Supplementary File for
“Stochastic Gradient Descent in Correlated Settings:

A Study on Gaussian Processes”

The supplementary file is organized as follows: Section 1 restates the assumptions and main
theorems on the convergence of parameter iterates and the full gradient; Section 2 is devoted to
the proofs of the two main theorems, while Section 3 includes the proofs of supporting lemmas;

Section 4 includes additional figures from the numerical study.

1 Main Theoretical Results

Assumption 1.1. The eigenvalues of kernel function k w.r.t. probability measure P are
{C'e_bj}]o-io, where b > 0, and C < 1 are regarded as constants.

Assumption 1.2. Both 0% and 8%) for 0 < k < K lie in [fin, Omax)?, where 0 < Opmin < Omax.
Assumption 1.3. For all0 < k < K, Hg(O(k);ngH,yng)Hg < G for some G > 0.

Theorem 1. Under Assumptions 1.1 to 1.3, when m > C for some constant C > 0, we have

the following results under two corresponding conditions on s;(m):

1. If so(m) =m, % <a; < % where v = 49%, then for any 0 < € < C'lolgo{#, with probability
at least 1 — CK exp{—cm?*},

8G?

o) — 032 < — "7 4 omrte 1
( 2 2) — "}’2(K+1) ( )
2. If in addition to sa(m) = m, s1(m) is set as T logm where T > 65993“, % <o < % where 7y is

defined as in (5), then for any 0 < & < %, with probability at least 1 — CK exp{—c(logm)*},

. 8G?
165) — 67|13 < —

m + C(log m)_5+6. (2)

Here ¢,C > 0 depend only on Oyin, Omax, b-



Theorem 2. Under Assumptions 1.1 to 1.3, if = 5, < a1 <2 Sfory=qm—.m>C, so(m) =m,
then for any 0 < e < CM with probability at least 1 — C’K exp{ em? Y,

logm

G? _1
VU6 < € |5y + mhe] Q

holds, where c¢,C > 0 depend only on Omin, Omax, b.

2 Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. First we present the following lemma, showing that the loss function has

a property similar from strong convexity.

Lemma 2.1. If so(m) =m, m > C for some C > 0, then with probability at least 1 — 2Km™°,
the following claim holds true for 0 < k < K:

(k)

©" -0 .g0) > 218" - 07 - @)

P 'y ~ ogm
where 8" — 9§k), 0 =065, 5= (g"(0W))q, v = g €= Clogm

max m

6;1994‘“‘“‘ then with probability

min

If in addition to so(m) = m, we also have s1(m) = 7logm where T >

at least 1 —2Km™¢, (4) holds for 5(k) o™ 6" =0, g =9°(9),

. 1 1 202 . 5)
T B2reez, 402, root -

and € = C’lm%. Here C' > 0 depends only on Omin, Omax, b.

For the first case discussed in Lemma 2.1, define (%)) = (g(8®))),, and for the second case
define §(8%)) = ¢(6®). Then let &, = §(O®)) — gy~ Due to Lemma 2.1 and Assumption 1.3,
we have

~(k—1) (k—1)

—07,5(0% 1)) +a[g(6%* )3

~(k—1) ~% ~(k—1) ~% __
<8 —8"I3(1 — auy) + a2G? + 20, (5 T A ,ek_1>) .

~(k) ~x ~
10“ 8713 =18" " — 7|3 — 20,(0

(6)

Recall that % <o < %, and oy = % for all K > 1. Now we prove the following statement for
k > 1 by induction:

