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Abstract

Conditional stochastic optimization covers a variety of applications ranging from
invariant learning and causal inference to meta-learning. However, constructing
unbiased gradient estimators for such problems is challenging due to the composi-
tion structure. As an alternative, we propose a biased stochastic gradient descent
(BSGD) algorithm and study the bias-variance tradeoff under different structural
assumptions. We establish the sample complexities of BSGD for strongly convex,
convex, and weakly convex objectives under smooth and non-smooth conditions.
Our lower bound analysis shows that the sample complexities of BSGD cannot
be improved for general convex objectives and nonconvex objectives except for
smooth nonconvex objectives with Lipschitz continuous gradient estimator. For
this special setting, we propose an accelerated algorithm called biased SpiderBoost
(BSpiderBoost) that matches the lower bound complexity. We further conduct
numerical experiments on invariant logistic regression and model-agnostic meta-
learning to illustrate the performance of BSGD and BSpiderBoost.

1 Introduction

We study a class of optimization problems, called conditional stochastic optimization (CSO):
min
x∈X

F (x) := Eξfξ(Eη|ξgη(x, ξ)), (1)

where X ⊆ Rd, gη(·, ξ) : Rd → Rk is a vector-valued function dependent on both random vectors
ξ and η, fξ(·) : Rk → R depends on the random vector ξ, and the inner expectation is taken with
respect to the conditional distribution of η|ξ. Throughout, we assume access to samples from the
distribution P (ξ) and the conditional distribution P (η|ξ).

CSO includes the classical stochastic optimization as a special case when gη(x, ξ) = x but is much
more general. It has been recently utilized to solve a variety of applications in machine learning,
ranging from the policy evaluation and control in reinforcement learning [12, 13, 35], the optimal
control in linearly-solvable Markov decision process [12], to instrumental variable regression in
causal inference [41, 34].

One common challenge with these applications is that in the extreme case, a few or only one sample
is available from the conditional distribution of η|ξ for each given ξ. To deal with this limitation, a
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primal-dual stochastic approximation algorithm was proposed to solve a min-max reformulation of
CSO using the kernel embedding techniques [12]. However, this approach requires convexity of f
and linearity of g, which are not satisfied by general applications when neural networks are involved.

On the other hand, for many other applications, e.g., those arising from invariant learning and
meta-learning, we do have access to multiple samples from the conditional distribution. Take the
model-agnostic meta-learning (MAML) [19] as an example. MAML learns a meta-initialization
parameter using metadata from similar learning tasks such that taking one or multiple gradient steps
on a small training data would generalize well on a new task. It can be framed into the following
CSO problem:

min
w

Ei∼p,a∼Diquery li
(
Eb∼Disupport

(
w − α∇li(w, b)

)
, a
)
, (2)

where p represents the distribution of different tasks, Di
support and Di

query correspond to support
(training) data and query (testing) data of the task i, li(·, Di) is the loss function on data Di from
task i, and α is a fixed meta step size. Setting ξ = (i, a) and η = b, (2) is clearly a special case of
CSO for which multiple samples can be drawn from the conditional distribution of P (η|ξ). Since the
loss function generally involves neural networks, the resulting CSO is often nonconvex. Thus, the
previous primal-dual algorithm and kernel embedding techniques developed in [12] no longer apply.

In this paper, we focus on the general CSO problem where multiple samples from the conditional
distribution P (η|ξ) are available, and the objective is not necessarily in the compositional form of a
convex loss fξ(·) and a linear mapping gη(·, ξ). Recently, Hu et al. [30] studied the generalization
error bound and sample complexity of empirical risk minimization (ERM), a.k.a., sample average
approximation (SAA) for general CSO:

min
x∈X

1

n

n∑
i=1

fξi

( 1

m

m∑
j=1

gηij (x, ξi)
)
,

where {ξi}ni=1 are i.i.d. samples from P(ξ) and {ηij}mj=1 are i.i.d. samples from P(η|ξi). They as-
sumed that the global optimal solution to ERM can be computed without specifying how. Differently,
here we aim at developing efficient stochastic gradient-based methods that directly solve the CSO
problem (1) and find either a global optimal solution in the convex setting or a stationary point in the
nonconvex setting, respectively.

