Supplementary Material for Interventional Few-Shot
Learning

Zhonggqi Yue', Hanwang Zhang', Qianru Sun’, Xian-Sheng Hua®

'Nanyang Technological University, 2Singapore Management University, °Alibaba Group
yuez0003@ntu.edu.sg, hanwangzhang@ntu.edu.sg,
qianrusun@smu.edu.sg, xiansheng.hxs@alibaba-inc.com

This supplementary material is organized as follows:

e Section[A.T|details our analysis in Section 2.3 by showing many-shot learning converges to
true causal effect through instrumental variable (IV);

e Section[A.2] gives the derivation for the backdoor adjustment formula in Eq. (1);

e Section[A.3|presents the detailed derivation for the NWGM approximation used in Eq. (3)
and (4);

e Section[A.4]includes the algorithms for adding IFSL to fine-tuning and meta-learning;
e Section[A.5]|shows the implementation details for pre-training (Section[A.5.T)), fine-tuning

(Section[A.5.2) and meta-learning (Section [A.5.3));

e Section[A.6]includes additional experimental results on Conventional Acc (Section[A.6.T),
Hardness-Specific Acc (Section[A.6.2), CAM-Acc (Section and cross-domain evalu-

ation (Section[A.6.4).

A.1 Instrumental Variable

In this section, we will show that in our causal graph for many-shot learning, the sampling ID 1
is essentially an instrumental variable for X — Y that achieves P(Y'|I) =~ P(Y|do(X)). Before
introducing instrumental variable, we first formally define d-separation [7|], which gives a criterion to
study the dependencies between nodes (data variables) in any structural causal model.

d-separation. A set of nodes Z blocks a path p if and only if 1) p contains a chain A — B — C or
afork A < B — C and the middle node B is in Z; 2) p contains a collider A — B <+ C' such that
the middle node B and its descendants are not in Z. If conditioning on Z blocks every path between
X and Y, we say X and Y are d-separated conditional on Z, i.e., X and Y are independent given Z
(X LY|2).

Instrumental Variable. For a structual causal model G, a variable Z is an instrumental variable (IV)
to X — Y by satisfying the graphical criteria [9]: 1) (Z 1. Y)g_;2) (Z L X)g , where Gx is the
manipulated graph where all incoming arrows to node X are deleted. For the SCM of many-shot
learning in Figure 4(a), it is easy to see that [satisfies both criteria and therefore it is an IV for
X — Y. However, in the few-shot SCM in Figure 4(b), the paths [< X < D — C — Y and
I + X — C — Y are not blocked in G-, which means the first criterion is not met (I £ Y)g
and [is not an instrumental variable in the few-shot learning case.

Instrumental variable can help find the true causal effect even in the presence of confounder. This
is due to the collider junction that makes the IV and confounder independent (I L D in Figure
4(a)). To see this, we will first consider a simplified case of Figure 4(a) where each causal link
represents a linear relationship and we aim to find the true causal effect from X — Y through linear
regression. Without loss of generality, let I, X, Y take the value of real number. Denote r;x,rxy,
and 77y as the slope of regression line between [and X, X and Y, I and Y respectively. Notice

that rxy is spurious as it is contaminated by the backdoor path X < D — C' — Y. However, since
the path I — X <~ D — C — Y is blocked due to collider at X, ry is free from confounding
bias. Therefore rry /r;x gives the true causal effect from X — Y. Similarly, in the classification
case of many-shot learning, a classifier is trained to maximize the conditional probability on the
IV P(Y'|I). As the ID-sample matching I — X is deterministic, the classifier eventually learns to
predict based on the true causal relationship X — Y. Yet in the complex case of image classification,
it is unreasonable to assume linear relationships between variables. In the nonlinear case, it is shown
in [2] that observations on IV provide a bound for the true causal effect. This means that learning
based on P(Y|I) provides an approximation to the true causal effect, i.e. P(Y|I) ~ P(Y|do(X)).

A.2 Derivation of Backdoor Adjustment for the Proposed Causal Graph

We will show the derivation of the backdoor adjustment for the causal graph in Figure 3(a) using the
three rules of do-calculus [8]].

For a causal directed acyclic graph G, let X, Y, Z and W be arbitrary disjoint sets of nodes. We use
G~ to denote the manipulated graph where all incoming arrows to node X are deleted. Similarly
Gx represents the graph where outgoing arrows from node X are deleted. We use lower case x, y, 2
and w for specific values taken by each set of nodes: X = z,Y =y, Z = zand W = w. For any
interventional distribution compatible with G, we have the following three rules:

Rule 1 Insertion/deletion of observations:

P(yldo(x), z,w) = P(y|do(x), w),if(Y L Z|X, W)g (A1)

Rule 2 Action/observation exchange:

P(yl|do(x),do(z),w) = P(yldo(z), z,w),if (Y L Z|X,W)g, (A2)
Rule 3 Insertion/deletion of actions:
P(y|do(z), do(z), w) = P(y|do(z),w),if(Y L Z| X, W)g____ (A3)

xXz(w)’
where Z (W) is the set of nodes in Z that are not ancestors of any W-node in G-

In our causal graph, the desired interventional distribution P(Y |do(X = x)) can be derived by:

P(Yldo(x)) = ZP(Y|d0(X =x),D =d)P(D = d|do(X = x)) (A4)
d

=Y P(Y|do(X =x),D =d)P(D = d) (AS5)
d

=Y P(Y|X =x,D =d)P(D = d) (A6)

d
=> Y P(YIX=x,D=d,C=¢)P(C=c|X =x,D=d)P(D=d) (A7)
d c

=Y P(Y|X =x,D=4d,C =g(x,d)P(D =d), (A8)
d

where Eq. and Eq. follow the law of total probability; Eq. uses Rule 3 given D L X
in G; Eq. (A6) uses Rule 2 to change the intervention term to observation as (Y L X|D) in Gx;
Eq. is because in our causal graph, C takes a deterministic value given by function g(x, d). This
reduces summation over all values of C' in Eq. to a single probability measure in Eq. (AS).

A.3 Derivation of NWGM Approximation

We will show the derivation of NWGM approximation used in Eq. (3) and (4). In a K-way FSL
problem, let f(-) be a classifier function that calculates logits for K classes and o be the softmax

function over K classes. The approximation effectively moves the outer expectation inside the
classifier function: E [o(f(-))] =~ o(f(E[]))-

We will first show the derivation for moving the expectation inside softmax function, i.e.,
Elo (f(-))] = o (E[f(:)]). Without loss of generality, the backdoor adjustment formula in Eq.
(3) and Eq. (4) can be written as:

P(Y = y|do(X =x)) = Z o(f,(x @ c))P(d), (A9)
deD
where D represents the set of stratifications, f, is the classifier logit for class y, ¢ = g(x, d) is the
feature concatenated to x in Eq. (3) and (4) and P(d) is the prior for each stratificaction.

It is shown in [1] that Eq. can be approximated by the Normalized Weighted Geometric Mean
(NWGM) as:

> o(fy(x @ ¢))P(d) ® NWGMaep(o(f,(x & c))) (A10)
deD
_ alezp(fy(x @)] ALD
SK alezp(fi(x @ €))P@
_eap(Sy fy(x @ e)P(d)) A1)
YK eap(X, filx @ ¢)P(d))
=0 (Balfy(x @ 0)]), (A13)

where Eq. follows [1]l, Eq. (ATI) follows the definition of NWGM, Eq. (AI2) is because
exp(a)® = exp(ab).

Next we will show the derivation for linear, cosine and k-NN classifier to further move the expectation
inside the classifier function, i.e., o (E[f(-)]) = o (f(E[])).

For the linear classifier, f(x @ c) = W1x + Wyc, where W, Wy € REXN denote the learnable
weight, IV is the feature dimension, which is the same for x and c¢ in Eq. (3) and (4). The bias term
is dropped as it does not impact our analysis. Now the expectation can be further moved inside the
classifier function through:

> fx@c)P(d) = (Wix+ Wye)P(d) (A14)
d d
=Wix+ Y WycP(d) (A15)
d
= f(x®) eP(d), (A16)
d

where Eq. (AT3)) is because the feature vector x is the same for all d and E4[x] = x.

For the cosine classifier, f(x @ c) = (Wix + Wac)/ [|x @ cl|| || W]|, where W € RE*2N g the
concatenation of W and W. In the special case where x and c are unit vector, ||x @ c|| is v/2 and
the cosine classifier function reduces to a linear combination of terms involving only x and only c.
From there, the analysis for linear classifier follows and we have o(E f(:)) = o(f(E-)) for cosine
classifier. In the general case where x and c are not unit vector, moving the expectation inside cosine
classifier function is an approximation o (E[f(-)]) ~ o(f(E[])).

For the k-NN classifier, our implementation calculates class centroids using the mean feature of
the K support sets and then uses the nearest centroid for prediction (1-NN). Specifically, let x be
a feature vector and x’ be the ith class centroid, ¢ € {1,..., K}. The logit for class i is given by
fi(x) = — ||x — x/||?. Tt is shown in [[LT] that k-NN classifier that uses squared Euclidean distance
to generate logits is equivalent to a linear classifier with a particular parameterization. Therefore, our
analysis on linear classifier follows for k-NN.

In summary, the derivation of E[o(f(-))] = o(f(E[])) is a two-stage process where we first move
the expectation inside the softmax function and then further move it inside the classifier function.

A.4 Algorithms for Fine-tuning and Meta-Learning with IFSL

In this section, we will briefly revisit the settings of fine-tuning and meta-learning and introduce how
to integrate IFSL into them.

