
Appendix
A Proof of Lemma 2.2

Proof: Denote ĝ(x, ξ) := 1
m

∑m
j=1 gηj (x, ξ). Note that

‖E∇F̂ (x; ξ, {ηj}mj=1)−∇F (x)‖22

≤
∥∥∥EξE{ηj}mj=1|ξ (∇ĝ(x, ξ))

>∇fξ (ĝ(x, ξ))− Eξ(Eη|ξ∇gη(x, ξ))>∇fξ(Eη|ξgη(x, ξ))
∥∥∥2

2

≤
∥∥∥EξE{ηj}mj=1|ξ (∇ĝ(x, ξ))

>∇fξ (ĝ(x, ξ))− EξE{ηj}mj=1|ξ (∇ĝ(x, ξ))
>∇fξ

(
Eη|ξgη(x, ξ)

)∥∥∥2

2

+
∥∥∥EξE{ηj}mj=1|ξ (∇ĝ(x, ξ))

>∇fξ
(
Eη|ξgη(x, ξ)

)
− Eξ(Eη|ξ∇gη(x, ξ))>∇fξ(Eη|ξgη(x, ξ))

∥∥∥2

2

=
∥∥∥EξE{ηj}mj=1|ξ (∇ĝ(x, ξ))

>∇fξ (ĝ(x, ξ))− EξE{ηj}mj=1|ξ (∇ĝ(x, ξ))
>∇fξ

(
Eη|ξgη(x, ξ)

)∥∥∥2

2

≤ EξE{ηj}mj=1|ξ‖∇ĝ(x, ξ)‖22‖∇fξ (ĝ(x, ξ))−∇fξ
(
Eη|ξgη(x, ξ)

)
‖22

≤ L2
gS

2
fEξE{ηj}mj=1|ξ‖ĝ(x, ξ)− Eη|ξgη(x, ξ)‖22

≤
L2
gS

2
fσ

2
g

m
.

The equality holds as

EξE{ηj}mj=1|ξ (∇ĝ(x, ξ))
>∇fξ

(
Eη|ξgη(x, ξ)

)
− Eξ(Eη|ξ∇gη(x, ξ))>∇fξ(Eη|ξgη(x, ξ))

=EξE{ηj}mj=1|ξ(∇ĝ(x, ξ)− Eη|ξ∇gη(x, ξ))>∇fξ(Eη|ξgη(x, ξ))

=0.

�

B Convergence Analysis

In this section, we present the proof of Theorems 3.1, 3.2, and 3.3. Based on these theorems, we
demonstrate the sample complexity of BSGD with strongly convex, convex, and weakly convex
objectives.

First, we present the proof framework for strongly convex and convex objectives. Recall BSGD in
Algorithm 1 , at iteration t, BSGD first generates sample ξt from the distribution of ξ and m samples
{ηtj}mtj=1 from the conditional distribution of η|ξt. We define the following auxiliary functions to
facilitate our analysis:

p(x, ξt) := fξt(Eη|ξtgη(x, ξt)); p̂(x, ξt) := fξt

( 1

mt

mt∑
j=1

gηtj (x, ξt)
)
.

Note that F̂ (x; ξt, {ηtj}mtj=1) = p̂(x, ξt). The biased gradient estimator used in BSGD is∇p̂(x, ξt).
Denote x∗ ∈ argminx∈XF (x), At = 1

2 ||xt − x∗||22, at = EAt. Since ΠX (x∗) = x∗ and the
projection operator is non-expansive, we have

At+1 =
1

2
||xt+1 − x∗||22

=
1

2
||ΠX (xt − γt∇xp̂(xt, ξt))−ΠX (x∗)||22

≤ 1

2
||xt − x∗ − γt∇xp̂(xt, ξt)||22

= At +
1

2
γ2
t ||∇xp̂(xt, ξt)||22 − γt∇xp̂(xt, ξt)>(xt − x∗).

(12)
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Dividing γt on both sides and taking expectation over {ξt, {ηtj}mtj=1}, it holds

E∇xp̂(xt, ξt)>(xt − x∗) ≤
at − at+1

γt
+

1

2
γtE||∇xp̂(xt, ξt)||22. (13)

By Assumption 3.1, we have

−∇xp̂(xt, ξt)>(xt − x∗) ≤ p̂(x∗, ξt)− p̂(xt, ξt)−
µ

2
‖xt − x∗‖22

= p̂(x∗, ξt)− p(x∗, ξt)︸ ︷︷ ︸
:=ζt1

+ p(x∗, ξt)− p(xt, ξt)︸ ︷︷ ︸
:=ζt2

+ p(xt, ξt)− p̂(xt, ξt)︸ ︷︷ ︸
:=ζt3

−µ
2
‖xt − x∗‖22.

(14)

Taking expectation over {ξt, {ηtj}mtj=1} on both sides, by the definition of p(x, ξ), it holds Eξt [ζt2 |
xt] = Eξt [F (x∗)− F (xt) | xt], then

−E∇xp̂(xt, ξt)>(xt − x∗) ≤ Eζt1 + Eζt3 + E[F (x∗)− F (xt)]− µat. (15)
Since x∗ and xt are independent of {ξt, {ηtj}mj=1}, by Lemma 2.1, we upper bound Eζt1 and Eζt3
using ∆f (mt):

|Eζt1| ≤ ∆f (mt), |Eζt3| ≤ ∆f (mt).

Summing up (13) and (15), we obtain

E[F (xt)− F (x∗)] ≤ 2∆f (mt)− µat +
at − at+1

γt
+

1

2
γtE||∇xp̂(xt, ξt)||22. (16)

By convexity of F and the definition of x̂T = 1
T

∑T
t=1 xt, we have

E[F (x̂T )− F (x∗)] = E
[
F

(
1

T

T∑
t=1

xt

)
− F (x∗)

]
≤ 1

T

T∑
t=1

E[F (xt)− F (x∗)], (17)

We then prove the convergence of BSGD for strongly convex and convex objectives based on (16).

B.1 Global Convergence of BSGD for Strongly Convex Objectives

We prove Theorem 3.1, the strongly convex case for which Assumption 3.1 holds with µ > 0.

Proof: Since F̂ is SF -Lipschitz smooth and µ-strongly convex, we have

E‖∇F̂ (x)‖22 ≤2E‖∇F̂ (x)−∇F̂ (x∗)‖22 + 2E‖∇F̂ (x∗)‖22
≤2S2‖x− x∗‖22 + 2E‖∇F̂ (x∗)‖22
≤4S2/µ(F (x)− F (x∗)) + 2E‖∇F̂ (x∗)‖22.

(18)

It implies that

E[F (xt)−F (x∗)] ≤ 2∆f (mt)−µat+
at − at+1

γt
+

1

2
γt(4S

2
F /µ(F (x)−F (x∗))+2E‖∇F̂ (x∗)‖22).

(19)
Therefore, we have for γt ≤ µ

4S2
F

,

EF (xt)− F (x∗) ≤ 1

1− γtS2
F /µ

(
2∆f (mt)− µat +

at − at+1

γt
+ γtE‖∇F̂ (x∗)‖22

)
≤ 2

(
2∆f (mt)− µat +

at − at+1

γt
+ γtE‖∇F̂ (x∗)‖22

)
.