Due to the composition structure of the CSO objective in (1), constructing unbiased gradient es-
timators is not possible in general. Instead, we leverage a mini-batch of conditional samples to
construct the gradient estimator with controllable bias and propose a family of biased first-order
methods, including (1) the biased stochastic gradient descent (BSGD) algorithm for general convex
and nonconvex CSO objectives and (2) the biased SpiderBoost (BSpiderBoost) algorithm, designed
for nonconvex smooth CSO objectives. Note that BSpiderBoost is inspired by the variance reduced
method for nonconvex smooth stochastic optimization in [18, 44].

1.1 Our contributions

Our main results are summarized in Table 1. Our contributions are three-fold:

• We establish the first sample complexity results of BSGD and BSpiderBoost in the context
of CSO. Since the bias of BSGD comes from estimating the conditional expectation rather
than from a given stochastic oracle, the sample complexity closely depends on the smoothness
conditions of the outer function, which is distinct from traditional SGD results. For convex
problem, to achieve an ε-optimal solution, the sample complexity of BSGD improves from
O(ε−4) to Õ(ε−3) when either fξ is smooth or F is strongly convex and further improves to
Õ(ε−2) when both conditions hold, where Õ(·) represents the bound with hidden logarithmic
factors. For weakly convex CSO problems, BSGD requires a total sample complexity of
O(ε−8) to achieve an ε-stationary point, and of O(ε−6) when fξ is smooth. If we further
assume that both fξ and gη are Lipschitz continuous and Lipschitz smooth, the biased gradient
estimator is Lipschitz continuous, and then the sample complexity can be improved to O(ε−5)
by BSpiderBoost.
• We analyze the lower bounds on the minimax error of first-order algorithms using specific

biased oracles for CSO objectives. With the upper bounds results, BSGD is optimal for strongly
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Table 1: Sample Complexity for CSO

Algorithm
Assumptions

F̂ SC SC Convex Convex WC WC Smooth
fξ Smooth Lipschitz Smooth Lipschitz Smooth Lipschitz Smooth

SAA [30]* O(ε−2) O(ε−3) Õ(dε−3) Õ(dε−4) - - -
BSGD Õ(ε−2) Õ(ε−3) O(ε−3) O(ε−4) O(ε−6) O(ε−8) O(ε−6)

BSpiderBoost - - - - - - O(ε−5)

Lower Bound O(ε−2) O(ε−3) O(ε−3) O(ε−4) O(ε−6) O(ε−8) O(ε−5)

Goal: find ε-optimal solution for convex F and ε-stationary point for weakly convex F .
F̂ is defined in (4). SC: strongly convex; WC: weakly convex; Lipschitz = Lipschitz continuous.

* SAA requires further solving the empirical risk minimization.

convex, convex, and weakly convex CSO objectives, and BSpiderBoost is optimal for the
nonconvex smooth CSO problems under the additional oracle assumption that the gradient
estimator returned by the oracle is Lipschitz continuous.
• When applied to MAML, BSGD converges to a stationary point under simple deterministic

stepsize rules and appropriate inner mini-batch sizes. In contrast, the commonly used first-order
MAML algorithm [19] ignores the Hessian information and is not guaranteed to converge even
when a large inner mini-batch size is used. For smooth MAML, compared with the algorithm
recently introduced in [17], BSGD without requiring stochastic stepsizes and mini-batches
of outer samples at each iteration, thus is more practical. Leveraging the variance reduction
technique, BSpiderBoost attains the best-known sample complexity for MAML, to our best
knowledge. Numerically, we further demonstrate that BSGD and BSpiderBoost achieve superior
performance for MAML.

1.2 Related work

Nested expectation optimization (NEO) [42, 43, 20, 45, 9, 47] deals with problems in the form
of: minx∈X f ◦ g(x) := Eξ

[
fξ
(
Eη[gη(x)]

)]
, where f(u) := Eξ[fξ(u)], g(x) := Eη[gη(x)]. A

key assumption is that even when ξ and η are dependent, there exists a deterministic function
g(x), independent of ξ, which does not hold for general CSO. Hence their algorithms and analysis
cannot extend to CSO. The best known sample complexity for smooth strongly convex NEO is
O(ε−1.25) [42]; and for nonconvex smooth NEO objective is O(ε−4) [20] and O(ε−3) [47] if ξ and
η are independent using variance reduction technique.