22k1 @)
8 573 < 21 (- @7 -0@), 7)

where 7 ; = 2041 H§:¢+2(1 — aj7y). When k =1, by (6) and the fact that 1 — a1y <0,
51 =(0)
107~ 8713 <0G 4o (e~ (0 ~8"&0)) . (8)
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Assuming (7) holds for k =1 > 1, then due to (6) and the fact that 1 — oy 1y >0 for [ > 1, we

have

~(+1)  ~=x
[ H%

201G )
( lle 1 + anz (5 - -y el>>> (1 — au417) + a7 1 G* + 20441 (5 G ,ez>>

202G2(1 +1 — alfy) a2G? : ~(0)
< i —(0"" -0 ,€;
- (I+1)2 A Z‘O M (5 < © >)

l

G2 ~(1 ~% __
§2la_|1_ +Zm+u (5— <9()—9 ,ei>)-

(9)
Here the last two lines are due to range of o1 and the definitions of 1;;. The next step is to
bound Zfigl NK,i (5 - <5(Z) - 5*,6i)). First we have

K—1 ,
> s (= @0 'é*,az»)‘
=0

K-1
20 ~() e
STI Z 16 Y- l2]l€:ll2 + 21 (10)
=0
<C (@il +<).
0<i<K—1

Note that the distribution of each minibatch {X¢, o Ye, ity is the same as sampling m in-
dependent x; from P, and then sampling y, o~ N(0, ngﬂ), thus we can apply the following
lemma on §(0*)) and g;.

Lemma 2.2. [Uniform statistical error/For any x > 0, 1 <i < 2, we have

P sup  —|(VEO)): — (VL (8))i] > O | < 6(x). (11)
(ee[e 2 5i(n) )

min> mdx

If si(n) = tlogn for > baf‘ax, n > C for some C > 0, then

min

5(z) < Cn~¢ + C(log z)* exp{—clog n min{z?, z}}.

If si(n) = n,
§(z) < C(logz)* exp{—cnmin{z? z}}.

Here ¢,C' > 0 only depend on Omin, Omax, b.

Therefore, combining Lemma 2.1, Lemma 2.2 and (7) leads to the following conclusion.



1. If s9(m) = m, m > C, then for any 0 < & < %, with probability at least 1 — CKm ™ ¢ —

CK exp{—cm?},
8G*

o) —o3)2 < — "4 Oomoate 12
( 2) = 2(K—|— 1) +Cm 277, ( )
where v = 49?1] Let € < Clolgolofnm, then K exp{—cm?} > CKm™¢, thus the probability

term is 1 — CK exp{—cm?®}.
2. If s1(m) = tlogm, sa(m) =m, m > C, then for any 0 < ¢ < %, with probability at least

1 — CK exp{—c(logm)*},

we have i
(O = 01)? + (05" — 03)? < Sy Cles m)ate, (13)
where v is defined in (5).r bound is % + C(log m)_%“.
Here ¢, C' > 0 depend only on i, Omax, b. O

Proof of Theorem 2. We start from bounding V£* (G(k)), the conditional expectation of VK(B(]“))
given X1, ...,X,, then control the statistical error V£(0*)) — v¢*(8®)). By the definition of
AN

* 1 _ . ) 1
(Vo)) =t [Kn(g(k)) 1L, - KEK, (0M) l)ae("“)]
2 n Z (14)
1 k) )‘l] i
lzl Fl (Zh 1 )\ha)

where \q; is the jth largest eigenvalue of Ky, and Ag; = 1. The following lemma provides

A Nij .
bounds for Z] 1 —<Zh 19(k>>\h]) forall 1 <4,1 < 2.

Lemma 2.3. Forany0 < a,e < 1, ifn > C(€) for C > 0 depending on b, €, then with probability
at least 1 — 2n=%, for any 0 € [Omin, Omax)?,

n

elogn 22+ )
S = 2 2 S pgr OB
max j=1 (Eh 1 eh)\h]) min
n—C(a)logn A%] n
49 < Z 2 392. ) (15)
max j=1 (Zh 1 Hh/\h]) min
n N )
Z )\1])\2_] < ib‘gQ o logn’

j=1 (22:1 9h>‘h]) min

where C'(a) > 0 depends only on «,b.



