly Q\F Vac Vac Vac Vac

When a,c € | —ru—i—r |, we have

| 3

D (- ) e Y

The last 1nequa11ty holds when r <

Define p = f we have p € [—1,1]. Then

sone (- (2))
<
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B Proof of Theoremd

B.1 Notation and Main Idea

We already know that when the network width m is large enough, (x¢_1,Z¢—1) ~ Ky_1(z, &), and
(ow, (Te—1), dw, (Te—1)) = Lo (Kp—1)(, 7).

Next we need to show the concentration of the inner product of % and j—% We define two matrices
for each layer

and

Recall that

1 2
by =y e EWZTDIZVgTbé—H +beg1.
We aim to show that when H(;)prl(a:, %) — Op41(2, Z)||max < 7, with high probability over the

randomness of W, and V;, we have [|©4(z, %) — ©p(2, Z)||max < (1 + O(1/L))7. Notice that by

and B[Jr] contain the information of W, and V;; they are not independent. Nevertheless we can
decompose the randomness of W, and V; to show the concentration. This technique is also used in
[22]].

B.2 Lemmas

In this part we introduce some useful lemmas. The first one shows the property of the step activation
function.

Lemma 8 (Property of o’). [22]

(1). Sub-Gaussian concentration. With probability at least 1 — & over the randomness of Wy, we have

‘% Tr(DyDe) — thor (Se-1 (2, 5:))‘ < CIOgT@/(S),

(2). Holder continuity. Fix yn > 0,0 < r < p. Forall A/B € M, = { {Z b}

[w—r,pu+r];ac—b% > O}, if|A = B|lmax < (u — 7)€2, then
thor (A) = o (B)] < €.

The following lemma shows that regardless the ~fact that by and Bg+1 depend on V}, we can treat V;
as a Gaussian matrix independent of b, 1 and b1 when the network width is large enough.
Lemma 9. Assume the following inequality hold simultaneously for all ¢ = 1,2,--- | L

o <c. | v <e

Fix an (. Further assume that

||@£+1(96 I) = Op11 (2, )|l max < 1.
When m > max{% (1 + log 5) 5 log 8% cL*=27 log 823, the following holds for all (x M, 2?) ¢
{(z,2),(z,%),(%,%)} wnhprobablltty atleast1 —§ — &'

20wt B b 2 Te(DM D@
V.0V DR, —q p"p ’<e.
m \/> L £ ¢ v m A/ \/>> ( £ £ )

The following lemma shows the same thing for W as V; in Lemma 9]
Lemma 10. Assume the conditions and the results of Lemma 9| hold.

(1) When m > max{e%(l + log 6), = log 8 = L o[22 log L2 the following holds for all
(zM,2®) € {(x,2), (v, %), (%, %)} with probability at least 1 — 6 &

12 Wy et 1o @7 P T
<WD Vg\/»WD v, \F> m(D V\/ED Veﬁ>§e.
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(2). When m > max{§ log == 16L "c12=27 1og 16L} for all (2 2?) ¢
,Z)}, the followmg holds with probability at least 1 — B

1 2
’m./ ,/ W DOV B 6P

Proof. In this proof we are going to prove that when m satisfies the assumption, with probability at
least 1 — g, the following hold for £ = 1,--- | L.

(V0L V) = Bera o, o (K1) 2,)

<eE

B.3 Proof of Theorem [d

S €0,

W ) = Kea0) B (0,5 (i) 0,8)

< €0-
We break the proof into several steps. Each step is based on the result of the previous steps. Note that

the absolute constants ¢ and C' may vary throughout the proof.