(20)

Summing up (20) from t = 1 to T ,

1

T

T∑
t=1

E[F (xt)− F (x∗)]

≤ 2

T

T∑
t=1

[
2∆f (mt)− µat +

at − at+1

γt
+ γtE‖∇F̂ (x∗)‖22

]

≤ 2

T

T∑
t=1

[
2∆f (mt) + γtE‖∇F̂ (x∗)‖22

]
+

2

T

T∑
t=2

at

(
1

γt
− 1

γt−1
− µ

)
+

2

T
a1

(
1

γ1
− µ

)
.

(21)
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Set γt = 1
µ(t+c) and c = max{4S2

F /µ
2 − 1, 0}. It makes sure that γt ≤ γ1 ≤ µ

4S2
F

. Since

1/γ1 − µ ≤ µ(4S2
F /µ

2 − 1), with inequality (17), it holds

E[F (x̂T )− F (x∗)] ≤ 4

T

T∑
t=1

∆f (mt) +
1

T

T∑
t=1

2E‖∇F̂ (x∗)‖22
µ(t+ c)

+
S2
F

4µT
‖x1 − x∗‖22.

By the fact that
∑T
t=1

1
t+c ≤

∑T
t=1

1
t ≤ log(T ) + 1, it holds

E[F (x̂T )− F (x∗)] ≤ 4

T

T∑
t=1

∆f (mt) +
2E‖∇F̂ (x∗)‖22(log(T ) + 1) + S2

F /4‖x1 − x∗‖22
Tµ

.

�

We demonstrate the sample complexity using the following corollary.

Corollary B.1 To achieve an ε-optimal solution, the total sample complexity of BSGD in the strongly
convex case is Õ(ε−3) for objectives with Lipschitz continuous fξ and Õ(ε−2) for objectives with
Lipschitz smooth fξ.

It implies that the smoothness of the outer function makes a difference in the total sample complexity
of BSGD when solving CSO. It is worth pointing out that the sample complexity of BSGD matches
with that of ERM (SAA) for strongly convex objectives established in Hu et al. [30]. We now prove
Corollary B.1.

Proof: For fixed mini-batch size, to guarantee that E[F (x̂T )−F (x∗)] ≤ ε, setting T = Õ(ε−1) and
picking m = O(ε−2) for objectives with Lipschitz continuous outer function fξ and m = O(ε−1) for
objectives with Lipschitz smooth outer function fξ are sufficient to guarantee that x̂T is an ε-optimal
solution to the (1).

As for time-varying mini-batch sizes, letting mt = t2 for Lipschitz continuous fξ. Since
∑T
t=1

1
t ≤

log(T ) + 1, it holds

1

T

T∑
t=1

∆f (mt) =
1

T

T∑
t=1

Lfσg
t
≤ Lfσg(log(T ) + 1)

T
≤ O(ε).

As a result, setting T = Õ(ε−1); the total sample complexity is
∑T
t=1(mt + 1) = O(T 3) = Õ(ε−3).

Set mt = t for Lipschitz smooth fξ. Since
∑T
t=1

1
t ≤ log(T ) + 1, it holds

1

T

T∑
t=1

∆f (mt) ≤
1

T

T∑
t=1

Sfσ
2
g

2mt
≤
Sfσ

2
g(log(T ) + 1)

2T
≤ O(ε).

Setting T = Õ(ε−1), the total sample complexity is
∑T
t=1(mt + 1) = O(T 2) = Õ(ε−2) for

objectives with Lipschitz smooth fξ. �

B.2 Global Convergence of BSGD for Convex Objectives

We prove Theorem 3.2, the convex case for which Assumption 3.1 holds with µ = 0.

Proof: Recall that

E[F (x̂T )− F (x∗)] ≤ 1

T
E

T∑
t=1

[F (xt)− F (x∗)].

Since β = 0 and µ = 0, summing up (16) from t = 1 to T ,

1

T

T∑
t=1

E[F (xt)− F (x∗)] ≤ 1

T

T∑
t=1

[
2∆f (mt) +

at − at+1

γt
+

1

2
γtE||∇xp̂(xt, ξt)||22

]

≤ 1

T

T∑
t=1

[
2∆f (mt) +

1

2
γtM

2

]
+

1

T

T∑
t=2

at

(
1

γt
− 1

γt−1

)
+

1

γ1T
a1.
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Plugging constant stepsizes γt = γ and a1 = ‖x1 − x∗‖22/2, we have

E[F (x̂T )− F (x∗)] ≤ 2

T

T∑
t=1

∆f (mt) +
1

2
γM2 +

‖x1 − x∗‖22
2Tγ

.

Setting γ = c√
T

, we have the desired result

E[F (x̂T )− F (x∗)] ≤ 2

T

T∑
t=1

∆f (mt) +
M2c2 + ‖x1 − x∗‖22

2c
√
T

. (22)

�

Comparing to Nemirovski et al. [36] and Hazan et al. [25], (22) has an extra term 2
T

∑T
t=1 ∆f (mt)

that represents the average estimation bias of the function value estimator p̂(x, ξt) over F (x).

Corollary B.2 Under the same assumptions as Theorem 3.2, to achieve an ε-optimal solution, the
total sample complexity required by BSGD is O(ε−4) for convex CSO objectives with Lipschitz
continuous fξ and O(ε−3) for convex CSO objectives with Lipschitz smooth fξ.

The sample complexity is achieved for either fixed mini-batch size mt = m or the time-varying
mini-batch sizes mt = t for Lipschitz continuous fξ or mt = d

√
te for Lipschitz smooth fξ.

Proof: Let T = O(ε−2). For fixed inner batch sizes mt = m, the selection of m is obvious by
definition of ∆f (mt).

For time-varying batch sizes, when fξ is Lipschitz continuous, let mt = t. Invoking
∑T
t=1 1/

√
t ≤

2
√
T , we have,

E[F (x̂T )−F (x∗)] ≤ 2

T

T∑
t=1

Lfσg√
t

+
M2c2 + ‖x1 − x∗‖22

2c
√
T

≤ 4Lfσg√
T

+
M2c2 + ‖x1 − x∗‖22

2c
√
T

≤ ε.

The sample complexity is
∑T
t=1(t+ 1) = O(T 2) = O(ε−4).

When fξ is Lipschitz smooth, letting mt = d
√
te, we have

E[F (x̂T )−F (x∗)] ≤ 2

T

T∑
t=1

Sfσ
2
g

2
√
t

+
M2c2 + ‖x1 − x∗‖22

2c
√
T

≤
2Sfσ

2
g√

T
+
M2c2 + ‖x1 − x∗‖22

2c
√
T

≤ ε.

The sample complexity is
∑T
t=1(
√
t+ 1) = O(T 3/2) = O(ε−3). �

B.3 Stationarity Convergence of BSGD for Weakly Convex Objectives

We prove Theorem 3.3. In this case, Assumption 3.1 with µ < 0 implies that F (x) is |µ|-weakly
convex. For simplicity, we denote x′t := proxλF (xt). λ is specified later in the proof.