Apply Lemma 2.3, then for any constant ¢ > 0, let a = ¢, (15) holds with probability at least
1—2n"¢ if n > C for C depending on b. Combining this result and (14) together implies

‘(W*(a(k))) ‘ Clogn (16)
1 n
where C' > 0 depends on O, Omax, b. Meanwhile,
1
(ve60),| < (108 - o314 222, (1)
2 n
Thus we have
l 2
ve eI <c | (FE) + o - e;>2] . (18)

For bounding V/(8%)) — v¢* (%), we can apply Lemma 2.2 with s;(n) = n. By (11), Theorem
loglogm "5 )y >, then with probability at least 1 —

logm

1 and Lemma 2.2, for any 0 < ¢ < C

CK exp{—cm?®}, we have
G2

K+1

Vo) < ¢ [ +m-%ﬂ , (19)

where ¢, C' > 0 depend only on 6yin, Omax, b.

3 Proofs of Supporting Lemmas

proof of Lemma 2.1. Let /\gl;) be the jth eigenvalue of Ky¢, ., and )\g;) = 1 be the jth eigenvalue

of I,,,, then by the definition of ¢g*(8™)), we have

: 1 - ) )
(g"(8%))), = PP [ng+1(9<k>) 1 <1m ~ K¢, (6K, (0%) 1) Kf,§k+1]
1 DT o
:281(m) tr [ka+l (O(k)) ! <(9§ ) - gl)Kfvgk—o—l + (9% ) _ GQ)Im)
(20)
K§k+1(0(k))_1Kfﬁfk+1]
m (k) 5 (k)
e (/L)) P e
2 N
Sl(m) =1 j=1 (Z?:l Hl( ))\5]))
and
] 1 - ) )
GO =t [Ké“l(‘)(k)) (1 - Ko, (09K, (09) 1)]
1 (k) i AW (21)
_ ) :
_%Z(ez —91)2 N RTIeE
= = (S 0



We prove Lemma 2.1 under two cases separately.

1. s1(m) = Tlogm, sa(m) =m, o — %), 9" = 0* and gr = g*(8%)
Sk) e
—0

Under this case, we can write (6 ,gp) as

(k) ~%

v -8,

~(k)  =x ~ s ~
0 -0 .50 =0"-6) A0

where each entry A;; of A € R?*? is defined as follows:

1 m )\51;)2

27 log m £ (Zl X )\(k))

Lo Ag;)

ZQTIOng(Zz 6 lj)>2’

All

29

Note that the distribution of each minibatch X¢, ,, can be seen as m independent samples
from P, thus we can still apply Lemma 2.3, but substituting n by m. Apply (15) in Lemma
2.3 with e = 1 , then for any 0 < a < 1, with probability at least 1 — 2m™%, we have

1 1 Clogm
A — A 1-—
nZ e 0 A2 gp ( m >

max max (22)
1 logm
A < Ay < —2——
2= 0rp62, = 2002,.m
Also note that for any w > 0,
A RN
Ajg + Ag)w . A+ A . (23)
> (= PR 00 g2y (- B2 g gy
Let w = 12’2“”‘ then by (22) and (23), one can show that
Ak o
1 () 2 L 4000\ o) 2 logm
— (6 — 0 05 —05)° —
—6471;912%)(( " (89313X gt )02 =0 = O (24)
logm

Y 2
> 0 —0 —
_2” H2 ¢ m



where

, 1 1 202 .«
= 25
7 { 327b02, 402, oot (25)
and C' > 0 depends on Onin, Omax, b It is guaranteed that v > 0 Since we have assumed
64074
>
! ba?l’lln

Therefore, if m > C, for any 0 < o < 1, with probability 1 — 2m™¢, the following claims
holds true:

(%)

0" -6 .5 > *H@ AT (26)

where ¢ = C l“% for some constant C' > 0 depending on 6y, Omax, b-

~(k ~x% _
2. sa(m) =m, 8" =6, 8" = 65 and 5 = (¢"(6")),

Under this case, we can still apply (15) in Lemma 2.3. Following similar arguments from

the first case, one can show that with probability at least 1 — 2m™¢

<’é(k)

n* % Y ok *
—6.30) > (6, —65)" —<. (27)