Step 1. Norm Control of the Gaussian Matrices

With probability at least 1 — §;, when m > clog %, one can show that the following hold simultane-
ously forall ¢ =1,2,--- , L [38]

<C.
ol Bl v
Step 2. Concentration of the GP kernels
By Theorem 3] with probability at least 1 — d2, when
C 36(L+1
m Z 7[/2—2’7 log ( + )

E% 52 ’
we have

1. For{=0,---,L,

2.
< cejy;
max

/(2,8) - S, @)

2. For{ =0,1,---, L, ||| and ||Z¢|| are bounded by an absolute constant C; (C; = 4);
3. For{=1,---, L, ||¢w,(x¢—1)| and ||¢w,(Z¢—1)]| are bounded by an absolute constant Cs
(C2 =38);

[ @1,). 6w, (22,

T, (K )(a:(l),z(?))’ < 2 forall £ = 1,---,L and
(z1),2?) € {(z,2), (x, &), (&, )}.

Step 3. Concentration of o’

By Lemma when m > & log %, with probability at least 1 — J3, forall £ = 1,2,--- | L and
62 :

(xM @) € {(x,2), (x, %), (Z,%)}, we have

2 clog(6L/o - - -
‘E Tr(Dgl)Déz)) — Fgf(Kg_l)(x(l),x@))‘ </ % + \/2 HZg_l(x,x) — Y 1(z, %)

Step 4. Concentration of B,

Recall that
eca a b o ’UT BxL 8ZZZL_1 &WH T
SR ax,;,l 6$L72 (r“)l'g

< €2.

max

We have
and for/ =1,2,--- , L — 1,

Oxpyq | 1 /2
bey1 = Ery bryo = ooy EW5T+1D€+1V51154+2+62+2~
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Following the same idea in Thm [3] we prove by induction. First of all, for by, we have

Or41(z, %) = B 1} (Z)LH(x z) = % B ﬂ Then by Bernstein inequality [39], with
probability at least 1 — f, when m > Q log % , we have
2
LI
m

Fix £ € {2,3,--- , L}. Assume that
H@Z+1(xaj) — Op11(x, f)‘

we hope to prove with high probability,
|6e(@,3) - Ol 3),

<7<1,

max

< (1+0(1/L)r.

max
First write

1
SO0 0) = 062 +a*P 4 a(Q + R),

where
(1,7 b ()7 Vi
P:——(WD Vi mWD V, m>
/ / 1) 1) (2
Q= m WeTD( VeTbg+1vbe+1>
2 2 1
= EV EV EWV@TDE VIO,
Then

1
|~ 07, 87) = (Bera (@V,2) + 02Bea (00, 2T (Ker) (), )|

< |- 0402 - Bm(x”%w(”)\ 0[P = By (o0, 2 @) (K1) (@, 2)] + alQ] + al B

(1) (2)

2 b
§T+a2‘P ~(D mvT\jﬂ DAV, &E>’
p(b) (2) (1) 2(2)
2 b b b 2
+a2—<Dé”wT%,D§”w T~ e T (D DY)
b§11 bg21 2 D p(2
a8, ) - Bea(@0,2®)|| = m(DfV D)

2
ta? B”l(w(l)’m(Q))HE (DY D)) — I‘UI(Kefl)(a:(l),x(Q))’

+ o|Q| + «|R).
In Lemma@and Lemma lseté = cLV e =er, 8 =0 =6 = d4/5L. When m >
max{5 (1 + log 3&), & log 4?55 , S L* 27 log 89L% ¢12~27 log 8L}, with probability at least

— % the results ofLemma|§|and Lemma.hold. Then forall (z(V), 2®) € {(z, ), (x,2), (,%)},
‘%(by), b§2)> — By(2W, x(Q))’ <71+ aler + aler + %21 + oPeey + 207
<7(1+0OQ1/L)). (Setey <ecr.)
By taking union bound, with probability at least 1 — §4, we have forall { =1,2,--- | L,
1041 (2, &) = Opr1 (@, )llmax < (1+O(1/L)) ey < Cea.
Meanwhile, we have for all (z(), 2®) € {(z,2), (z,%),(Z,%)}and £ = 1,--- , L,

(1) p(2)
‘ D(I)VT by D(?)VT e+1> Bg+1(213(1),:L‘(2))Fa/(Kg_1)(.T(1),$(2)) < (24¢)T+ees < Cey.