Proof: By the definition of Moreau envelope, we have for any µ̂ > |µ|,

F1/µ̂(xt+1) ≤ F (x′t) +
µ̂

2
||x′t − xt+1||2

≤ F (x′t) + µ̂γt∇p̂(xt, ξt)>(x′t − xt+1) +
µ̂

2
||x′t − xt||2 −

µ̂

2
||xt+1 − xt||2

= F1/µ̂(xt) + µ̂γt∇p̂(xt, ξt)>(x′t − xt+1)− µ̂

2
||xt+1 − xt||2

= F1/µ̂(xt) + µ̂γt∇p̂(xt, ξt)>(x′t − xt) + µ̂γt∇p̂(xt, ξt)>(xt − xt+1)− µ̂

2
||xt+1 − xt||2

= F1/µ̂(xt) + µ̂γt∇p̂(xt, ξt)>(x′t − xt) +
µ̂γ2

t ‖∇p̂(xt, ξt)‖22
2

,

(23)
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where the second inequality comes from the triangle inequality, and the last equality comes from
plugging in xt+1 − xt. By weak convexity of p̂(·), we have

∇p̂(xt, ξt)>(x′t − xt)

≤ p̂(x′t, ξt)− p̂(xt, ξt) +
|µ|
2
||x′t − xt||2

≤ p̂(x′t, ξt)− p(x′t, ξt)︸ ︷︷ ︸
:=ζt1

+ p(x′t, ξt)− p(xt, ξt)︸ ︷︷ ︸
:=ζt2

+ p(xt, ξt)− p̂(xt, ξt)︸ ︷︷ ︸
:=ζt3

+
|µ|
2
||x′t − xt||2.

(24)

By definition, Eξtp(x, ξt) = F (x). Invoking Lemma 2.1, |Eζt1| ≤ ∆f (mt), |Eζt3| ≤ ∆f (mt).
Combining (23) and (24), taking expectation over {ξt, {ηtj}mtj=1} on both sides, and using the fact
that E‖∇p̂(x, ξ)‖22 ≤M2, we have

F1/µ̂(xt+1)− F1/µ̂(xt) ≤ µ̂γt(2∆f (mt) + F (x′t)− F (xt) +
|µ|
2
||x′t − xt||2) +

µ̂γ2
tM

2

2
.

Dividing µ̂ on both sides, rearranging and summing up from t = 1 to T , we have
T∑
t=1

γt

(
F (xt)− F (x′t)−

|µ|
2
||x′t − xt||2

)
≤ 1

µ̂

(
F1/µ̂(x1)− F1/µ̂(xT+1) +

µ̂M2
∑T
t=1 γ

2
t

2

)
+ 2

T∑
t=1

γt∆f (mt).

(25)

We divide
∑T
t=1 γt on both sides of the inequality above. Recall the definition of the output of

the algorithm x̂R. Since γt/
∑T
t=1 γt = 1/T due to the constant stepsize and x̂R is selected from

{x1, ..., xT } with equal probability, we have

E
[
F (x̂R)− F (x̂′R)− |µ|

2
||x̂′R − x̂R||2

]
≤
F1/µ̂(x1)− F1/µ̂(xT+1) + 1

2 µ̂M
2
∑T
t=1 γ

2
t + 2µ̂

∑T
t=1 γt∆f (mt)

µ̂
∑T
t=1 γt

.

(26)

Noticing that F (z) + µ̂
2 ||z − x||

2 is (µ̂− |µ|)-strongly convex if µ̂ > |µ|. Setting λ = 1/µ̂, we have

F (xt)− F (x′t)−
|µ|
2
||x′t − xt||2

= (F (xt) +
µ̂

2
||xt − xt||2)−

(
F (x′t) +

µ̂

2
||x′t − xt||2

)
+
µ̂− |µ|

2
||x′t − xt||2

≥ (µ̂− |µ|)||x′t − xt||2 =
µ̂− |µ|
µ̂2

G2
1/µ̂F (xt),

where the last inequality uses the strong convexity of F (z) + µ̂
2 ‖z − x‖

2
2. Recall that GλF (x) :=

1
λ ||proxλF (x)− x||2. Combining with (26), we obtain

E
[
G2

1/µ̂F (x̂R)
]
≤ µ̂

µ̂− |µ|
F1/µ̂(x1)− F1/µ̂(xT+1) + 1

2 µ̂M
2
∑T
t=1 γ

2
t + 2µ̂

∑T
t=1 γt∆f (mt)∑T

t=1 γt
.

(27)

Plugging γt = c/
√
T and µ̂ = 2|µ| into the expression above, we have

E
[
G2

1/(2|µ|)F (x̂R)
]

≤ 2
F1/(2|µ|)(x1)− F1/(2|µ|)(xT+1) + |µ|M2T c2

T + 4|µ| c√
T

∑T
t=1 ∆f (mt)

T · c√
T

= 2
F1/(2|µ|)(x1)− F1/(2|µ|)(xT+1) + |µ|M2c2

c
√
T

+
8|µ|

∑T
t=1 ∆f (mt)

T
.

By the fact that F1/(2|µ|)(xT+1) ≥ infx∈X F (x), we conclude the proof. �
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Corollary B.3 Under the same assumptions as Theorem 3.3, to achieve an ε-stationary point, the
total sample complexity required by BSGD is at most O(ε−8). If further assuming Lipschitz smooth
fξ, the sample complexity is at most O(ε−6).

The proof and batch size selection are the same as the convex case. We also provide a convergence
guarantee using decaying stepsizes.

Corollary B.4 (Decaying Stepsizes) Let T ≥ 3, inner batch size mt ≡ m, and stepsize γt =
c/
√
t (t = 1, · · · , T ) with c > 0. If the output x̂R is chosen from {x1, . . . , xT } with P (x̂R = xi) =

γi/
∑T
t=1 γt, (i = 1, · · · , T ), we have,

E[G2
1/(2|µ|)F (x̂R)] ≤

2F1/(2|µ|)(x1)− 2 minx∈X F (x) + 4|µ|c2M2 lnT

c
√
T

+ 8|µ|∆f (m).

Proof: Note that the argument till (26) still applies.

Plugging γt = c√
t

into (27), we have

E
[
G2

1/(2|µ|)F (x̂R)
]

≤ 2 ·

(
F1/(2|µ|)(x1)− F1/(2|µ|)(xT+1) + |µ|M2

∑T
t=1 γ

2
t∑T

t=1 γt
+

4|µ|
∑T
t=1 γt∆f (m)∑T
t=1 γt

)

≤
2F1/(2|µ|)(x1)− 2F1/(2|µ|)(xT+1) + 2|µ|M2

∑T
t=1 γ

2
t∑T

t=1 γt
+ 8|µ|∆f (m).

Note that for T ≥ 3

T∑
t=1

t−
1
2 ≥

∫ T+1

1

t−
1
2 dt = 2(

√
T + 1− 1) ≥

√
T ;

T∑
t=1

t−1 ≤ 1 +

∫ T

2

t−1dt = 1 + lnT ≤ 2 lnT.

We conclude the proof. �

B.4 Stationary Convergence of BSpiderBoost for Nonconvex Smooth Objectives

To analyze the convergence, define the following auxiliary functions:

F̂m(x) := EξE{ηi|ξ}mi=1
fξ

( 1

m

m∑
i=1

gηi(x, ξ)
)
,

where {ηi}mi=1 are i.i.d samples from the conditional distribution P(η|ξ). We summarize the properties
of F and F̂m as follows:

Proposition B.1 Under Assumptions 2.1, 3.3, it holds that

(a). F (x) and F̂m(x) are SF -Lipschitz smooth where SF = SgLf + SfL
2
g .