Nested expectation Estimation Estimating nested expectations in the form of E[H(E(η|ξ))] has
been extensively studied in the statistics and simulation communities. [26, 24, 27] considered nested
Monte Carlo estimator, when H is a general non-linear function. [7, 22, 23] considered Multilevel
Monte Carlo (MLMC) method [21] when H has special structure. Note that this line of work purely
focuses on estimation, whereas we deal with optimization, which is more challenging.

Biased Gradient Methods [29, 1, 32, 28, 8] analyzed the non-asymptotic convergence of general
biased gradient methods. These papers assume that the bias in gradient estimator comes from certain
black-box oracles or an additive non-zero mean noise. Differently in our problem, the bias directly
comes from estimating the nested expectation and can be controlled by the sampling strategy.

Notations ΠX denotes the projection operator, i.e., ΠX (x) := argminz∈X ‖z−x‖22. Õ(·) represents
the order hiding logarithmic factors. A function f(·) : Rk → R is L-Lipschitz continuous on X if
|f(x)− f(y)| ≤ L‖x− y‖2 holds for any x, y ∈ X . A function f(·) is S-Lipschitz smooth on X if
f(x)− f(y)−∇f(y)>(x− y) ≤ S

2 ‖x− y‖
2
2 holds for any x, y ∈ X . A function f(·) is µ-convex

on X if for any x, y ∈ X , f(x) − f(y) −∇f(y)>(x − y) ≥ µ
2 ‖x − y‖

2
2. Note that µ > 0, µ = 0,

and µ < 0 correspond to f being strongly convex, convex, and weakly convex, respectively. Lastly,
we denote x∗ ∈ argminx∈XF (x) as an optimal solution to the problem of interest. For an abuse of
notation, we use∇ to denote the Jacobian matrix, (sub)gradient vector, and derivative for simplicity.

3



Algorithm 1 Biased Stochastic Gradient Descent (BSGD)

Input: Number of iterations T , inner mini-batch size {mt}Tt=1, initial point x1, stepsize {γt}Tt=1
1: for t = 1 to T − 1 do
2: Sample ξt from distribution P(ξ), and mt i.i.d samples {ηtj}mtj=1 from distribution P (η|ξt).
3: Compute∇F̂ (xt; ξt, {ηtj}mtj=1) according to (3).
4: Update

xt+1 = ΠX
(
xt − γt∇F̂ (xt; ξt, {ηtj}mtj=1)

)
.

5: end for

2 Biased Stochastic First-Order Methods

For simplicity, throughout, we assume that X ⊆ Rd is closed and convex, and the random functions
fξ(·) and gη(·, ξ) are continuously differentiable. Based on the special composition structure of CSO
and the chain rule, under mild conditions, the gradient of F (x) in (1) is given by

∇F (x) = Eξ
[
(Eη|ξ∇gη(x, ξ)])>∇fξ(Eη|ξgη(x, ξ))

]
.

Constructing an unbiased stochastic estimator of the gradient can be costly and even impossible.
Instead, we consider a biased estimator of∇F (x) using one sample ξ and m i.i.d. samples {ηj}mj=1

from the conditional distribution of P (η|ξ) in the following form:

∇F̂ (x; ξ, {ηj}mj=1) :=
( 1

m

∑m

j=1
∇gηj (x, ξ)

)>
∇fξ

( 1

m

∑m

j=1
gηj (x, ξ)

)
. (3)

Note that∇F̂ (x; ξ, {ηj}mj=1) is the gradient of an empirical objective such that

F̂ (x; ξ, {ηj}mj=1) := fξ

( 1

m

∑m

j=1
gηj (x, ξ)

)
. (4)