NG

Step 5. Summary
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Using previous results, for all ¢, we have

1 -
‘@<waa Vv, f) — B€+1F0(K£—1)’

< [ fbers, Do) = Beva| - How, (o), dw, (Fe )] + [ Besa] - ow (1), dw (Fe-1) — To(Ke )]

< Cey + Ceg,
and

1 _
‘§<vaf7 Vw, f) — Kzf1Be+1Fgf(Ke71)‘

1 ) 2. 2.
< ‘E@zq,mefﬁ - Kéfl‘ : ‘EbZHVZDngV[b@H‘ + [Ke-] ‘EbZJrIVZDZDZVZTbZ+1 — By Tor (K1)

< Cé; + Cey.
To sum up, by choosing €4 = ceq, €2 = ceq, and 01 = 62 = d3 = d4 = ¢ /4, then with probability at
least 1 — &g, when

C 320(L2% +1
mz G (10 BUELY )
0 0

16L C ,_ 144(L+1) C | 24L
>m log — = [2 2V gg —~ T 7/ T log =
= ax{c 8 S "€} o8 do " el 08 S
C 8L C 120L, C 160L% C 32012 32012
—log —, (1 +log—), =1 — L og T ¢L*?]
2 log 50’63( +log = ),63 85T 0g —5 ¢ 08 =5 |

the desired results hold.

C Proofs of the Lemmas

C.1 Supporting lemmas

Lemma 11. Define G = [pw,(zo-1), dw, (Ze-1)], and 11§ as the orthogonal projection onto the
orthogonal complement of the column space of G. when m > 1 + log g, the following holds with
probability at least 1 — § for all (z(V),2?) € {(x, ), (v, %), (%,7)},

T 2) 1 m 6
2 bg& 1 (1)~ () 7yl Tb§+1 bpyy by, 2 1) (2 1+log
224 yatp® pBty, 2 2y 2y pMW DY <4 a2 )My 2l
m\/ﬁ gty l GV¢ \/?% <\/m’ \/m)m I'( V4 V4 ) —( + \/7) m )
where -
M — max [bes1l? N|besal?
m  m '

proof of Lemma[Il} We prove the lemma on any realization of
(A7 Wla Vla R Wf—la w—la Wév W€+17 V(Z-&-la Tty WL7 VL7 U)’~W¢WZ (x€—£) and ‘/Z(ZSWZ (j€—1)7
and consider the remaining randomness of Vj. In this case, Dy, Dy, bg41 and b1 are fixed.

One can show that conditioned on the realization of V;G (whose “degree of freedom” is 2m), Vgﬂé

is identically distributed as %Hé, where fQ is an i.i.d. copy of V4. The remaining m? — 2m “degree
of freedom” is enough for a good concentration. For the proof of this result, we refer the readers to
Lemma E.3 in [22].

Denote T = 115 DS DI TS,

3

We know that S is a 2m-dimensional Gaussian random vector, and
by biY, by bt
< (+ (+ >Im < (+ (+ >Im

S~N{o, b(;z’ b(l?l b(;;z’ b(fgI
< +1 41 >I < 41 41 >I
vm? o /m /M vm? o /m /M
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Then there exists a matrix P € R2mx2m

(l)sucpl that b
< 2+1 Z+1 >I’"L < 2+1 2+1 >I’"L
k) k)
PPT = |t N CINES )
bely befy I bely by I

and S £ P¢, € ~ N(0, Lo).

Thus
£21T~ 1L (W) @) 7LT7 Tbgr)l d 7T | 1 i 0 l v+, 0 T
ﬁvﬁHGDeD H‘/@\/» &P |:6n:| T|:I"L:|P£—2£P |:T O]Pf

1
=5 IPPT -1
(1) (1) (1) (2)
1 <bﬁ—nl,%>fm <b&%7 bf/%ﬂm IRTHIINeS @ || 1L
S b(z) b(l) b(z) b(z) HHGH HDZ H HDE H HHGH
<z+1 2+1>I <£+1 2+1>Im
vm? m /M vm? /m
bé:—)l bé:—)l bﬁfi—)l bﬁ?l
< <m7 m>;’<m7 m) <M.
And |[1PT [g, g ]F’ <V2mM
F