(b). Eξ‖∇fξ(y) −∇Efξ(y)‖22 ≤ L2
f , Eξ,η‖∇gη(x, ξ) −∇Egη(x, ξ)‖22 ≤ L2

g, ‖∇F̂m(x)‖22 ≤
L2
fL

2
g.

(c). By Lemma 2.1, ‖F (x)− F̂m(x)‖22 ≤
L2
fσ

2
g

m

(d). By Lemma 2.2, ‖∇F (x)−∇F̂m(x)‖22 ≤
L2
gS

2
fσ

2
g

m .

Note that there are other conditions under which these properties would hold, for instance, a natural
sufficient condition to ensure the smoothness of F (·) and F̂m(·) is when f or g is linear, i.e. Sf or
Sg equals to zero.
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Proof: Denote g(x, ξ) = Eη|ξgη(x, ξ), ĝ(x, ξ) := 1
m

∑m
j=1 gηj (x, ξ). By definition,

∇F (x) = ∇Eξ
[
fξ

(
g(x, ξ)

)]
= Eξ

[
∇
(
fξ
(
g(x, ξ)

))]
= Eξ

[
∇fξ

(
g(x, ξ)

)
· ∇g(x, ξ)

]
.

Note that for each fixed ξ, we have

‖∇
(
fξ(g(x, ξ))

)
−∇

(
fξ(g(y, ξ))

)
‖2 = ‖∇fξ(g(x, ξ)) · ∇g(x, ξ)−∇fξ(g(y, ξ)) · ∇g(y, ξ)‖2

= ‖∇fξ(g(x, ξ)) · ∇g(x, ξ)−∇fξ(g(x, ξ)) · ∇g(y, ξ) +∇fξ(g(x, ξ)) · ∇g(y, ξ)−∇fξ(g(y, ξ)) · ∇g(y, ξ)‖2
≤ ‖∇fξ(g(x, ξ)) ·

(
∇g(x, ξ)−∇g(y, ξ)

)
‖2 + ‖

(
∇fξ(g(x, ξ))−∇fξ(g(y, ξ))

)
· ∇g(y, ξ)‖2

≤ Lf‖∇g(x, ξ)−∇g(y, ξ)‖2 + Sf‖
(
g(x, ξ)− g(y, ξ)

)
· ∇g(y, ξ)‖2

≤ (SgLf + SfL
2
g)‖x− y‖2,

where the last inequality comes from Lipschitz continuity and Lipschitz smoothness of gη(·, ξ).
Similarly,

∇
(
fξ
(
ĝ(x, ξ)

))
= ∇fξ

(
ĝ(x, ξ)

)>∇ĝ(x, ξ).

‖∇
(
fξ(ĝ(x, ξ))

)
−∇

(
fξ(ĝ(y, ξ))

)
‖2

= ‖∇ĝ(x, ξ)>∇fξ(ĝ(x, ξ))−∇ĝ(y, ξ)>∇fξ(ĝ(y, ξ))‖2
= ‖∇ĝ(x, ξ)>∇fξ(ĝ(x, ξ))−∇ĝ(y, ξ)>∇fξ(ĝ(x, ξ)) +∇ĝ(y, ξ)>∇fξ(ĝ(x, ξ))−∇ĝ(y, ξ)>∇fξ(ĝ(y, ξ))‖2
≤ ‖
(
∇ĝ(x, ξ)−∇ĝ(y, ξ)

)>∇fξ(ĝ(x, ξ))‖2 + ‖∇ĝ(y, ξ)>
(
∇fξ(ĝ(x, ξ))−∇fξ(ĝ(y, ξ))

)
‖2

≤ Lf‖∇ĝ(x, ξ)−∇ĝ(y, ξ)‖2 + Sf‖ĝ(x, ξ)− ĝ(y, ξ)‖2 · ‖∇g(y, ξ)‖2
≤ (SgLf + SfL

2
g)‖x− y‖2.

It concludes the proof of Proposition B.1(a).

As for Proposition B.1(b), note that for any random variables X , we have E‖X − EX‖22 ≤ E‖X‖22.
It implies that

Eξ‖∇fξ(y)−∇Efξ(y)‖22 ≤ Eξ‖∇fξ(y)‖22 ≤ L2
f ,

Eξ,η‖∇gη(x, ξ)−∇Egη(x, ξ)‖22 ≤ Eξ,η‖∇gη(x, ξ)‖22 ≤ L2
g.

(28)

It further holds that

EξE{ηi|ξ}mi=1

∥∥∥∇(fξ(ĝ(x, ξ)
))
−∇F̂m(x)

∥∥∥2

2

≤ EξE{ηi|ξ}mi=1

∥∥∥∇(fξ(ĝ(x, ξ)
))∥∥∥2

2

= EξE{ηi|ξ}mi=1

∥∥∥∇fξ(ĝ(x, ξ)
)>
∇
(
ĝ(x, ξ)

)∥∥∥2

2

≤ EξE{ηi|ξ}mi=1

∥∥∥∇fξ(ĝ(x, ξ)
)∥∥∥2

2
·
∥∥∥ 1

m

m∑
i=1

∇gηi(x, ξ)
∥∥∥2

2

≤ L2
fEξE{ηi|ξ}mi=1

[ 1

m

m∑
i=1

∥∥∥∇gηi(x, ξ)∥∥∥2

2

]
≤ L2

fL
2
g.

(29)

Proposition B.1(c) and (d) are direct implications of Lemma 2.1 and Lemma 2.2, respectively.

�

Recall the gradient estimator vt of BSpiderBoost

vt =

{
∇FN2

m (xt)−∇FN2
m (xt−1) + vt−1 (nt − 1)q + 1 ≤ t ≤ ntq − 1,

∇FN1
m (xt) t = (nt − 1)q,

(30)

where nt = dt/qe. Different from a key step in the analysis of SPIDER related literature [18, 44], the
sequence {vt−∇F (xt)} in our work is not a martingale sequence because∇FN2

m (xt)−∇FN2
m (xt−1)
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is not an unbiased estimator of∇F (xt)−∇F (xt−1). As a result, the error would accumulate during
iterations. To fix the issue, we consider the following sequence in our analysis

{vt −∇F̂m(xt)}t. (31)
which is a martingale. The key lemma of SPIDER is formulated as follows:

Lemma B.1 ([18], Lemma 1) Denote nt = dt/qe, then for all (nt − 1)q + 1 ≤ t ≤ ntq − 1, we
have

E‖vt −∇F̂m(xt)‖22 ≤
S2
F

N2
E‖xt − xt−1‖22 + E‖vt−1 −∇F̂m(xt−1)‖22, (32)

and by telescoping and Proposition B.1 we have

E‖vt −∇F̂m(xt)‖22 ≤ E‖v(nt−1)q −∇F̂m(x(nt−1)q)‖22 +

t−1∑
i=(nt−1)q

S2
F

N2
E‖xi+1 − xi‖22

≤
L2
fL

2
g

N1
+

t−1∑
i=(nt−1)q

S2
F

N2
E‖xi+1 − xi‖22.