Based on this biased gradient estimator, we propose BSGD, which is formally described in Algorithm
1. When using fixed inner mini-batch sizes mt = m, BSGD can be viewed as performing SGD
updates on the surrogate objective E{ξ,{ηj}mj=1}F̂ (x; ξ, {ηj}mj=1). Inspired by the recent success of
variance-reduced methods for nonconvex stochastic optimization [37, 18, 44], we further introduce
an accelerated algorithm BSpiderBoost, which is formally described in Algorithm 2. BSpiderBoost
divides updates into "epoch": at the beginning of the epoch, it will initialize the gradient estimator
with N1 outer samples of ξ; then in later iterations in the epoch, the estimator will be updated with
gradient information in current iteration generated with N2 outer samples and the information from
the last iteration. Compared to the classical SVRG method [31], this framework keeps utilizing the
latest information for updates, which can generate more accurate gradient estimations.

Before presenting the main results, we make one observation that the bias of the function value
estimator F̂ , induced by the composition structure, depends on the smoothness condition of the outer
function fξ: for Lf -Lipschitz continuous fξ,

Eξ,Y [fξ(Y )− fξ(EY |ξY )] ≤ LfEξ,Y |ξ‖Y − EY |ξY ‖2;

for Sf -Lipschitz smooth fξ,

Eξ,Y [fξ(Y )− fξ(EY |ξY )] ≤ Sf
2
Eξ,Y |ξ‖Y − EY |ξY ‖22,

where Y is a random variable. To characterize the estimation error of F̂ , we make the following
assumption.

Assumption 2.1 We assume that σ2
g := supξ,x∈XEη|ξ||gη(x, ξ)− Eη|ξgη(x, ξ)||22 < +∞;

Assumption 2.1 indicates that the random vector gη has bounded variance. Define

∆f (m) =

{
Lfσg/

√
m, if fξ is Lf -Lipschitz continuous,

Sfσ
2
g/2m, if fξ is Sf -Lipschitz smooth. (6)

The following lemmas characterize the estimation errors of F̂ and∇F̂ .
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Algorithm 2 Biased SpiderBoost (BSpiderBoost)

Input: Number of iterations T , inner batch size m, stepsize γ, epoch length q, mini-batch sizes
N1, N2,

1: for t = 0 to T do
2: if mod (t, q) = 0 then
3: Generate N1 samples of {ξ1, · · · , ξN1

}
4: Generate m i.i.d samples {ηij}mi=1 from P(η|ξi) for each ξi ∈ {ξ1, · · · , ξN1

}.
5: Compute vt = 1

N1

∑N1

i=1∇F̂ (xt; ξi, {ηij}mj=1)
6: else
7: Generate N2 samples of {ξ1, · · · , ξN2}
8: Generate m i.i.d samples {ηij}mi=1 from P(η|ξi) for each ξi ∈ {ξ1, · · · , ξN2

}.
9: Compute

vt =
1

N2

N2∑
i=1

∇F̂ (xt; ξi, {ηij}mj=1)−
1

N2

N2∑
i=1

∇F̂ (xt−1; ξi, {ηij}mj=1) + vt−1 (5)

10: end if
11: Update xt+1 = xt − γvt
12: end for
Output: xS which is uniformly randomly selected from {xt}Tt=1.

Lemma 2.1 ([30]) Under Assumption 2.1, for a sample ξ and m i.i.d. samples {ηj}mj=1 from the
conditional distribution P (η|ξ), and any x ∈ X that is independent of ξ and {ηj}mj=1, we have∣∣E{ξ,{ηj}mj=1}F̂ (x; ξ, {ηj}mj=1)− F (x)

∣∣ ≤ ∆f (m). (7)

This implies that, to control the estimation bias up to ε, a number of m = O(ε−2) samples is needed
for Lipschitz continuous fξ whereas m = O(ε−1) is needed for Lipschitz smooth fξ.