Then by the Hanson-Wright Inequality for Gaussian chaos [40]], we have with probability at least
1-4/3,

" xe) @ T b2
2 b£+1 VHLD(UD(Q)H VT f-‘rl E bf-‘rl ‘7HJ_D(1)D(2)H VT £+1
m \/ﬁ gy ¢ \/a_ Ve \/ﬁ gy 14 \/ﬁ
6 6
V2mM log6+M10g5>,
Furthermore, w have_l_
&)1 1) /) LT T gi)1 b§1+)1 bfe% L (1) (2)
]E% Jm VHGD D115V, Jm <\F \F>Tr(HGD£ D).
Thus
2 bﬁi’l L (D) A LloT §+)1 bx-)l 51(521 2 1) @)
‘mE% N VH D,”D, HGV N i \F> Tr(D, " D,”)
1 1
by bt

m \/E,\/E> 1"( Gy L )

2
< =M Tr(g D DP 1)
m
< iM
m
By taking union bound, we have with probability at least 1 — §, for all (z(1),z(?)) €
{(z.2), (2.2), (2.2)}.
2 &)1 1) 1(2) béi)l bg) b&)l 2 (1) (2
VHDDHV —{ y— Tv(D,” D,”)
G 14 \/* \/7 \/* 4 £

IN

6 6 4
— | v2mM/log -+ Mlog - | + —M
m 1) 1) m

1+log$
(4+4v2) My [ B0
m

IN
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where the last inequality holds when m > 1 4 log g. O

Lemma 12 (Norm controls of b£+1) Assume the following inequalities hold simultaneously for all
{=1,2,--- L

Then for any fixed input x, 1 < { < L and u € Rm %en
2L

m > cL? % log = 5

with probability at least 1 — &' over the randomness of Wyi1, Voi1, -+, W,V v, we have

2L
[ bes)| < Cfullyflog =7

proof of Lemma[I2} Denote u; = u, and

1 2
Uipr = a\[ — [ —Vig1 DigaWigaui +ui, i =£6,0+1,--- L —1.
m\ m

One can show that (u,by11) = (v,ur). Next we show that [lu; 11| = (1 + O(1))||u;| with high

probability. First write
[1 [2 2 [1 [2

I =1/ =Vis1Diga Wi u; +2a<ui, — W+1Di+1Wi+1ui>'
m\V m m\V m

< V20| |uif),

By the assumption we have
/2
— D1 Wipiu;
m

1 2
\/ =1/ = Vis1 Dis1Wisiu; || < V2C% 4.
H A VisDiaWigau < V202 ||uy|

With probability at least 1 — ¢’/ L over the randomness of V;1, we have

uza \/ — H z+1Dz+1Wz+luz < ||uz|| H \/ z+1Wz+1uz

il = luil® + a

/clog

Then when
m > cL?~ 2”’log 5
we have
1 2 1 2
wis1)® = [Juil® + o2 \/ =\ = Vit Disa Wigau, + 20(ui, \[ —\/ = Vit1 DipaWig1uw;)
m m m m

. ) 9 clog%—f,’
< (142C*/L)|uil|* + 20920 |Ju;| —

< (1420 /L +2v20/ L) |Juil|* = (1 4+ O(1/L))|us ).
Then with probability at least 1 — §'(L — 1)/L we have ||uy|| < C/||ul|. Finally the result holds from
the standard concentration bound for Gaussian random variables [39]]. O

C.2 Proofs of Lemma[9]
proof of Lemmal(9 By the assumption, we have
1
E“b£+1”2 < Beyi(z,z) +1<4.

Similarly, %||l~)g+1H2 < 4. Then by Lemma , when m > E%(l + log ), we have for all
(@™, 2®) € {(z, x), (z, ), (Z, )},

2%21 L A1) (@)L Tbgr)l bé}f)l bﬁl 2 (1) 5(2)
mf WHGDE DZ HG‘/Z \/ﬁ_<\/ﬁ7\/ﬁ>ETr(Dé Dé ) < ce.