4021 ,E= Clogm , if m > C. Here C > 0 depends only on O, Omax, -

max

where v =
O]

proof of Lemma 2.2. Without loss of generality, we start from bounding (V{(0)), — (V£*(9)),
for an arbitrary 1 <4 < 2. Let Kj(fgb = Ky, and K(r)L = I,. By the definition of V/{(0) and
V*(0), we have
(VE(9)); — (VI7(8)),
1

I T I (1) ye—1 _ 15 (@) —l*

() Hy,) AO) ((K:;)—%yn) +1r(A(0)),

%

ol :
where A(0) = £ K, K;Ll(G)KSfLK;Ll(O) . Since K( ) can be simultaneously diagonalized,
we can write KS?ZL = PTAjP for all j, where P is an orthogonal matrix and A; is a diagonal

()

matrix consisting of the eigenvalues of K Fn Then we have

2 _2
1
A0%) PT <Z HI*AZ) (Z GlAl> AP. (29)
=1
x\—1 2 2 -2 .
Let z, = P(K}) 2y, and A(0) = (lel 92"Al> (lel 01A1> A;, where 6; is the [th entry of
6, then our goal is to derive a bound for

sup —
oc [emin 79max] 2 2n




We claim that there exists an e-net {99), . .,eéN)} of [Omin, Omax)? under || - ||, With size

N=(1+ M)? That is to say, for any 0 € [Omin, Omax)?, 30 ¢ {99), el aéN)} such that
A = 0 — 0 satisfies||A]|oo < . The following proof of this claim is very similar to the proof of
Lemma 5.2 in [2].

Define 8, = (emi“gema", .
0. —HB%OO(@). Let {021), . ,0£N)} be a maximal e-separated subset of 6, +Bm(%)
(not the iterates of the SGD algorithm), which means that it is an e-net of 6. + Bm(@),
and V1 < i # j < N, [|8¥ — 09| > . Consider the £ balls with centers {8)}Y, and
radius §, then these balls are disjoint and are subsets of 6. —i—Bm(W). Thus the sum of

volumes of these balls is bounded by that of 6. + BM(W), which finishes the proof of

emingem‘”‘) € R2, then an alternative way to represent [fmin, Omax]? is

2
Qmax - emin
- 3

N < (1 + (30)

In the following we linearize A(6) = A(8 + A) based on the Taylor series expression of each of
its diagonal entries, so that the upper bound for ‘ZZ A(0)z, — tr(A(G))‘ can be implied by some
bounds related to 8. For any 1 < j < m, denote the jth diagonal entry of A; by A;; which is
independent of 6, then the jth diagonal entry of A(@) can be written as follows:

_ S it

A;i()
! (Zle Aljel) ’

(31)

Meanwhile, let A; and 5; be the lth entry of A and 6, then one can show that
1 1

2 = — 2
<212:1 Njel) =1 At + 30 >‘le1>

2 —2 9 -2
~ A A
= (Z )\ljel) (1 + 7212:1 b ~l>
=1 > im1 Mgt

“2pH 1

2 h+1 "
(L) X (S .
h=0 (— Zl2:1 )\lj91> =1 ( )

H+1 2 "
+ = ~>H+2 (Z Alel)

(1 + £)H+2 (— 212:1 )\ljel =1

2 —2 2
— (Z A,jel> 3 agl{hg [Tar+ RESY(0) |,
=1

h1+ho<H-1 =1

where the third equality holds if ‘Zle )\lel‘ < 252:1 )\leNZ, which is implied by [|Allcc < Omin,



and we will choose € small enough to satisfy this. Here £ lies between 0 and %
1=1 MYl
2 2 \h
() (Xim b+ DT )‘ljl
Yhi by T

hﬂhg!(— ZZZZI )\ljal)Zzgzl R’

2 \hAh
RES{) ()= > U+ D ey AléAll -
hi+ho=H hilho!(1 + g)H—&—Q(_ ZI:I /\lj91>H

The quantities above satisfy

Zl2:1hl . H
hlh2|<<2hz+1>< ) ,IRES%)(H)IS(HH)(%_), (34)