Lemma 2.2 Under Assumption 2.1, if additionally assuming fξ is Sf -Lipschitz smooth, gη is Lg-
Lipschitz continuous, it holds that

‖E∇F̂ (x; ξ, {ηj}mj=1)−∇F (x)‖22 ≤
S2
fL

2
gσ

2
g

m
. (8)

3 Convergence Analysis

In this section, we provide the non-asymptotic convergence analysis of BSGD and BSpiderBoost.
Our result illustrates how the smoothness condition of the outer function fξ influences the inner
sample complexity and the total sample complexity. This is quite different from the traditional SGD
analysis for convex stochastic optimization, where the smoothness condition does not influence the
complexity in terms of dependence on ε [6, 36]. Before showing the convergence, we impose an
assumption on the convexity.

Assumption 3.1 F̂ (x; ξ, {ηj}mj=1) is µ-convex for any m, ξ, {ηj}mj=1.

Strong convexity, namely when µ > 0, can often be achieved by adding `2-regularization to convex
objectives. Convexity, namely when µ = 0, holds when (i) fξ is convex and gη is linear; (ii) fξ and
gη are convex and fξ is non-decreasing. Weak convexity, namely when µ < 0, holds when (i) F is
Lipschitz smooth, which holds if (i) both fξ and gη are Lipschitz continuous and smooth and (ii) fξ
is convex and gη is Lipschitz smooth [14]. Note that weak convexity is commonly used in nonconvex
optimization literature [39, 10, 14, 48]. Beyond weak convexity, little is known on the complexity of
first-order algorithms except for some special functions, e.g., TAME functions [15] and difference
of convex functions [38]. Lastly, we point out that weak convexity is satisfied by various objectives
used in machine learning, e.g., MAML discussed in this paper. Note that under mild conditions,
Assumption 3.1 implies that F (x) is µ-convex.
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Global convergence of BSGD for strongly convex objectives. We have the following result:

Theorem 3.1 Under Assumption 2.1 and Assumption 3.1 with µ > 0, if F̂ is SF -Lipschitz smooth,
there exists a constant Set γt = 1

µ(t+c) with c = max{4S2
F /µ

2 − 1, 0}, the output x̂T = 1
T

∑T
t=1 xt

of BSGD satisfies:

E[F (x̂T )− F (x∗)] ≤ 2E‖∇F̂ (x∗)‖22(log(T ) + 1) + S2
F /4‖x1 − x∗‖22

Tµ
+

4

T

T∑
t=1

∆f (mt). (9)

Hence, to achieve ε-optimality, the number of iterations T should be at least Õ(ε−1), which aligns with
the performance of SGD for strongly convex objectives [40]. For strongly-convex CSO with Lipschitz
continuous fξ, recall the definition of ∆f (mt) in (6), using a fixed mini-batch size mt = O(ε−2) or
time varying batch sizes mt = O(t2) would be sufficient to obtain ε-optimality. For strongly-convex
CSO with Lipschitz smooth fξ , it suffices to set mt = O(ε−1) or mt = O(t). Respectively, the total
sample complexities are Õ(ε−3) and Õ(ε−2) under these two settings.

Global convergence of BSGD for convex objectives We make an additional assumption about
the second moment of the gradient estimator.

Assumption 3.2 There exists M > 0 such that E
[
‖∇F̂ (x; ξ, {ηj}mj=1)‖22 | x

]
≤M2 for any x.

Note that Assumption 3.2 is common in the literature for analyzing SGD when the objective is
non-strongly-convex or nonsmooth, e.g., when fξ and gη are Lf - and Lg- Lipschitz continuous,
M = LfLg . See e.g., [36, 6, 14].

Theorem 3.2 Under Assumptions 2.1 Assumption 3.1 with µ = 0, and Assumption 3.2, with stepsizes
γt = c/

√
T for a positive constant c, the output x̂T = 1

T

∑T
t=1 xt of BSGD satisfies

E[F (x̂T )− F (x∗)] ≤ M2c2 + ‖x1 − x∗‖22
2c
√
T

+
2

T

T∑
t=1

∆f (mt).

Comparing to Theorem 3.1, without strong convexity condition, the iteration complexity increases
from O(ε−1) to O(ε−2). The total sample complexity for convex CSO is O(ε−4) for Lipschitz
continuous fξ with mt = O(ε−2) or mt = O(t) and O(ε−3) for Lipschitz smooth fξ with mt =

O(ε−1) or mt = O(
√
t).