Specifically, we have

2 b 2 1
by < \Jeet 2100 b2 < 0),

\/>
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and similarly

b ~
V2% vne

T
bl+1

< O(1).
Next we bound
Vellg

Notice that I1; is a orthoggnal projection onto the column space of G, which is at most 2-dimension.
One can write [Ig = uju; + ugu, , where ||u;|| = 1 or 0. By Lemma | fixing u;, ug and Vg, w.p
greater than 1 — ¢’ over the randomness of Wi 1, Voy1, -, W, VL, v, we have

< C’"q/log (5’ ,
C/l l

m > cL?™% log (5

Vieu;

bé-‘rl \/*

and
T
be+1 Véuz

for both ¢ = 1,2 when

Therefore byos T 7 T ST
041 041 /
— VI ——= Villg|| < O} {/log — |.
‘ Jm g, Jm la|| = ( 0g 5,)
Finally, using I,,, = HG + II5, we have
@ T p(2 (1) (2
2b 1) (2 b b 2 1) (2
ET% VDSV DV, \;ﬂ - <\‘}+j éﬂ) Tv(D{V D)
-
2 b§1+)1 L (1) " (@)L bg21 by by 2 2
<22 vt plt plen V +1 +1 Y441 2Ty D(I)D()
= m\/ﬁ gy 14 GY¢e \/> <\/171’\/7n>m ( y4 L )
5 b(l) Do p(@
/> \jﬂ Vellg Dy DP1IEV," “1,/ ’
£+1 1L (1) 1(2) Tbéi)l
1/ ,/ Vellg Dy D~ 1lgV,
vm
+ = 2 b€+1 VH D(I)D(Z)H VT 23-)1
m|v/m vm
/2 8L 2 8L
< ce+ m(’)( log 5,> —l—m(’)(log(y) <e
The last inequality holds when m > 592 log %. O

C.3 Proof of Lemma
proof of Lemma The first part of the proof is essentially the same as Lemma[9] Define

They1 5 Al beya
d D —V , d Dy——V,T L
f‘l’l~ f\/ﬁ Y/ \/m +1 — Z\/i \/7’%
We know that dyyq and dy4; depend on W, only through Wyxy_1 and Wyzy—;. Let H =
[€¢—1,Z¢—1]. Then

2 1 2 1 2
‘E(W;déﬁl, WéTdﬁﬁ - 2<dé+)1, déjﬁ‘
2 1 2 1 2 2 1 9
< \ami WA, T ) — 20 )| + | 2 W ) T df)|

2 1
[ 2l W a2 | 2wl e,

Since ||dgs1|, |des1 ]| = O(1), similar to Lemma whenm > 1+log %, wpatleast 1 — § we

have 5
2 1 2 1 2) 1+log 3
ﬂﬁﬂﬁwdéﬁpﬂ WgTd§+)1>*2<d§+)pd§+1>‘ <O(”m§ ,
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and
H,/ 5w, dgle —0Q1), i=1,2,
Using the same argument as in the proof of LemmaEI, we decompose 1y into two vectors w; and

wsg, whose randomness comes from Wy, V7, - - Wg 1, Vy—1. By writing
) 1
wiwld) = o), TV WD >TWM>

we can also apply Lemma Then we conclude that w.p. greater than 1 — ¢’ over the randomness of

v, we have 3L
||HHWer€+1||7 ||HHWer€+1|| = O(\/ log —- 5 )

when 8L
m > cL?* * log —- 5

Then exactly the same result of Lemma [9] holds.