In fine-tuning, the goal is to train a classifier § conditioned on the current support set S =
{(xi,¥:) iy, where x; is the feature generated by 2 for ith sample, y; is the ground-truth la-
bel for ith sample and n is the support set size. This is achieved by first predicting the support label
7 using the classifier P(y|x;6). Then with the predicted label § and ground-truth label y, one can
calculate a loss £(§, y) (usually cross-entropy loss) to update the classifier parameter, e.g.through
stochastic gradient descent. Adding IFSL to fine-tuning is simple: 1) Pick an adjustment strategy
introduced in Section 3. Each implementation defines the set of pre-trained knowledge stratifications
D, function form of g(X, D), function form of P(Y'| X, D, C) and the prior P(D); 2) The classifier
prediction is now based on P(Y |do(X);6). The process of fine-tuning with IFSL is summarized
in Algorithm |1} Note that for the non-parametric k-NN classifier, the fine-tuning process is not
applicable. When adding IFSL to k-NN, each sample is represented by the adjusted feature instead
of original feature x. Please refer to the classifier inputs in Eq. (2), (3) and (4) for the exact form of
adjusted feature.

In meta-learning, the goal is to learn the additional “learning behavior” parameterized by ¢ using
training episodes {(S;, Q;)} sampled from training dataset D. The classifier in meta-learning makes
predictions by additionally conditioning on the learning behavior, written as P, (y|x;#). Within
each episode, 6 is first fine-tuned on the support set S;. Then the fine-tuned model is tested on
the query set Q; to obtain the loss £4(S;, Q;) (e.g.using cross-entropy loss). Finally the loss is
used to update ¢ using an optimizer. It is also easy to integrate IFSL into meta-learning by only
changing the classifier from P, (y|x;0) to Py,(y|do(x);6). The flow of meta-learning with IFSL
is presented in Algorithm [2] Firstly notice that the initialization of in each task may depend on
¢ or S;. For example, in MAML [4] ¢ essentially defines an initialization of model parameters,
and in LEO [10] the initial classifier parameter is generated conditioned on ¢ and S;. Secondly,
although the fine-tuning of @ largely follows Algorithm [I] some meta-learning methods additionally
utilize meta-knowledge ¢. For example, in SIB the gradients for updating 6 are predicted by ¢ using
unlabelled query features instead of calculated from £(g, y) as in Algorithm

Algorithm 1: Fine-tuning + IFSL Algorithm 2: Meta-Learning + IFSL
Input :D, Support set S = {(x;,¥:) }iq Input :D, training dataset D
Output : Fine-tuned classifier parameters 6 Output : Optimized meta-parameters ¢
Initialize 6, Initialize ¢;
while not converged do while not converged do
for:=1,...,n,do Sample (S;, Q;) from D ;
for d € D do Initialize classifier 6 with ¢, S;;
Calculate ¢ = g(x,d); Fine-tune 6 using Algorithm 1
Obtain P(Y|x;, ¢, d;0), P(d) conditioned on ¢ ;
Prediction §; = P(y|do(x);0); Predict query based on Py (y|do(x); 0);
Update 0 using L£(9;,y;) Update ¢ using L4(S;, Q;;0)
return 0 return ¢

A.5 Implementation Details

A.5.1 Pre-training

Prior to fine-tuning or meta-learning, we pre-trained a deep neural network (DNN) as feature extractor
on the train split of a dataset. We use ResNet-10[5] or WRN-28-10[15] as feature extractor backbone.
This section will present the architecture and exact training procedure for our backbones.

Network Architecture. The architecture of our ResNet-10 and WRN-28-10 backbone is shown in
Figure Specifically, each convolutional layer is described as “n x n conv, p”, where n is the
kernel size and p is the number of output channels. Convolutional layers with “/2” have a stride of 2
and are used to perform downsampling. The solid curved lines represent identity shortcuts, and the
dotted lines are projection shortcuts implemented by 1 x 1 convolutions. The batch normalization
and ReLU layers are omitted in Figure [AT|to highlight the key structure of the two backbones.

Pre-training Procedure. The networks are trained from scratch with stochastic gradient descent in a
fully-supervised manner, i.e., minimizing cross-entropy loss on the train split of a dataset. Specifically
the training is conducted on 90 epochs with early stopping using validation accuracy. We used batch

size of 256 and image size of 84 x 84. For data augmentation, a random patch is sampled from an
image, resized to 84 x 84 and randomly flipped along horizontal axis before used for training. The
initial learning rate is set to 0.1 and it is scaled down by factor of 10 every 30 epochs. We used the
feature pre-processing methods in [14].

A.5.2 Fine-Tuning

We consider linear, cosine and k-NN classifier for our
fine-tuning experiments. In a K-way FSL problem, the
detailed implementations for the classifier function f(x)
are:

Linear. f(x) = Wx + b, where x is the input feature,
W ¢ REXN ig the learnable weight parameter, N is
the feature dimension and b € R¥ is the learnable bias
parameter.