Stationary convergence of BSGD for general nonconvex objectives When F (x) is nonconvex
and possibly nonsmooth, we first introduce the notion of convergence using Moreau envelope Fλ(x)
(λ > 0) of function F (x) and its corresponding minimizer:

Fλ(x) := min
z∈X

{
F (z) +

1

2λ
||z − x||22

}
, proxλF (x) := argmin

z∈X

{
F (z) +

1

2λ
||z − x||22

}
.

Based on Moreau envelope, we define the gradient mapping: GλF (x) := 1
λ ||proxλF (x)− x||2. We

say x is an ε-stationary point of F if E[GλF (x)] ≤ ε. This convergence criterion is commonly used
in nonconvex optimization literature [4, 16]. We have the following result.

Theorem 3.3 Under Assumption 2.1, Assumption 3.1 with µ < 0, and Assumption 3.2, with stepsizes
γt = c/

√
T for a positive constant c, the output, x̂R, selected uniformly randomly from {x1, · · · , xT },

satisfies

E
[
G2

1
2|µ|F

(x̂R)
]
≤

2F1/(2|µ|)(x1)− 2F (x∗) + 2|µ|M2c2

c
√
T

+
8|µ|
T

T∑
t=1

∆f (mt).

To the best of our knowledge, this is the first non-asymptotic convergence guarantee for CSO in the
nonconvex setting. Specifically, for nonconvex CSO with Lipschitz continuous fξ , setting batch sizes
mt = O(ε−4) or mt = O(t) yields a total sample complexity of O(ε−8); for nonconvex CSO with
Lipschitz smooth fξ, using mt = O(ε−2) or mt = O(

√
t) achieves the total sample complexity of

O(ε−6). Note that O(ε−6) sample complexity also holds when the CSO objective is additionally
smooth. The analysis only requires little modification and is omitted.
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Stationary convergence of BSpiderBoost for nonconvex smooth objectives We now analyze
the stationary convergence of BSpiderBoost for CSO problem with X = Rd and Lipschitz smooth
F (x). We say x is an ε-stationary point of F if E‖∇F (x)‖2 ≤ ε. Before proceeding, we make the
following assumption:

Assumption 3.3 fξ(·) is Lf -Lipschitz continuous and Sf -Lipschitz smooth for any ξ. gη(·, ξ) are
Lg-Lipschitz continuous and Sg-Lipschitz smooth for any ξ and η.

This assumption ensures that F and F̂ are SF -Lipschitz smooth with SF = SgLf + SfL
2
g .

Theorem 3.4 (Convergence of BSpiderBoost) Under Assumptions 2.1 and 3.3,X = Rd, and ∆ :=
F (x0)− F ∗ <∞, consider the following setup: T = d8∆β−1ε−2e, q = b

√
N1c, N2 =

⌈
2
√
N1

⌉
,

γt ≡ γ = 1
2SF

, and

N1 =

⌈(
3 +

3

2βSF
+

3

16βSF

)4L2
fL

2
g

ε2

⌉
, m =

⌈(
3 +

3

2βSF
+

3

16βSF

)4L2
gS

2
fσ

2
g

ε2

⌉
,

where

β :=
γ(1− SF γ)

2
− γ3S2

F q

N2
≥ 1

16SF
> 0.

The output of BSpiderBoost, xS , which is randomly drawn from {x1, ..., xT }, attains E‖∇F (xS)‖2 ≤
ε. Correspondingly, the sample complexity of BSpiderBoost is O(ε−5).

Remark 3.1 Recall that the objective of MAML (2) is a special case of CSO. If ∇li and ∇2li is
Lipschitz continuous, then the objective is smooth and the outer function is smooth. Thus BSGD
converges to an ε-stationary point of (2) with sample complexityO(ε−6) and BSpiderBoost converges
with sample complexity O(ε−5).