(33)

Proposition B.2 For each iteration, we have

F (xt+1) ≤ F (xt)−
γ(1− SF γ)

2
‖vt‖22 + γ

(
‖∇F (xt)−∇F̂m(xt)‖22 + ‖∇F̂m(xt)− vt‖22

)
.

(34)

Proof: By smoothness of F (·), we have

F (xt+1) ≤ F (xt) +∇F (xt)
>(xt+1 − xt) +

SF
2
||xt+1 − xt||2

= F (xt)− γ∇F (xt)
>vt +

SF γ
2

2
||vt||2

= F (xt)− γv>t (∇F (xt)−∇F̂m(xt) +∇F̂m(xt)− vt)− 2 · γ
4
‖vt‖22 −

γ(1− SF γ)

2
‖vt‖22,

≤ F (xt)−
γ(1− SF γ)

2
‖vt‖22 + γ

(
‖∇F (xt)−∇F̂m(xt)‖22 + ‖∇F̂m(xt)− vt‖22

)
,

(35)
the last inequality comes from Young’s inequality, more precisely, i.e.

−γv>t (∇F (xt)−∇F̂m(xt))−
γ

4
‖vt‖22 ≤ γ‖∇F (xt)−∇F̂m(xt)‖22. (36)

�

Proposition B.3 Denote

δ :=
L2
gS

2
fσ

2
g

m
+
L2
fL

2
g

N1

for each iteration, we have

F (xt+1) ≤ F (xt)−
γ(1− SF γ)

2
‖vt‖22 + γδ + γ3

t−1∑
i=(nt−1)q

S2
F

N2
E‖vi‖2 (37)

Proof: Apply Proposition B.1, B.2 and Lemma B.1, we have

F (xt+1) ≤ F (xt)−
γ(1− SF γ)

2
‖vt‖22 + γ

(
‖∇F (xt)−∇F̂m(xt)‖22 + ‖∇F̂m(xt)− vt‖22

)
≤ F (xt)−

γ(1− SF γ)

2
‖vt‖22 + γ

(L2
fσ

2
gg + L2

gS
2
fσ

2
g

m
+
L2
fL

2
g

N1
+

t−1∑
i=(nt−1)q

S2
F

N2
E‖xi+1 − xi‖22

)

= F (xt)−
γ(1− SF γ)

2
‖vt‖22 + γ3

t−1∑
i=(nt−1)q

S2
F

N2
E‖vi‖2 + γδ.

(38)
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which concludes the proof. �

Now we proceed to the proof of the convergence rate of BSpiderBoost.

Proof: [Proof of Theorem 3.4] Based on Proposition B.3, we telescope in each epoch and take
expectation,

E
[
F (xt+1)

]
≤ E

[
F (x(nt−1)q)−

γ(1− SF γ)

2

t∑
j=(nt−1)q

‖vj‖22 + γ3
t∑

j=(nt−1)q

j−1∑
i=(nt−1)q

S2
F

N2
E‖vi‖2 + γ

t∑
j=(nt−1)q

δ
]

≤ E
[
F (x(nt−1)q)−

γ(1− SF γ)

2

t∑
j=(nt−1)q

‖vj‖22 + γ3

ntq−1∑
j=(nt−1)q

t∑
i=(nt−1)q

S2
F

N2
E‖vi‖2 + γ

t∑
j=(nt−1)q

δ
]

= E
[
F (x(nt−1)q)−

γ(1− SF γ)

2

t∑
j=(nt−1)q

‖vj‖22 +
γ3S2

F q

N2

t∑
i=(nt−1)q

E‖vi‖2 + γ

t∑
j=(nt−1)q

δ
]

≤ E
[
F (x(nt−1)q)−

t∑
i=(nt−1)q

(
β‖vi‖22 − γδ

)]
,

(39)

the second inequality follows from ntq > t and j − 1 < t. Further telescoping for all iterations, we
have

E
[
F (xT )− F (x0)

]
≤ E

[
−
T−1∑
i=0

(
β‖vi‖22 − γδ

)]
= γTδ − β

T−1∑
i=0

E‖vi‖22. (40)

As a result, for xS , its corresponding vS satisfies that

E‖vS‖22 ≤
1

T

T−1∑
i=0

E‖vi‖22 ≤
F (x0)− EF (xT )

βT
+
γ

β
δ ≤ ∆

βT
+
γ

β
δ. (41)

By substituting the parameter settings, we could further show that

E
[1

3
‖∇F (xS)‖22

]
≤ E

[
‖∇F (xS)−∇F̂m(xS)‖22 + ‖∇F̂m(xS)− vS‖22 + ‖vS‖22

]
≤
L2
gS

2
fσ

2
g

m
+
(L2

fL
2
g

N1
+ E

S−1∑
i=(nS−1)q

S2
F

N2
E‖xi+1 − xi‖22

)
+
( ∆

βT
+
γ

β
δ
)

≤ δ +
∆

βT
+
γ

β
δ +

S2
F

N2
E

S−1∑
i=(nS−1)q

E‖xi+1 − xi‖22

≤ δ +
∆

βT
+
γ

β
δ +

γ2S2
F

N2
· q
T

T−1∑
i=0

E‖vi‖22

≤ δ +
∆

βT
+
γ

β
δ +

γ2S2
F q

N2

( ∆

βT
+
γ

β
δ
)

=
(

1 +
γ

β
+
γ3S2

F q

N2β

)
δ +

1

βT

(
1 +

γ2S2
F q

N2

)
∆

≤
(

1 +
1

2βSF
+

1

16βSF

)
δ +

1

βT

(
1 +

1

8

)
∆

(42)

where the second inequality comes from Proposition B.1(d), Lemma B.1, and Equation (41); the third
inequality follows from the fact that the probability such that nS = 1 or 2, · · · , nT is less or equal to
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q/T ; recall the definition of δ and multiply both sides by 3, then we have

E‖∇F (xS)‖22 ≤
(

3 +
3

2βSF
+

3

16βSF

)(L2
gS

2
fσ

2
g

m
+
L2
fL

2
g

N1

)
+

4∆

βT

≤ ε2

4
+
ε2

4
+
ε2

2
= ε2,

(43)

By Jensen’s inequality for the function x2, it holds that(
E‖∇F (xS)‖2

)2 ≤ E‖∇F (xS)‖22 ≤ ε2. (44)

So xS is the stationary point we desire. The corresponding iteration complexity is

dT/qeN1 + 2TN2 = O(ε−3), (45)

and the sample complexity is

dT/qeN1m+ 2TN2m = O(ε−5). (46)

which concludes the proof. �

C Lower Bounds, Proof of Theorem 4.1

Proof: We prove the lower bounds of ∆(A,F ,Φ) by constructing a hard instance of function and
a hard instance of an oracle.

The hard instance F (x) is such that F (x) is a CSO objective and it satisfies that x = (y, z) and
F (x) = F c(y) + F sm(z). It means that F is separable on y and z.

The oracle φ ∈ Φm returns a biased function value and a gradient estimator of F . Since F is
separable, we specifically consider a hard oracle instance φ such that φ returns a biased function
value estimator and a biased gradient estimator of F sm(z) due to the compositional structure on z
and it returns an unbiased function value estimator and an unbiased gradient estimator of F c(y).