Cosine. f(x) = Wx/||W]| ||x||, where W € REXN g
the learnable weight parameter. We implemented cosine
classifier without using the bias term.

k-NN. Our implementation of &£-NN is similar to [[L1}[14].
For each of the K classes, we first calculated the av-
erage support set feature (centroid) denoted as x;,i €

{1,..., K}. The classifier output for class i is then given i :
by fi(x) = — ||x — x;|*. Notice that the prediction given lgis s
by this classifier will be the nearest centroid. (a) (b)

We froze the backbone and us'ed the average poolipg layer Figure Al: The architecture of our back-
output of {2 to learn the classifier. The output logits from popes: (a) ResNet-10 [5]; (b) WRN-28-
classifier functions are normalized using softmax to gen- 10 [T3].

erate probability output P(y|x). For linear and cosine

classifier, we followed [3]] and trained the classifier for

100 iteration with a batch size of 4. For fine-tuning baseline, we set the learning rate as 1 x 10~2
and weight decay as 1 x 1073, For IFSL, we set the learning rate as 5 x 10~3 and weight decay as
1 x 1073, k-NN classifier is non-parametric and can be initialized directly from support set.

A.5.3 Meta-Learning

MAML. MAML [4] aims to learn an initialization of network parameters such that it can be fine-
tuned within a few steps to solve a variety of few-shot classification tasks. When using pre-trained
network with MAML, it has been shown that learning initialization of the backbone can lead to
unsatisfactory performance [312]. Therefore in our experiment, we froze the backbone and appended
a 2-layer MLP with ReLU activation in between the hidden layers and a linear classifier after the
average pooling layer of 2. The hidden dimension of the layers in MLP is the same as output
dimension of € (512 for ResNet-10 and 640 for WRN-28-10). The initialization of MLP and the
linear classifier is meta-learnt using MAML. For hyper-parameters, we set the inner loop learning rate
a = 0.01, the outer loop learning rate S = 0.01 and the number of adaptation steps as 20. For IFSL,
we adopted the same hyper-parameter setting and set n=8 for feature-wise and combined adjustment.
Implementation-wise, we adopted the released codeE] from [3]] and performed experiments on MAML
without using first-order approximation. Following the implementation in [3]], the model was trained
on 10,000 randomly sampled tasks with model selection using validation accuracy. We used 2,000
randomly sampled tasks for validation and testing.

MTL. MTL [12] learns scaling and shifting parameters at each convolutional layer of the backbone.
We used the MTL implementation released by the authmﬂ which adopts linear classifier. We integrated
our ResNet-10 and WRN-28-10 backbones into the released code. The learning rate for scaling and
shifting weights ¢gg and initial classifier parameters was set to 1 x 10~ uniformly. We set the inner
loop learning rate for classifier as 1 x 10~2 and the inner loop update step as 100. For IFSL, we

"https://github.com/wyharveychen/CloserLookFewShot
“https://github.com/yaoyao-liu/meta-transfer-learning

adopted the same hyper-parameter setting and set n=8 for feature-wise and combined adjustment.
We trained the MTL model on 10,000 randomly sampled tasks with model selection using validation
accuracy and used 2,000 randomly sampled tasks for validation and testing. We used 3 RTX 2080 Ti
for MTL experiments on WRN-28-10 backbone.

LEO. LEO [10] learns to generate classifier parameters conditioned on support set and the generated
parameters are further fine-tuned within each FSL task. Our experiments were conducted on the
released code of LEqﬂ using linear classifier. Following author’s implementation, we saved the
center cropped features from our pre-trained backbones and used the saved features to train LEO.
For baseline, we used the hyper-parameter settings released by the author. For IFSL, we set n=8 for
feature-wise and combined adjustment and halved the outer loop learning rate compared to baseline.
The model was trained up to 100,000 randomly sampled tasks from training split with early stopping
using validation accuracy. We used 2,000 randomly sampled tasks for validation and testing.

Matching Net. Matching Net (MN) [13]] is a metric-based method that learns a distance kernel
function for k-NN. We used the Matching Net implementation in [3]]. The implementation follows
the setup in [13] and uses LSTM-based fully conditional embedding. We set the learning rate as
0.01 uniformly. For IFSL, we used n=16 for feature-wise and combined adjustment. The model was
trained using 10,000 randomly sampled tasks with model selection using validation accuracy. We
used 2,000 randomly sampled tasks for validation and testing.