911’111’1

since ) 0y i h—n hlf,‘]'m = 2" Define the following diagonal matrices: A("1:12)(8), AU () € Rm*n

are with diagonal entries

hi,h2) ] ~ H ~
AP @) — o) AL(8), AU (0) = RESY)(8)A,5(8). (35)
Then we can write ,
A(9) = Z Alhh2) (@) HA;” + A (g),
hi1+ho<H-1

and thus

2
< max E gXi=1
- N
T 7 hit+he<H-1

2] A (9)z, — tr(A<H>(e))( .

ZIA(hl,hg)(eék))Zn - tr<A(h1,h2)(9§k))> (36)

In order to provide an upper bound for the first term above, we first bound

20 AP (807, — tr(A ) (61
for an arbitrary k. First note that for any 1 < k < N,

2
AN 0F O max
JA@OD)], = max 2=zt AN Omase (37)
J

(Zle Aljgloc))Q T2

While for ||A( )H 7, one can show that

2”: (g Aijhig)?
k

= (S )

Z Zl 1)‘13 ij
)\ljé?l)

1A08)17: <63

max



Let

Z Zz 1)‘11 ij

/\lﬂl)
then a deterministic bound for ¢;(n) is
ti(n) < Cn, (39)
while applying Lemma 2.3 leads to
ti(n) < Clogn, and t2(n) < Cn, (40)

with probability at least 1 — 2n~¢ for any constant ¢ > 0, if n > C. Here C' > 0 depends only
on b, Oin, Omax. Therefore, by the definition of A(hl’hZ)(ng)), for any ng),

2 2 . h
(h1,h2) (g (k) 2 \==
A W)y <0 (Yomr1) ()7

=1
2
(h1,h2) (g(K)Y (12 2 2 2300 b
HA 7 (06 )HF <C E h;+1 = tz(n)

=1

(41)

Let ¢ = Qmﬁ, then by applying Hanson-wright’s inequality, one can show that with probability

at least 1 — 2 exp{—cmin{t, m}},
] A1) (00, — (A2 (00| < (ee)~ S i, (42)

where ¢ > 0 depends on 0.1y, Omax, b. Meanwhile, the following lemma provides an upper bound

for the residual term:

Lemma 3.1. 3 ¢,C > 0 depending only on Omin, Omax, b such that,

P

sup ’ZIA(H)(9>ZR — tr(A(H)(H))\ > eiH(t + Ct,(n))]
96[0m1n79111ax]2

£2
<2exp {—cmin {t,(n)’t}} .
Now we take a union bound for each term in (36), then with probability at least
2
1-2 H 2 N +1 | exp{ —cmin t—,t

2 ti (n)
5 (44)
t

>1—CH%Yexp{ —cmin{ ——,tp ¢,
ti (n)

sup z, A(0)z, — tr(A(G))‘
eé[emirnemaux]2

H-1

AT
h=0

<O(t+ e Ht;(n)).

we have

+ Ce Ht;(n) (45)

10



If s;(n) = tlogn for some 7 > b:;“‘“‘ we apply the probabilistic bound (40) on ¢;(n). For any

x>0, let H=log1 — and t = xlogn, then with probability at least

1 —-Cn¢—C(logz)*exp {—clognmin {xQ,x}} ,

we have

sup
ee[emi[nemax]Z

z, A(0)z, — tr(A(G))‘ < Czxlogn, (46)

which implies

sup
96 [011111’1 70max]2 S/L (n)

[(VE(0)); — (VE7(0)),] < Cx. (47)

Otherwise, if s;(n) = n, we apply the deterministic bound (39) on ¢;(n). For any = > 0, let
H =log % and ¢t = xn, then with probability at least