Based on this specific hard instance construction on the function and the oracle, we could decompose
the lower bounds into two parts: one on coordinate y and the other on coordinate z. Note that the
part on coordinate y is the classical lower bounds using the stochastic first-order oracle. The part on
coordinate z is related to the extra bias term introduced by the biased oracle.

We first consider the (strongly) convex CSO function class. By Yao’s principle [46], we have

∆∗T (A,F ,Φ)

= inf
A∈A

sup
F∈F

sup
φ∈Φ

E∆A
T (F, φ,X )

≥ inf
A∈Ad

E{V,φ}∆A
T (FV , φ,X )

= inf
A∈Ad

E{V,φ}
[
FV (xAT (φ))− FV (x∗V )

]
,

≥ inf
A∈Ad

E{V,φ}
[
F c
V (yAT (φ))− F c

V (y∗V ) + F sm
V (zAT (φ))− F sm

V (z∗V )
]

≥ inf
A∈Ad

E{V,φ}
[
F c
V (yAT (φ))− F c

V (y∗V )
]

+ inf
A∈Ad

E{V,φ}
[
F sm
V (zAT (φ))− F sm

V (z∗V )
]

(47)

where Ad represents the class of all deterministic algorithms, xAT (φ) = (yAT (φ), zAT (φ)),
x∗V = (y∗V , z

∗
V ) is the minimizer of FV (x). We first consider the lower bounds on the y part

where the oracle returns an unbiased function value and gradient estimator. To lower bound
infA∈Ad E{V,φ}

[
F c
V (yAT (φ))− F c

V (y∗V )
]
, the hard instance construction of F cV (y) will satisfy the

following conditions.

Condition I:

• For V = +1 or V = −1, if yV ≤ 0, then F c
V (y) ≥ F c

V (0).

• For V = +1 or V = −1, F c
V (0)− infy F

c
V (y) = c0 where c0 ≥ 0 is a constant.
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Suppose that Condition I holds, we have

inf
A∈Ad

E{V,φ}
[
F c
V (yAT (φ))− F c

V (y∗V )
]

≥ inf
A∈Ad

E{V,φ}
[
(F c
V (0)− F c

V (y∗V ))I{yAT (φ)V ≤ 0}
]

= inf
A∈Ad

c0E{V,φ}
[
I{yAT (φ)V ≤ 0}

]
= inf
A∈Ad

c0P(yAT (φ)V ≤ 0).

(48)

Notice that (48) requires to lower bound a probability

PV {yAT (φ)V ≤ 0}.

For a constant v = +1 or v = −1, let Pv denote the probability distribution of the following trajectory

(yA0 , Gv(y
A
0 , ζ0), yA1 (φ), ..., Gv(y

A
T−1(φ), ζT−1), yAT (φ)).

It holds that

PV {yAT (φ)V ≤ 0} ≥ 1− ‖P+1 − P−1‖TV ≥ 1−
√

0.5DKL(P+1 || P−1),

where ‖ · ‖TV denotes the total variation distance of two probability distributions, DKL denotes
the KL divergence of two probability distributions. The first inequality holds by definition and the
second inequality comes from Pinsker’s inequality [11]. Since A ∈ Ad is a deterministic algorithm,
conditioned on oracle return φ(yj , ζj), yAj (φ) is deterministic. Conditioned on yAj (φ), the randomness
in φ(yAj (φ), ζj) only comes from ζj . By the chain rule of KL divergence, we have

DKL

(
P+1 || P−1

)
=

T−1∑
t=0

DKL(G+1(yAt (φ+1), ζt)|yAt (φ+1) || G−1(yAt φ−1, ζt)|yAt (φ−1)).

In our hard oracle construction, we require the following conditions:

Condition II

• The gradient estimator returned by the oracle, conditioned on the query point, is a normal
random variable such that conditioned on wt, it holds:

GV (yAt (φ), ζt))|yAt (φ) ∼ N(µAV , σ
2)

where µAV depends on the algorithm A, σ2 is the variance parameter of the oracle.

• There exists a constant by such that |µA+1 − µA−1| ≤ by .

Since the KL divergence between two normal random variables with the same variance σ2 is known to
be (µ1−µ2)2

2σ2 , where µ1 and µ2 are the expectations of the two normal random variables, respectively.
As a result, we have

DKL(P+1 || P−1) =
T (µA+1 − µA−1)2

2σ2
≤
Tb2y
2σ2

.

Thus, it implies that

PV {yAT (φ)V ≤ 0} ≥ 1−
√
T 2b2y
4σ2

. (49)

Therefore we have the lower bounds on the first term on the right hand side of (47):

inf
A∈Ad

E{V,φ}
[
F c
V (yAT (φ))− F c

V (y∗V )
]
≥ c0

(
1−

√
T 2b2y
4σ2

)
. (50)

Now we lower bound the second term infA∈Ad E{V,φ}
[
F sm
V (zAT (φ))− F sm

V (z∗V )
]

on the right hand
side of (47). Let F̂ sm

m,V (z) denote the expectation of the function value estimator returned by the
oracle on z part. Suppose the hard instance construction satisfies the following conditions.

Condition III:
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• For V = +1 or V = −1, if zV ≤ 0, then F sm
V (z) ≥ F sm

V (0).

• For V = +1 or V = −1, F sm
V (0)− F̂ sm

m,V (z∗V ) = cm where cm ≥ 0 for any m ≥ m0 .

• For V = +1 or V = −1, F̂ sm
m,V (z∗V )− F sm

V (z∗V ) = c′m, where c′m ≥ 0 is a constant.

Condition III guarantees that for any z such that zV ≤ 0, it holds

F sm
V (z)− F̂ sm

m,V (z∗V ) ≥ F sm
V (0)− F̂ sm

m,V (z∗V ) ≥ cm ≥ 0.

We further have that

inf
A∈Ad

E{V,φ}
[
F sm
V (zAT (φ))− F sm

V (z∗V )
]

≥ inf
A∈Ad

E{V,φ}(F sm
V (0)− F sm

V (z∗V ))I{zAT (φ)V ≤ 0}

= inf
A∈Ad

E{V,φ}(F sm
V (0)− F̂ sm

m,V (z∗V ) + F̂ sm
m,V (z∗V )− F sm

V (z∗V ))I{zAT (φ)V ≤ 0}

= inf
A∈Ad

(cm + c′m)P{zAT (φ)V ≤ 0}

≥ inf
A∈Ad

c′mP{zAT (φ)V ≤ 0}.

(51)

Similar as (49), we have

P{zAT (φ)V ≤ 0} ≥ 1−
√
T 2b2z
4σ2

,

where bz ≥ |µA1 −µA−1| with µAV as the expectation of the gradient estimator GV on z. To summarize,
if Condition I, II, and III hold, we have

∆∗T (A,F ,Φ) ≥ c0
(

1−
√
T 2b2y
4σ2

)
+ c′m

(
1−

√
T 2b2z
4σ2

)
. (52)

It remains to construct specific hard instances satisfying these conditions and demonstrate the lower
bounds.