SIB. SIB [6]] initializes classifier from support set and generates gradients conditioned on unlabelled
query set features to update classifier parameters. We followed the SIB implementation released by
the authmﬂ which uses cosine classifier. In the transductive setting, the query set size is set to 15. In
the inductive setting, we used only 1 query sample randomly selected from the K classes in each
episode. In terms of hyper-parameter settings, we took 3 synthetic gradient steps (KX = 3) for all
our experiments. For baseline, the learning rate for SIB network and classifier was set to 1 x 1073
following author’s implementation. For IFSL, we set the learning rate to 5 x 10~* and used n=4 for
feature-wise and combined adjustment. In both transductive and inductive settings, we meta-trained
SIB using 50,000 randomly sampled tasks with model selection using validation accuracy. We used
2,000 randomly sampled tasks for validation and testing.

A.6 Additional Results

In this section, we include additional results on 1) Conventional Acc in Table|AI|supplementary to
Table 1; 2) Hardness-Specific Acc in Figure[A2]for minilmageNet and Figure or tieredlmageNet,
supplementary to Figure 5; 3) CAM-Acc in Table[A2]supplementary to Figure 6; 4) Cross-Domain
Evaluation in Table supplementary to Table 3.

3https://github.com/deepmind/leo
*https://github.com/hushell/sib_meta_learn

A.6.1 Conventional Acc

Table Al: Supplementary to Table 1. Acc (%) and 95% confidence intervals averaged over 2000 5-
way FSL tasks before and after applying three proposed implementations of adjustment. Specifically,
“ft” refers to feature-wise adjustment, “cl” refers to class-wise adjustment and “ft+cl” refers to
combined adjustment.

ResNet-10 WRN-28-10
Method minilmageNet tieredlmageNet minilmageNet tieredlmageNet
5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot
7638 £0.36 5626 = 0.47 81.01 £0.38 6139047 79.79 £0.33 60.69 £ 045 8537 £0.34 67.27 £ 0.49
Linear St 76.84 £0.36 5737043 81.45+£038 61.88+047 80224031 60.84 +£045 85704033 67.94+048
cl 7723 +£0.34 59454045 81.33+0.38 62.60+ 048 80.27+0.32 62.154+ 044 8554+ 033 68.11 048
fr#cl 7797 £034 60.13 + 045 82.08 £037 6429+ 048 8097 £0.31 64.124+0.44 86.19 £ 034 69.96 + 0.46
E 76.68 £0.36 5640 +0.46 81.13 £0.39 6208 =047 79.72+0.33 60.83 £0.46 85414034 67.30 £ 0.50
E Cosine Jt 76.83 £0.35 56.86 & 0.44 81.34 £0.37 62451047 79.80£0.32 6125+044 85744033 67.86+£ 046
& cl 7699 £0.35 57.651+045 81.42+£038 63371048 79.96+0.32 62.04+045 8577033 6845+ 046
‘E Sfr+cl 7763 £034 59.84 + 046 81.75+£ 038 6447 048 80.74 £032 63.76 =045 86.13 £ 033 69.36 + 0.47
76.63 £0.36 55924046 80.85+£0.39 61.16+ 048 79.60+ 032 6034+ 045 84.67+0.34 67.25+0.52
L-NN Jt 7798 £0.34 60.71 = 0.44 8195 £ 036 6566+ 048 81.17+0.31 6487 £0.44 85764034 71.00 £ 0.47
cl 7836 £0.35 61324045 8193 £037 6571048 80.61 £0.31 6443 £045 85904033 70.08 £ 048
Jt+cl 78424034 6231 £044 8198 4+038 6571 £047 81.08 =032 6498 £043 86.06+ 032 70.94 £ 049
70.85 £ 0.38 5659 +0.48 74.02 £ 041 59.17+052 73924036 58.02+047 77.204+0.38 61.40 £ 0.54
MAML [ft 73.84 £0.37 57.63 047 80.19 £040 60.03 =051 78.82+0.36 5855+048 84.74+037 66.74 £ 0.52
cl 73.01 £0.36 56.69 & 0.48 7841 £0.40 61.16 =053 7622+0.35 58321046 81.74+£0.38 63.61 =051
Sft+cl 7637 £0.37 5936+ 048 81.04 £039 6388 +£0.50 79.254+034 6284046 85104039 67.70 £ 0.53
7449 £ 0.36 5848 +0.48 80.25+£0.38 6525+ 051 75.86+0.35 59.77 +£047 82.1540.37 68.90 £ 0.49
LEO {10 ft 7677 £0.35 60524047 80.97 £0.36 6544 +049 77.81 £0.34 6181 £0.46 84.95+036 69.59 £ 0.47
cl 74.66 £ 0.36 58.62+0.46 80.74 £0.37 6537050 76.13+0.35 6022+ 047 82314037 69.23 £ 0.48
Sft+cl 7191 £0.35 61.09 £ 047 8143 £0.36 66.03 £048 77724034 6219+ 045 8504 +036 70.28 £ 0.47
75.65+0.35 5849 +046 81.14+036 6429 +050 77.30+0.34 6299 £ 046 83.23+0.37 70.08 £+ 0.52
" MTL (2] ft 77.17 £0.35 58851044 82.01 £0.36 64.67 =047 7940+ 034 63.65+ 045 8476+ 036 70.25 £ 0.49
E cl 77.10 £ 0.34 58.86 045 82.34 £0.36 6670 =051 79.29 +£0.35 63.14 £ 046 86.21 +0.37 70.16 £ 0.50
E ft+cl 7803 £0.33 61.17 £ 045 82354035 6572+048 80.20 +0.33 6440+ 045 86.024+ 035 7145+ 048
= 7521+ 035 61.054+046 7992+ 037 6601 £050 77.15+0.36 63.45+045 8243+ 0.37 7038 £+ 0.49
é MN (T3] ft 75524+ 035 61234045 8018+ 036 6633 +049 77.80+0.35 64424046 83.82+0.36 70.90 £ 0.50
cl 7540 £ 0.34 61.14 =044 80.04 £0.35 6626 =050 77.23 £0.35 6421 +047 82.77£0.35 70.61 +0.51
ft+cl 7673 £0.34 62.64 £ 046 80.79 035 67.30 £ 048 78551036 64.89 £ 044 84.03+036 71.41+049
7888 £0.35 67.10 =056 85.09 £0.35 77.64 =058 81.73+0.34 7131056 88.19 4034 81.97 £ 0.56
SIB [6] ft 79.58 £ 035 67944055 85124035 77.68+0.57 82.00+0.34 71954056 8820+ 0.34 82.01 £ 0.56
(transductive) cl 79.04 £ 033 6777 +£055 85224035 77.724+056 81.93+0.35 71.66+0.56 88.21+0.33 82.01 £ 0.54
f+cl 80324+ 0.35 6885+ 0.56 85434035 78.03+0.57 83214033 73.51+£0.56 88.69+ 033 83.07+0.52
75.64 £0.36 57.20 =057 81.69 £0.34 6551056 78.17+0.35 60.12+£0.56 84.96 036 69.20 £ 0.58
SIB [6] Jt 7623 £0.35 58.67 =056 82.04 £035 66.69+0.57 79344035 6177 £0.56 85244036 70.05+£0.57
(inductive) cl 76.61 +£0.35 58.124+0.55 8221+035 6628 +056 79.11 +0.35 61254055 85.63+0.34 69.90 £ 0.57
ft+cl 7768 £034 60.33 +0.54 8275+£035 67.34+£0.55 80.05+034 63.14+0.54 86.14 £0.34 7145+ 0.55