— C(logz)*exp {—cnmin {332, a:}} ,

we have
sup ‘zzA(B)zn — tr(A(O))‘ < Czn, (48)
oe[eminvemax]2
which implies
. — * 1< .
i (720D = (VEO)) < O (19)
O

proof of Lemma 2.3. In order to prove Lemma 2.3, we need to derive upper and lower bounds
for A\i; w.h.p. First we restate Theorem 1 and Theorem 4 in [1] on the bounds for A;; in the

following:

Lemma 3.2. Let k be a Mercer kernel on a probability space X with probability measure P,

satisfying k(z,x) <1 for all x € X, with eigenvalues {\;}52,. Let Ky, € R™*" be the empirical

kernel matriz evaluated on data {x1,...,%,} i.i.d. sampled from P, then the eigenvalues \j(Ky,)

satisfies the following bound for 1 < j,r < n:

Aj (Kfn)
n

— X\

< \;C(r,n) + E(r,n),
and for any 1 < r < n, there are two bounds for C(r,n), E(r,n):

(i) With probability at least 1 — 0,

2 2(r+1) Ar 2r(r+1)
1 log
Crn) <T\/n)\i 8 + 3n\k ) ’

(50)
- 2itria 2 2
E )\* )\* =T Z 1 71
<X Y ¢ o83+ o
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(i) With probability at least 1 — 4,

r(r+1)

iad 23 LA
* * 1=r ’L. 51
i E(ron) < X4 D A+ =2 (51)

C(r,n) <r ' 5
i=r+1

We consider the following upper bound for A;; that could be useful in later arguments. First
we apply Lemma 3.2 on Ky ,. In particular, plug r = j for each 1 < j < n into (51) and let
§ = n~ (4% for some o > 0. Then with probability at least 1 — n~®, for all 1 < j < n,

a 1
1+C(j,n) <C’*%j2n767]1/‘7+ +1<Cj? n262,
J

Ce b 2Ce™b b o
E(r,n)<1_€7b—|— T8¢ ‘N
Thus we have
—_a _ﬁ] -b .
Ny < | G+ Cn_ze ® 2Ce nit5e=%
1—e b 1—e? (52)

<C(qn'*5 e,
where the last line holds for any 7 > 1, and C'(n) > 0 depends on b, 7. We will specify n later to

suit our needs.

While for lower bounding A1, we apply (50) in Lemma 3.2 with r = § logn for some 0 < € < 1,
and § = n~® for some 0 < a < 1. Then when n > C(e) for some constant C'(e) > 0 depending

«

on b, e, with probability at least 1 — n™%,

C(r,n) <7“\/2 log [2r(r 4+ 1)n?] N 4rlog [2r(r + 1)n?] g

1
Cnl—e 3Cnl—¢ 2’

C 2Cet [log2n®
E(r,n) < e )n T ob\ i +—log2n <Cn™,

thus Ay; > %ne_bj —Cn'=cfor C >0 depending on b.

Therefore, for any 0 < ¢, < 1, if n > C(¢) for C(€) > 0 depending on b, ¢, then with probability
at least 1 — n™,

C .
)\1j Z §ne_bj — C’nl_e, (53)
holds for 1 < 57 < n, where C' > 0 depends on b. Now we are ready to prove the bounds for
AL 5 /
Z?_l ——2 0 for1 <[l <2.
T (R On )

.il=0I'=1
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First we derive an upper bound. Let n = % in (52), then we have