Strongly convex CSO objective with smooth outer function The hard instance is

FV (x) = Eξ[fξ(Eη|ξgη(x, ξ))] =
1

2
y2 − V αy +

1

2
z2 − V βz. (53)

Note that the outer function fξ(y, z) = 1
2y

2 − V αy + 1
2z

2 − V βz and the inner function gη(x, ξ) =

(y, ηz), where η ∼ N(1, 1/β2) for any ξ. The minimizer of FV (x) is x∗V = (V α, V β). Further
F (x) can be decomposed as F c

V (y) = 1
2y

2−V αy and F sm
V (z) = Eξ[ 1

2 (Eη|ξηz)2−V (Eη|ξηzβ)] =
1
2z

2 − V βz. The oracle has access to an approximation function

F̂m,V (x) = F c
V (y)+F̂ sm

m,V (z) =
1

2
y2−V αy+

1

2
Eη̂2z2−V βEη̂z =

1

2
y2−V αy+

1

2

(
1+

1

mβ2

)
z2−V βz,

where η̂ = 1
m

∑m
j=1 ηj , and

F sm
V (z) =

1

2
z2 − V zβ, F̂ sm

V (z) =
1

2

(
1 +

σ2
η

m

)
z2 − V zβ.

. The gradient estimator returned by the oracle is

GV (x) = (∇F c(y),∇F̂ sm
m,V (z)) + ζ),

where ζ ∼ N(0, σ2). Thus EGV (x) = (∇F c(y),∇F̂ sm
m,V (z))) = ∇F̂m,V (x). We verify that

• FV (x) is strongly convex and the outer function fξ(y, z) is 1
2 -Lipschitz smooth.

• Condition I and III hold:
– c0 = α2

2 .

– cm = β2

2 (1− 1
mβ2 ). Thus cm ≥ 0 if m ≥ 1/β2.
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– c′m = 1
2m .

• Condition II holds:
– y − V α+ ζ and z − V β + ζ are normal random variables conditioned on V and x.
– by = 2α, bz = 2β.

As a result we have

∆∗T (A,F+
CSO,Φm) ≥ α2

2
(1−

√
Tα2

σ2
) +

1

2m
(1−

√
Tβ2

σ2
).

Thus there exists a hard instance with α = 2
3

√
σ2

T , β = 1
2

√
σ2

T such that

∆∗T (A,F+
CSO,Φm) ≥ 4σ2

27T
+

1

4m
, (54)

for strongly convex CSO objective with smooth outer function. As a result, to achieve ε-optimality,
the number of iterations should be at least T = O(ε−1), the inner batch size should be at least
m = O(ε−1).

Strongly convex CSO objective with non-smooth outer function We consider the hard instance
construction:

FV (x) = Eξfξ(Eη|ξgη(x, ξ)) =
1

2
y2 − V αy + β|z − V |+ β2(

1

2
z2 − V z),

with the outer function fξ(y, z) = 1
2y

2 − V αy + β|z − V |+ β2( 1
2z

2 − V z) and the inner function
gη(x, ξ) = (y, ηz), where η ∼ N(1, 1/β2) for any ξ. The minimizer of FV (x) is x∗V = (V α, V ).
Correspondingly, we have F c

V (y) = 1
2y

2 − V αy and F sm
V (z) = β|z − V | + β2( 1

2z
2 − V z). The

oracle has access to an approximation function

F̂m,V (x) = F c
V (y) + F̂ sm

m,V (z) =
1

2
y2 − V αy + βE[|η̂z − V |+ β2(

1

2
(η̂z)2 − V (η̂z))].

The subgradient estimator returned by the oracle for F̂m,V (x) is

GV (x) = (∇F c(y) + ζ,∇F̂ sm
m,V (z) + ζ)

where ζ ∼ N(0, σ2). We verify that

• FV (x) is strongly convex and the outer function fξ(y, z) is non-smooth.
• Condition I and III hold

– c0 = α2

2 .

– cm = β(1−E|η̂−1|)+ β2

2 (1−E(η̂−1)2). Since E|η̂−1| = 1
β
√
m

√
2
π , and E(η̂−1)2 =

1
β2m , cm ≥ 0 if 1 ≥ 1

β
√
m

√
2
π and 1 ≥ 1

β2m .

– c′m = 1√
m

√
2
π + 1

2m .

• Condition II is satisfied:
– ∇F c(y) + ζ and ∇F̂ sm

m,V (z) + ζ are normal random variables conditioned on V and x.

– by = 2α, bz = 2β + 2β2 as |∇F̂ sm
m,−(z)−∇F̂ sm

m,+(z)| ≤ 2β + 2β2.

As a result, we have

∆∗T (F+
CSO,Φm,A) ≥α

2

2

(
1−

√
Tα2

σ2

)
+ (

1√
m

√
2

π
+

1

2m
)
(

1−
√
T (β + β2)2

σ2

)
As a result, there exists a hard instance with α = 2

3

√
σ2

T , β + β2 = 1
2

√
σ2

T , such that

∆∗T (A,F+
CSO,Φm) ≥ 4σ2

27T
+

1

2
√
m

√
2

π
+

1

4m
, (55)

for strongly convex CSO objective with non-smooth outer function.
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Convex CSO objective with smooth outer function We consider a hard instance that differs from
the hard instance in the strongly convex objectives with a smooth outer function only in F c

V (y).

FV (x) = Eξ[fξ(Eη|ξgη(x, ξ))] = αI{|y−V | > r}(|y−V |−1

2
r)+αI{|y−V | ≤ r} 1

2r
(y−V )2+

1

2
z2−V zβ.

where the inner function gη(x, ξ) = (y, ηz), where η ∼ N(1, 1/β2) for any ξ and the outer function

fξ(y, z) = αI{|y − V | > r}(|y − V | − 1

2
r) + αI{|y − V | ≤ r} 1

2r
(y − V )2 +

1

2
z2 − V zβ.

Thus FV (x) is a convex CSO objective with smooth outer function. Specifically, we have

F c
V (y) = αI{|y − V | > r}(|y − V | − 1

2
r) + αI{|y − V | ≤ r} 1

2r
(y − V )2,

where r > 0. We construct an oracle with gradient estimator such that:

GV (x) = (∇F c
V (y) + ζ,∇F̂ sm

V (z) + ζ),

where ζ ∼ N(0, ζ). We verify that

• FV (x) is convex and the outer function fξ(y, z) is 1
r -Lipschitz smooth.

• Condition I and III hold:
– when 0 < r < 1 and m ≥ 1/β2, we have c0 = α(1− r/2) ≥ 0, cm = β2

2 (1− 1
β2m ) ≥ 0.

– c′m = 1
2m .

• Condition II holds:
– ∇F c

V (y) + ζ and ∇F̂ sm
V (z) + ζ are a normal random variables conditioned on V and x.

– by = 2α, bz = 2β.

As a result, we have,

∆∗T (F0
CSO,Φm,A) ≥ α

2

(
1−

√
Tα2

σ2

)
+

1

2m

(
1−

√
Tβ2

σ2

)
. (56)

Thus there exist a hard instance with α = 1
2

√
σ2

T and β = 1
2

√
σ2

T such that

∆∗T (F0
CSO,Φm,A) ≥

√
σ2

64T
+

1

4m
(57)

for convex CSO objective with smooth outer function.