A.6.2 Hardness-Specific Acc

=== ResNet-10 Baseline
- WRN-28-10 Baseline|
— ResNet-10 IFSL
—— WRN-28-101FSL

esNet-10 Baseline
RN-28.

g -~ ResNet-10 Baseline
10 Baseline| £

g

2

--- WRN-28-10 Baseline,
— ResNet-10 IFSL
—— WRN-28-10 IFSL

Accuracy

esNet-10 IFSL
—— WRN-28-10 IFSL

2
g
X

60%

40%

20% 20%

Hardness Hardness

(a) Linear (b) Cosine

ResNet-10 Baseline
WRN-28-10 Baseline|

ResNet-10 |
WRN-28-101FSL

Accuracy
Accuracy

80% 80%

60% 60% 60%

40% 40% 40%

20% 20% 20%

Hardness Hardness Hardness

(d) MAML [4]] (e) LEO [10] (f) MTL [12]

7 7 [~ Resiiet-10 Baseline | 7 [Restier-10 Baseiine |
£ g S WRN-28-10 Baseline| £ /RN-28-10 Baseline|
g g e ResNet-10 IFSL g —— ResNet-10 IFSL
< = 'WRN-28-10 IFSL - —— WRN-28-10 IFSL
80% 80% 80%
60% 60% 60% | R
40% 40% 40%
20% 20% 20%
Hardness Hardness Hardness

(2) Matching Net (h) SIB(transductive) (i) SIB(inductive)

Figure A2: Supplementary to Figure 5. Hardness-specific Acc of 5-shot fine-tuning and meta-learning
on minilmageNet.

ResNet-10 Baseline
WRN-28-10 Baseline

Accuracy

ResNet-10 IFSL
WRN-28-10 FSL

80%

60%

40%

20%

Accuracy

80%

60%

40%

20%

Accuracy

80%

60%

3\ 40%

20%

Hardness

(a) Linear

===~ ResNet-10 Baseline
~--- WRN-28-10 Baseline|
— ResNet-10 IFSL
—— WRN-28-10 IFSL

\ccuracy

A

80%

60%
40% 40%

20% 20%

Hardness

(b) Cosine

---- ResNet-10 Baseline
~--= WRN-28-10 Baseline|
— ResNet-10 FSL

— WRN-28-10IFSL

Accuracy.