For the second part, notice that

L/ 2 m pOyTpd @ 2w pWw 1VT5§1+)1 béi)l
w\Vom E< e Py Vo £+17 e+1> E< ¢y m 't 7\/577\/ﬁ>
(2)
[2 0o ) b
= E<WZ dé+1?\/a>

2 1) b@i 2 Lovmg® @
= *< dz+1’ﬁ>+ E<HH\/77L ¢ doyrs b))

Conditioned on xp_1, Zp—1, Wexp_1, and WeZo_1, Wg is independent of by 1, bg+1, dy41, and dg+1
Furthermore, we have Hﬁ Wg =, 114 We , where Wg is an i.i.d. copy of W,. Then for the first term,
with probability at least 1 — §/2, we have for all (), 2®) € {(z, ), (z, &), (Z, ), (Z, %)},

(2) 2) 16
2 (1) bz+1 1 be+1 QCIOg 5 log 5

5w, d,),, L 157 d 23 <0 )
\\/m< HW i, | < g R d ) —— < —

For the second term, write Il = wiw{ + wow, , where ||w;|| = 1 or 0. Then by Lemma
with probability at least 1 — 6/2, for all (), 2(?) € {(z,2), (x,%), (Z, ), (¥,Z)}, when m >

cL?>~?7 log %, we have
2 T 1 T 401 2 2 T 1 1 2
‘\/m@h‘wi ﬁ d§+)175§+)1 _’\/wi = dé+)1< b§+)1>
2
<ol =W [ 62

16L
<0

m

D Proof of Theorem

Proof. Forz,% € SP~!, we have Ky(x, ) = K,(Z,%) = 1 for all £. Hence we only need to study
when z # Z. Note we have

Ko(z,2) =Ty (K¢—1)(z,%) = 6 (K¢—1(x, 7)), and Ty (Kp)(z,T) = UA’(KZ(L:E)).
For simplicity, we use K, to denote K, (z, ), where x # & and z,7 € SP~1.

5(p) = \/1_p2—|—(7r7r—cos_ (p))p7 and 07(p) — &

Hence we have 6(1) = 1, K;—1 < 6(Ky_1) = Ky, (6) (p) = o(p) € [0,1], and (¢/) (p) > 0.
Then 6 is a convex function.

Recall that
7 —cos 1(p)
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Since { K/} is an increasing sequence and |K,| < 1, we have K, converges as £ — oco. Taking the
limit of both sides of 6 (K,—1) = Ky, we have K, — 1 as { — co.
For K, we also have

V1= K2 |+ (m—cos™ (Ki—1)) K1 1= K2 | —cos ™ (Ko1) K1
Ky =06(Ki1) = - =K1+ - .

Let ey = 1 — Ky, we can easily check that

3/2 3/2
e Q\f 2e,
er 1 — L <e<ep - (19)
us EL
Hence as e, — 0, we have %~ — 1, which implies { K} converges sublinearly.

Assume e, = & + O(¢~(P+1) ) By taking the assumption into and comparing the highest order
of both sides, we have p = 2.

Thus 3C, s.t. |1 — K| < &, i.e. the convergence rate of Ky is O ().

Lemma 13. For each Ky < 1, there exists p > 0 and ng = no(d) > 0, such that K,, < 1 —
9r?

2(n+no)*"

. 97 92 92 . .
Proof. First, solve Ko <1 — W Then we can choose ng > v 55 =4/ SA-Kg)’ which is
n

independent of L and n. For the rest of the proof, without loss of generality, we just use n instead of

n—+ng. Also for small 6( when § is not small enough we can pick a small §y < ¢ and let ng > %),

wzr V= 0,..., L, when L is large.
L

2
we have % < é(or dp) which is also small.
2(n+no)

Let K,, = 1 — €. Then, when ¢ is small, we have
Kpi1 — Ky = 6(K,) — K, = O(3/?),
Also, we have

972 972 1
(1 - ( N 1;+log(L)P > o (1 - 2, 2+711:7g(L)P ) =0 ( 5+10g(L)P )
n
3/2
1 1
ZO<( 2+log(L)T’) > :O(n3+310§2[4)17>'

Overall, we want an upper bound for K, and from the above we only know that K, is of order
1 — O(n~2) but this order may hide some terms of logarithmic order. Hence we use the order
1-— O(n_(2+5)) to provide an upper bound of K,,. Here w is constructed for the convenience
of the rest of the proof. O

Let Ny = Ny(L) be the solution of

3_10g(L)2
()
cos|m|1—
n+2

where for Ng < n < Ny, with some Ny, we have

_log(L)
(n+1) 2 (
cos|m|1—
n+2
<55

One can check by series expansion that Ng = No(L

_ log(1)?
L

( _ log(1)?
L
L

Next we would like to find n such that
3
L __
K,=cos|7m|1—- <lzg(L)2>
Stoe(ryz 1
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By series expansion, we know

3710g(L)2
5 L L 9 2
cos |m|1— <lzg(L)2 >1-— o 5
Prog(my? 1 2 (2457
Then it suffices to solve
92 92 oa(L)P 5L \?
1_#21_%2}(7“26 p2+ = <|— . (20)
2iog(r2 ) on 2+ log(L)?