2 a _bj 2
i AL <\{n1+2€ 3 > 1} Y AL
2 2= 62 62
, - (54)
1+ % 2+
n e’ >1}!+C7”; “ S W
emin emin 2bj
87T§n727"‘
Since
a _bj 6+3
nlt5e—4 >1=7< i alogn, (55)
one can show that
- A% 6+3 C _4+2
Z - 7 = +2a10g”+27§¥10g”7 (56)
j=1 <Zi:1 gh)\h]) 2bemin emin bemin
when n > C for C' depending on b. In terms of the lower bound, first note that
2 2
2 = 2 2
j=1 <Zi:1 9h)\hj> j=1 405 MaXR A (57)
o 7+ Ay = max, An}|
B 4912nax ‘
Due to (53), we have
& —bj 1—e
Aij = m’?x Ahj <:7ne >Cn 4+ C
e >0ne (58)
<=5 < glogn —-C,
when n > C for some C' > 0 depending on b, which implies
. € €
{7: = m}?x)\hj} > Elogn— C> 2—blogn,
if n > C. Thus we have
- )\%j elogn
2= 8b62,
i=1 (Zi:l 9hAhj) max
S=1=2
2
The upper bound for >7_; % in Lemma 2.3 is straightforward, since
I= (et 0nng)
22:1 OnAnj = Omin. While for the lower bound, note that Az ; = 1, and thus
SN K Oy < W] (59)
2 = 402 :
(5w
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Meanwhile, let = 2 in (52), then one can show that

2
Z HhAhj < 20max <:CM9maxn1+%€7§l < Omax

h=1
6+3
<=j = +Ja logn + C (60)
6
=7 > + e log
when n > C for C > 0 depending on b. Therefore,
" )‘%,j n— —6230‘ logn (61)
2 = 462
j=1 (Zizl HhAhj) ma
3.1=11=2
First note that by similar arguments from the first case where [ = 1" = 1, one can show
that b -
Mo 1 C 1+3 257
(E%L:l Hh)\h]) min min
one can show that
n 1+ o n
Mjhg (24 a)nlogn  Cly)n S e
= (T2 0 2 4062 2. -
J= h=1YhAhj j=[EE0 1og n] (63)
< <(2+a)n N C(n)) 102gn.
4b logn ) 02 ..

Let n = %, then when n > C' for some C > 0 depending on b,

n

)\1j)\2j < (5 + 204) logn
2 = 2
j=1 (Zizl 9th) 7o

min

Therefore, for any 0 < €, < 1, if n > C(¢) for C(€) > 0 depending on b, €, then with probability
at least 1 — 2n~%, (15) holds. O

Proof of Lemma 3.1. First note that

n

2T A (9)z, — tr(A<H>(e))| = f:Agf)(e)(zgj ~1)
j=1
(64)
<S"A%0)122 - 1].
j=1
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By the definition of A (), ¢, t;(n), (37) and (38),

H
|AUD () 2 <[ A@)[2(H + 1) ( 2 ) <Cet,

emin

IAUD(6)|7 <e *[|A0) 17 < Ce > ti(n).
Also note that following similar arguments for bounding ||A(0£k))||%, we have
>[40 < ctitn),
j=1
and thus
n " B n . B
Z‘A% >(9)] <e Y ]Ajjw)) < CeH;(n).
j=1 j=1
Therefore,
P (

<P (Z A (9) (122, — 1] — E(]22; — 1)) > «rHt) ,
=1

2 A (0)z, — tr(A ()| > e (t 4 Cti(n)) )

(65)

(66)

(67)

where C > 0 depends on Oyin, Omax, b. Since \272”. —1| is sub-exponential with constant parameter,

t2

ti (n

P ZAS';{)(G) (|Z121j -1 _E|2721j - 1|) >e Ht| <2exp {—cmin{
j=1

4 Additional Figures in Numerical Studies

(68)

O

Under the setup described in Section 6.1, we also investigate how minibatch size m influences

the convergence of parameters, as shown in Fig. 4.1. We see that larger minibatch size results in

faster convergence and smaller statistical error (more concentrated curves) for the parameters.
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m=32

m=16

= = :

204 %
0 — 0 > 104 - RN,

0.0 0.0 0.0
0 100 200 300 400 0 200 400 600 800 0 400 800 1200 1600
Iteration (k) Iteration (k) Iteration (k)
2 2
Parameter -- of - o

o o1 —83—565—7 9
€ Repetmon72747678710

Figure 4.1: Comparison of the convergence of parameters with varying minibatch sizes. Lines

in black denote the true parameters. The three experiments share initial point 8(0) = (5.0, 3.0)
and inital step size a3 = 9.
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