80%

60%

40%

20%

Hardness

ResNet-10 Baseline
WRN-28-10 Baseline|
— ResNet-10 IFSL

—— WRN-28-10 IFSL

Hardness

(d) MAML [4]

Accuracy
Aceuracy

80%

:n
g
X

60% 60%

40% 40%

20% 20%

Hardness

(e) LEO [10]

jet-10 Baseline

60%

40%

20%

Hardness

~ ResNet-10 Baseline

(H) MTL [12]

Hardness

(g) Matching Net

Hardness

(h) SIB(transductive) [6]

Hardness

(1) SIB(inductive) [6]

Figure A3: Supplementary to Figure 5. Hardness-specific Acc of 5-shot fine-tuning and meta-learning

on tieredIlmageNet.

A.6.3 CAM-Acc

Table A2: Supplementary to Figure 6. CAM-Acc (%) on fine-tuning and meta-learning. We used

combined adjustment for IFSL.

ResNet-10 WRN-28-10
Method minilmageNet tieredImageNet minilmageNet tieredImageNet
5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot
Linear 29.02+0.38 25224038 31.62+0.38 31.054+039 2599+ 035 2474+034 30.17+0.36 29.76 £ 0.37
Ed +IFSL 29.85 + 037 26.67 £0.38 3175+ 038 3143 4+0.37 2602+ 037 24964036 32.57+0.36 30.64 +0.38
E Cosine 28.10£0.37 27.124+038 29.82 £0.37 28544038 27.54+0.38 2573037 32.60+0.35 3121+£0.36
& +IFSL 28.18 =037 2726 £0.38 3138 +0.37 2870+ 040 27.82+0.38 25854038 33.65+0.37 31.66+ 035
E E-NN 2796 £ 0.37 26.65+ 037 3225+£0.39 30364039 24.15+0.34 2330+033 23914034 2199+ 033
+IFSL 28.154+ 037 26.81 £0.37 3275+ 039 30.84+039 2523+0.36 24.144+035 28.04+0.37 2646+ 037
MAML [2943 £0.37 27394038 3272£040 32144040 27.56+0.36 2646+ 036 34394040 31.07£0.39
+IFSL 30.06 +0.38 2842+ 038 3293 +0.40 32244039 27.61 £0.36 2691+ 0.38 3457 +041 31.224+ 040
LEO 30.24 +0.38 28.56 £ 0.37 31.64 038 29.88 +0.37 29.15+0.38 27.86 038 3127 £0.37 29.73 +0.38
+IFSL 30.67 & 0.37 28.76 £ 0.37 32.01 038 30.65 £ 0.37 29.20 +0.37 28454038 3198 £0.39 30324038
_éﬁ MTL (2] 31454039 30.13+£0.39 33524039 33.11+£039 30564039 29.78+040 33.134+039 32.35+0.39
S +IFSL 3421 039 31.59 £ 040 33.67 +0.38 3350 +0.39 31.78 +£0.39 30.124+0.39 3330+ 0.39 32.64 +0.39
'2 MN 2850 £0.38 28424039 3255+£040 31.88+039 24934038 25344039 34874037 29.10+£0.38
o +IFSL 28.68 +-0.38 28.77 £0.38 32.67 £ 0.40 32.10 040 2793 +£0.37 2581 4+037 3547 £041 30.71 +0.39
= SIB [6] 3210+ 039 31.19£0.39 3216 +039 3049 +0.39 2832+0.37 2676+ 038 31.02+0.36 28.43 1038
(transductive) +IFSL 32.14 £0.39 3134 +0.39 3431 £0.40 3259 £040 31.54 4038 29.82+0.36 32334037 30.26 £ 0.38
SIB 31.26 £ 0.38 30.56 +£0.39 31354040 3048 +£0.39 29.76 £0.38 28.02+ 037 29454039 27.98+0.39
(inductive) +IFSL 31.46 +0.39 30.78 £0.40 31.56 +0.39 30.89 £0.40 30.23 +0.37 28.75+0.39 30.07 +0.40 28.57 + 0.39

A.6.4 Cross-Domain Evaluation

Table A3: Supplementary to Table 3. Acc (%) and 95% confidence interval averaged over 2000
5-way FSL tasks on cross-domain evaluation. Specifically, “f¢” refers to feature-wise adjustment, “cl”
refers to class-wise adjustment and “ft+cl” refers to combined adjustment.