4 Lower Bounds for Conditional Stochastic Optimization

In this section, we show that the sample complexity of BSGD for (strongly) convex and general
nonconvex CSO objectives cannot be improved without further assumptions. The sample complexity
achieved by BSpiderBoost also cannot be improved for nonconvex smooth CSO objectives. The
analysis uses the well-known oracle model, which consists of three components: a function class of
interest F , an algorithm classA, and an oracle class Φ. Specifically, we consider the biased stochastic
first-order oracle class for CSO denoted as Φm, where m is the fixed number of conditional samples
used. We also consider Φcm, a subset of Φm such that any oracle φ

Definition 4.1 (Biased first-order oracle for CSO) For a query at point x of CSO objective F
given by an algorithm, an oracle φ ∈ Φm with a parameter σ2 takes a sample ζ from its associated
distribution P (ζ), and returns to the algorithm φ(x, F ) = (h(x, ζ), G(x, ζ)) such that

Eh(x, ζ) = EF̂ (x; ξ, {ηj}mj=1); EG(x, ζ) = ∇Eh(x, ζ); E‖G(x, ζ)− EG(x, ζ)‖22 ≤ σ2.

In addition, we define the oracle class Φcm such that Φcm ⊂ Φm and any oracle φ ∈ Φcm will return
to the algorithm a Lipschitz continuous gradient estimator G(·, ζ) for any ζ.

Function class we use FCSO to denote the CSO function class of interest. Specifically, we use FCSO

with superscript +, 0,− to denote strongly convex, convex, nonconvex function class.

Randomized Algorithm A randomized algorithm class A contains algorithms A such that A maps
the oracle output and a random seed r to the next query point xAt+1(φ) = A(r,G(xAt (φ), ζ)).

Updating Procedure Suppose an algorithm A ∈ A is applied to minimize a function F ∈ F using
oracle φ ∈ Φ. The updating procedure is such that at iteration 0, the algorithm starts with some
initialization point x0. At iteration t, the algorithm A queries the oracle φ about the information about
F on xAt (φ). The oracle φ will return some (noisy) information φ(xAt (φ), F ) back to the algorithm.
Then the algorithm would base on all previous information returned by the oracle to generate the next
query point xAt+1(φ).
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For a fixed number of iteration T , we define the minimax error as:

∆∗T (A,F ,Φ) := inf
A∈A

sup
φ∈Φ

sup
F∈F

∆T (A,F, φ) := EF (xAT (φ))−min
x∈X

F (x);

∆∗gT (A,F ,Φ) := inf
A∈A

sup
φ∈Φ

sup
F∈F

∆g
T (A,F, φ) := E‖∇F (xAT (φ))‖22,

(10)

where the expectation is taken with respect to the randomness in algorithm A and oracle φ. ∆∗T
is used to capture the global optimality for convex function classes and ∆∗gT is used to capture the
stationarity of the output for nonconvex function classes. If ∆∗T ≥ ε, it implies that for any algorithm
A, there exists a ‘hard’ function F and an oracle φ such that the expected optimization error incurred
by A is at least ε.

Theorem 4.1 For CSO problem, the minimax error satisfies that

(i) when fξ is Lipschitz continuous,

∆∗T (A,F+
CSO,Φm) ≥ O(m−1/2 + σ2T−1); ∆∗T (A,F0

CSO,Φm) ≥ O(m−1/2 + σT−1/2);

∆∗gT (A,F−CSO,Φm) ≥ O(m−1/2 + σT−1/2).

(ii) when fξ is Lipschitz smooth,

∆∗T (A,F+
CSO,Φm) ≥ O(m−1 + σ2T−1); ∆∗T (A,F0

CSO,Φm) ≥ O(m−1 + σT−1/2);

∆∗gT (A,F−CSO,Φm) ≥ O(m−1 + σT−1/2).

(iii) when the gradient estimator is Lipschitz continuous and fξ is Lipschitz smooth,

∆∗gT (A,F−CSO,Φ
c
m) ≥ O(m−1 + σT−2/3).

Together with Theorems 3.1, 3.2, and 3.3, Theorem 4.1 demonstrates that the sample complexity of
BSGD cannot be further improved for strongly convex, convex and weakly convex CSO problems
without any additional Lipschitz continuity assumption on the gradient estimator. Similarly, the
sample complexity of BSpiderBoost cannot be improved for the nonconvex smooth CSO problems.