Lemma 14. When ¢ > p — 1, we have n < log(L) — log(L)? satisfies @)

Proof. 1f the condition above holds, we have
log(L)p

94 los(D)?
2+log<L>P < 5L loe(L)?
(log(w og(L) |

which is
1Jrlog(L)P < 5L loe(L) oL loe(L)
(rmute ~ 20 (e oo

5L log(L)? log(5.(757)
< (it o) (H L )

5L 5 5L 5L
e p—2 _ p+q
log(L) —log(L)? + 5 log(L)P~*log <log(L)2) 5T log(L)P™1og < ) ,

log(L)P
2L

log(L)P

where ( (L) —log(L)? ) S lasL - oo

Thus we have ¢ > p — 1. O
Just pick ¢ = p. Then we have nl S S 5(L)z andn S 1og(L) — log(L)P.
Lemma 15. When L is large enough, we have
3_"_log(LL)Q 1 3_log(L)2
L)P 2
cos|m|1-— i <K,<cos|m|1l-— w
n+1 n+log(L)P +1

) 3_log(LL)p
Proof. Let F(n) = cos (7‘( <1 - (%) ))

For the right hand side, when n 2 log( L)2 — log(L)P, we have, by series expansion, F'(n + 1) >
G (F(n)). Also, when n ~ aL, where 0 < a < 1, we have

Fin+1)—6(F(n))=0 (3 et log;(L))> > 0.
2L4 (alog?(L) +5)

Then for (L) —log(L)?» <n < L,wehave F(n+ 1) > 6 (F(n)) and thus K,, < F(n).
When n < m log(L)?, we have F'(n + 1) < 6 (F(n)). Hence K,, < F(n).
For the left hand side,
3+log(L)2 3+log(L)
1
cos|m|1— nt —0|cos|@m|1— i
n+2 n+1
2772 3m?log(L)
~ - ,Vn=1,...,L.
2n4 n3L "
Hence we have the left hand side. O
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From Lemma|[I5] by series expansion, we have
. 2
(37r 4 mloa(l)” IOQL(W) o2

m
okl s g ~ g
when L is large.
Moreover, we can get
log(L)2 _ log(L)?
n \*T T n + log(L)P -7
<To(Kn) S|\ ——0
n+1 n+log(L)P +1
Then
log(L)?2 log(L)?
L

(—1\*"r L ¢ +log(L)P —1\°~
_ < / ; <|—
(T) =11t ) < (Tt )

Let N = log(L)p For the right hand side, if we sum over ¢, we have

log(L)? log(L)?
Z (+N—-1\* ¢ 1M 4N -1 =71 p
L "L+N =1/ L+N *

2 2
4— log(L) 4_log(L)
L _ (7\7) L

A\

<(L+N)

L(L+ NP~ (1 - el

Taking the limit of both sides, we have

log(L)?

L 3— logllL)”
1 {4+ N-1 z 1
lim — A <z
L—oo L — L+ N 4°
Similarly, by
lo, (L) M los(L)
lXL: 6_71 3+ = >l L L_l 3+ L dx_ (L—1)4+
L i=1 L L L (4+ log(L) >L4+1og(L)2 )
we have )
L 34 loa(D)?
1 {—1 1
N ‘-1 21
() =g
Hence,
log(LL) 3+%

Recall from previous discussion, K, = 1 - O(é%) Therefore,
1
A&*Zmlﬂf T
Also, when L is large, we have