ResNet-10 WRN-28-10
Method
5-shot 1-shot 5-shot 1-shot
5884 £ 041 R E04 62.12 £ 0.40 4289 £ 041
Linear f 60.12 + 039 4230 £ 041 63.13 4039 4339+ 0.40
l 60.51 4 0.40 4243 4042 62.95 + 0.39 4421 4+ 0.40
frecl 60.65 + 0.39 45.14 + 040 64.15 + 0.38 45.64 +0.39
g 5830 £ 0.39 40.47 £ 0.40 6021 £0.39 $212£039
g Cosi fi 5832 4 0.39 41.01 £ 040 61.16 & 0.38 4235+ 041
g osine cl 58.68 + 0.39 40.67 £ 0.41 61.87 + 0.40 43.23 4040
£ frecl 60.23 + 0.38 4278 + 040 6249 +0.38 45.12 4 0.39
57.18 £ 0.40 3844 £0.37 35931 £ 041 3053 £ 042
LN fi 59.44 £ 0.39 43.49 4+ 0.40 6248 + 0.39 45.68 + 0.43
cl 5837 4 0.39 4320 + 0.41 62.04 + 0.39 45.36 £ 040
Jreel 59.59 & 0.40 43.45 £ 040 6245 + 040 4572+ 0.40
51.00 £ 0.43 37.20 £ 046 355.04 £0.42 39.06 £ 0.47
MAML @ fi 54.95 + 0.44 37.34 + 0.47 59.57 + 0.44 39.25 + 0.46
cl 53.62 4+ 0.43 38.13 + 0.47 56.80 + 0.45 40324+ 048
freel 5671 & 0.46 40.36 £ 0.46 60.89 =+ 0.45 42.16 £ 047
5652 £ 0.46 3921 £ 0.3 56.66 £ 0.48 345 £ 054
LEO [15] fi 56.77 4 0.48 39.72 + 0.54 6295 + 0.47 45.46 +0.55
cl 5673 + 0.47 40.12 4 0.55 56.90 + 0.47 41.93 +0.56
Jrecl 61.27 4 0.46 42794052 6330 + 0.47 43.81 4+ 0.56
5661 £ 0.42 4156 £ 043 56.89 £ 0.41 315 £ 044
2 WL [fi 61.34 + 0.41 42.90 + 043 63.49 + 0.40 4528 + 0.44
£ l 60.62 + 0.41 42.87 + 042 62.94 + 0.40 4557 +0.43
5 frecl 6239 + 0.40 4451 + 043 65.00 + 0.40 46.67 +0.43
= 5339 £ 0.46 4034 £ 0.56 53.08 £ 045 DO0FE057
g MN (T3 fi 5422 4 0.46 40.62 + 0.57 5497 + 0.47 42524058
= l 5372 4+ 047 4042 + 0.56 53.43 +0.45 42,19+ 0.56
Jrecl 56.03 + 0.45 41.68 + 0.54 58.69 + 0.44 43.58 + 0.56
60.60 0.46 4587£055 62.60 £ 0.49 4916 £0.58
SIB [6] i 61.12 + 045 46.64 £ 0.55 63.15+ 047 49.78 £ 0.56
(transductive) cl 60.70 + 0.46 46.14 + 0.56 63.02 + 0.48 4943 +0.57
frecl 62.07 + 0.4 47074 0.53 64.07 + 0.49 50.71 4 0.54
59.06 £ 0.42 348 £ 043 59.94 £ 042 BT L 044
SIB 6] fi 59.45 + 0.41 41.98 + 0.44 60.33 + 0.4 43.61 £ 045
(inductive) l 59.32 4 0.42 4167 + 043 60.46 + 0.43 43.52 4045
frecl 59.89 + 0.41 43204043 6145 +0.43 4427 + 0.44

10

References

[1] Pierre Baldi and Peter Sadowski. The dropout learning algorithm. Artificial intelligence, 2014.

[2] Alexander Balke and Judea Pearl. Bounds on treatment effects from studies with imperfect
compliance. Journal of the American Statistical Association, 1997. 2]

[3] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer
look at few-shot classification. In International Conference on Learning Representations, 2019.

Bl

[4] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, 2017. [51 [71 [8] 01
[0l

[5] Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016. [4] 5]

[6] Shell Xu Hu, Pablo Moreno, Yang Xiao, Xi Shen, Guillaume Obozinski, Neil Lawrence, and
Andreas Damianou. Empirical bayes transductive meta-learning with synthetic gradients. In
International Conference on Learning Representations, 2020. [6] 8

[7] J. Pearl, M. Glymour, and N.P. Jewell. Causal Inference in Statistics: A Primer. Wiley, 2016.
[8] Judea Pearl. Causal diagrams for empirical research. Biometrika, 1995. [2]

[9] Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2nd
edition, 2009. 1]

[10] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon
Osindero, and Raia Hadsell. Meta-learning with latent embedding optimization. In International
Conference on Learning Representations, 2019. @] [6] [7} [8] Bl [L0]

[11] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems, 2017. 3] 5]

[12] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-transfer learning for few-shot
learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2019. GL[7,BL B

[13] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for
one shot learning. In Advances in Neural Information Processing Systems, 2016. [6] [7] [8] O} [10]

[14] Yan Wang, Wei-Lun Chao, Kilian Q Weinberger, and Laurens van der Maaten. Simpleshot: Re-
visiting nearest-neighbor classification for few-shot learning. arXiv preprint arXiv:1911.04623,
2019.

[15] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference, 2016. @ [3]

11