5 Numerical Experiments

In this section, we illustrate the performance of the proposed algorithms on the invariant logistic
regression and MAML. The detailed experiment setup, results, and platform information are deferred
to Appendix D.

Invariant Logistic Regression Invariant learning has wide applications in training robust classifiers
[33, 2]. We consider the invariant logistic regression problem:

min
w

Eξ=(a,b)

[
log(1 + exp(−bEη|ξ[ηTw])

]
, (11)

where a ∈ Rd is the random feature vector, b ∈ {±1} is the corresponding label and η is a random
perturbed observation of the feature a. Let σ2

1 , σ2
2 denote the variances of a and η|a, respectively. We

observe that for a given budget of total samples, BSGD outperforms SAA and converges even when a
small inner batch size is used as shown in Table 2. Detailed results are in Table 4 in Appendix D.1.

Table 2: Comparison of BSGD and SAA

σ2
2/σ

2
1

BSGD SAA
m Mean Dev m Mean Dev

1 5 1.77e-04 4.70e-05 100 5.56e-04 2.81e-04
10 5 3.26e-04 1.15e-04 464 2.14e-03 8.45e-04
100 50 1.50e-03 6.97e-04 1000 1.12e-02 6.42e-04

Figure 1 summarizes the performance of BSGD with different inner batch sizes and under different
noise ratios for a given total number of samples. When the noise ratio σ2

2/σ
2
1 increases, more inner

samples are needed to achieve the same performance, as suggested by the theory.
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Figure 1: BSGD for invariant Logistic regression (a) σ2
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Figure 2: (a) Convergences of BSGD under differnt inner batch size. (b) Convergences of BSGD,
Adam and BSpiderBoost. (c) Recovered sine-wave signals on an unseen task.

Model-Agnostic Meta-Learning (MAML) We consider the widely used sine-wave few-shot learn-
ing. The goal is to find a good initialization model parameter such that the network could recover a
new unseen sine wave using only a few available data points.

The sine wave is of the form y = asin(x+ b) where (a, b) are drawn from a task distribution. Recall
the MAML formulation in (2). In this experiments, we set α = 0.01, li(w,Di) = (yi − hi(w, xi))2,
where Di = (xi, yi) is the data for the i-th task and hi is a neural network consisting of 2 hidden
layers with 40 nodes and ReLU activation function between each layers. We evaluate the MAML
objective via empirical objective obtained by empirical risk minimization.

Figure 2(a) demonstrates a tradeoff between the inner batch size m and the number of iterations for
BSGD. Figure 2(b) compares the convergence performance of BSGD, Adam, and BSpiderBoost with
the best tuned inner batch sizes. Here Adam refers to a variant of BSGD that performs Adam updates
using the biased gradient estimator we constructed. Figure 2(c) shows the recovered signal after a
one-step update on the unseen task with only 20 samples using the initialization model parameters
obtained by all three algorithms in the meta training step. Random NN refers to the recovered signal
using the neural network with random initialization.

Table 3 summarizes the average loss and running time (in CPU minutes) over 10 trials of each
algorithm (under their best inner batch sizes). Although the widely used first-order MAML (FO-
MAML) [19] requires the least running time, its performance is worse than BSGD. When m = 50,
FO-MAML does not converge (Figure 3 in Appendix). BSGD requires a smaller batch size to achieve
its best performance, which is more practical when a task only has a small number of samples.

Table 3: Comparison of the average loss and average running time

α = 0.01, Q = 107

m
BSGD FO-MAML Adam

Mean CPU Mean CPU Mean CPU
10 2.12e-01 71.57 2.52e-01 41.45 8.16e-01 86.54
20 2.04e-01 35.63 2.50e+00 20.60 3.99e-01 43.42
50 2.17e-01 14.63 3.98e+00 8.64 2.77e-01 17.62

To summarize, BSpiderBoost achieves the best recovery result but is much harder to tune in practice.
In terms of convergence, BSpiderBoost is marginally better than BSGD on this sine-wave task. A
possible reason might be that the objective function in our example is not necessarily smooth due
to the ReLU activation. Ramdon NN could fail the MAML task when there is a limited amount of
samples. More details are available in Appendix D.2.
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