4_log(LL)2 B 4_log(LL)2
((L+N) (N) 1 (L— 1)4+10g(L)

> > .
L(L + N)3— 52" (4 _ %) 1 <4+ los()? )L4+mgu>2

Hence we can estimate the convergence rate of the normalized kernel

1< L 1 1\ 1
‘LZKEl HFU’(Kifl) 1 Z (Ke 1 (HF 4> + E(Kffl - 1)> ‘
=1 i=t

Z 1
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1 L L L
<|p e \ i 20
=1 i= (=1
_ log(L)? _lo (L>2
<

L(L+ N)BfM (4 _ #) ( it 10g(L)2) L Bl

i

4log(L)P 4 log(L)? polylog(L))
16L =0 ( L >

A

E Proof of Theorem

Proof. We denote Ky , to be the /-th layer of K when the depth is L, which is originally denoted by
K.

Let Se = yshyr = aryemr and So = Ko, then Tp(Kp ) = (1 + a?) () and
Ty (Ky1) = 0’(Se,1). Hence we can rewrite the recursion to be

Se—1,0 +a*6(Se-1.1)

Sen = T+a2) > Se-1,L- (2D
Moreover, since S¢ 1, —S¢—1,1, = %(&(Sg,l,L)—Sg,LL) and (6(S¢—1,)—Se—1,1) is decreasing,
we can have Sop< S0t (&(5022_ So)é.
Denote Pyy1 1 = Bri1,p(1+a?) "0 = Hf:_el % Since

1+a20/(S;1)  o®(1—a'(Sir))  1—3d(S;r)

1_ ) — ) — )
1+ a2 1+a? 2+1 7
we have
L—-1 -~ L—1 -~ ~
1_P 7171—[ 171*0'(51',[,) < 170(52'7[,)7[/ 0 — ZZZU( )
Lk L ’+1 )~ > +1 L +1 ’
where { =1,...,L —1.For Py, wehavel — Pr; 1 =0.

Then we can rewrite the normalized kernel to be

Qr :2sze+1[’ 5(Se=1.0) + Se—1,00"(Se—1,1.))-

Hence we have the bound for each layer
|Pes1,(6(Se-1.0) + Se-1,07 (Se-1,0)) = ((50) + 5007 (S0))|

(6(Se-1,1) + 811,107 (Se-1,8)) = (5(So) + S0 (o)) + [6(S0) + So"(S0)| - [L = Prs, g

< ‘PZJrl,L’ .
< |e"(Se-1.L)(Se-rr — so)] +
2|0 (Se-1,6)(Se-1,1. = So)| + [ So(@(Se-1.) - Ef(so))‘ + |#(50) + S0’ (S0)| - [1 = P, L‘

< 20(Se-1.0)(3(S0) = So)l ,_|ol(6 < 0) = So)(t L—t= Y o'(Sis)

- L2 _ L2 +1
élL

_ 20(Si-1,L)(6(S0) = So)! |So|(( ) So)(e—1)

= 72
\/ Z 1,L

27

o (St-1.2)Se-1.1 — Ef(so)so‘ + ]&(so) n Soc;’(So)‘ . ‘1 - pML]

(So) + Soo’ (50)’

L—(—(L—1£)d'(S)
L2+1 '

(So) + Soo’ (So)’



Therefore we have the bound for the normalized kernel

%~ 36(50) + 500" (50)

L
:‘1Zxaﬂﬂa&1@+&nﬂ%&1@»—;@w@+%&wm‘

2L
=1
1 Z 207(Sp-1,1)(6(50) ~ o)t , [Sol(6(50) — So)(¢ ~ 1)
= L2 7l 1- 52,
L—1 ~
1 N -~ L—g—(L—é)O'/(S())
+ﬁ o (‘O’(So)+50(f (So)’ L2—|-1
< (B s — s o 501050 = SOLE =1 1o o g5 )‘“2‘%—9(50))
oL\ L 0770 2rL2C 0770 AP0 L2 +1

&ww+%9@wgawm>i

(8 ).

where C = C(0) = /1 — (1 —6)2 and Sy = Kp.
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