Convex CSO objective with non-smooth outer function We consider the hard instance construc-
tion such that

FV (x) = Eξfξ(Eη|ξgη(x, ξ)) = α|y − V |+ β|z − V |.
where the inner function is gη(x, ξ) = (y, z − η) with η ∼ N(0, 1/β2) for any ξ and the outer
function fξ(y, z) = α|y − V | + β|z − V |. The minimizer of FV is x∗V = (V, V ). The oracle has
access to an approximation function:

F̂m,V (x) = F c
V (y) + F̂ sm

m,V (z) = α|y − V |+ βE|z − V − η̂|.

The subgradient estimator return by the oracle for F̂m,V (x) is

GV (x) = (∇F c(y) + ζ,∇F̂ sm
m,V (z) + ζ)

where ζ ∼ N(0, σ2) and we abuse the use of∇ to denote subgradient. We verify that

• FV (x) is convex and the outer function fξ(y, z) is non-smooth.
• Condition I and III are satisfied by our construction:

– c0 = α.
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– cm = β(1− E|η̂|), since E|η̂| = 1
β
√
m

√
2
π , cm ≥ 0 if 1 ≥ ση√

m

√
2
π .

– c′m = βE|η̂| = 1√
m

√
2
π .

• Condition II is satisfied:
– ∇F c

V (y) + ζ and∇F̂ sm
m,V (z) + ζ are normal random variables conditioned on V and x.

– by = 2α, bz = 2β.

As a result, we have

∆∗T (F0
CSO,Φm,A) ≥α(1−

√
Tα2

σ2
) +

1√
m

√
2

π
(1−

√
Tβ2

σ2
).

Thus there exists a hard instance with α = 1
2

√
σ2

T and β = 1
2

√
σ2

T , such that

∆∗T (A,F0
CSO,Φm) ≥

√
σ2

64T
+

1

2
√
m

√
2

π
(58)

for convex CSO objective with non-smooth outer function.

Letting the right-hand side of each result be greater or equal to ε, we have the corresponding sample
complexity for each case.

For the nonconvex CSO problems, we construct a hard instance such that F c(y) is nonconvex smooth
and F sm(z) is 1-strongly convex with Lipschitz continuous or Lipschitz smooth outer function. Since
F sm(z) is 1-strongly convex, it holds

‖∇F sm(z)‖22 ≥ 2(F sm(z)− inf
z
F sm(z)).

We further have

∆∗gT (A,F−CSO,Φm, )

= inf
A∈A

sup
φ∈Φm

sup
F∈F−CSO

E‖∇F
(
xAT (φ)

)
‖22

≥ inf
A∈A

sup
φ∈Φ

sup
F c∈F−

E‖∇F c
(
yAT (φ)

)
‖22 + inf

A∈A
sup
φ∈Φm

sup
F sm∈F+

CSO

E‖∇F sm
(
zAT (φ)

)
‖22

≥ sup
φ∈Φ

sup
PF∈P{F−}

inf
A∈A

E‖∇F
(
yAT (φ)

)
‖22 + inf

A∈A
sup
φ∈Φm

sup
F sm∈F+

CSO

E‖∇F sm
(
zAT (φ)

)
‖22

≥ sup
φ∈Φ

sup
PF∈P{F−}

inf
A∈A

E‖∇F
(
yAT (φ)

)
‖22 + inf

A∈A
sup
φ∈Φm

sup
F sm∈F+

CSO

2E(F sm
(
zAT (φ)

)
− inf

z
F sm(z)),

where Φ ⊂ Φm is the oracle class such that Eh(x, ζ) = F (x), the first inequality holds by definition,
the second inequality uses the fact from Braun et al. [5] that

inf
A∈A

sup
φ∈Φ

sup
F∈F

∆g
T (A,F, φ) ≥ sup

φ∈Φ
sup

F∈P{F}
inf
A∈A

∆g
T (A,F, φ), (59)

where P(F) is the set of all distributions over F , the third inequality holds by strong convexity.

Note that the second term on the right hand side of the last inequality is exactly twice the minimax
error for strongly convex CSO objectives. Thus we could use the hard instance construction earlier
on the strongly convex F̂ sm

m,V to lower bound it. When the oracle has access to an EF̂ (x; ξ, {ηj}mj=1)
with smooth outer function fξ,

inf
A∈A

sup
φ∈Φm

sup
F sm∈F+

CSO

2E(F sm
(
zAT (φ)

)
− inf

z
F sm(z∗)) ≥ 1

2m
.

When the oracle has access to an EF̂ (x; ξ, {ηj}mj=1) with nonsmooth outer function fξ,

inf
A∈A

sup
φ∈Φm

sup
F sm∈F+

CSO

2E(F sm
(
zAT (φ)

)
− inf

z
F sm(z)) ≥ 1

2m
+

√
2

mπ
.
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As for the first term on the right-hand side, we directly use the results from Arjevani et al. [3] to lower
bound it. Arjevani et al. [3] says that for F−S , the class of nonconvex smooth functions, it holds for
any ε > 0 that

sup
φ∈Φ

sup
PF∈P{F−S }

inf
A∈A

E‖∇F
(
yAt (φ)

)
‖22 ≥ ε2,

for any t ≤ tmax = O(σ2ε−4) and

sup
φ∈Φc

sup
PF∈P{F−S }

inf
A∈A

E‖∇F
(
yAt (φ)

)
‖22 ≥ ε2,

for t ≤ tcmax = O(σ2ε−3) where Φc denote an stochastic first-order unbiased oracle class such that
any oracle in this class has Lipschitz continuous gradient estimator. It implies that for any T , there
exists an ε > 0 such that T = ε−4 ≤ tmax and

sup
φ∈Φ

sup
PF∈P{F−S }

inf
A∈A

E‖∇F
(
yAT (φ)

)
‖22 ≥ ε2.

It further implies that

sup
φ∈Φ

sup
PF∈P{F−}

inf
A∈A

E‖∇F
(
yAT (φ)

)
‖22 ≥ sup

φ∈Φ
sup

PF∈P{F−S }
inf
A∈A

E‖∇F
(
yAT (φ)

)
‖22 ≥ O(σT−1/2),

and

sup
φ∈Φc

sup
PF∈P{F−}

inf
A∈A

E‖∇F
(
yAT (φ)

)
‖22 ≥ sup

φ∈Φc
sup

PF∈P{F−S }
inf
A∈A

E‖∇F
(
yAT (φ)

)
‖22 ≥ O(σT−2/3).

�

D Experiments

The platform used for the experiments is Intel Core i9-7940X CPU @ 3.10GHz, 32GB RAM, 64-bit
Ubuntu 18.04.3 LTS.

D.1 Invariant Logistic Regression

We generate a synthetic dataset with d = 10, a ∼ N (0;σ2
1Id) with σ2

1 = 1 , η|ξ ∼ N (a;σ2
2Id).

Three different variances of η|ξ: σ2
2 ∈ {1, 10, 100} are considered, corresponding to different noise

ratios. At each iteration, we use a fixed mini-batch size mt = m, namely m samples of η|ξ are
generated for a given feature label pair ξi = (ai, bi). We fine-tune the stepsizes for BSGD using grid
search.

Table 4 compares the performance achieved by BSGD and SAA under the metric of optimality gap,
F (x)− F ∗. Since we do not have direct access to the function value. We estimate the objective with
50000 outer samples and calculate the true conditional expectation. The empirical risk minimization
constructed by SAA is solved using CVXPY.

D.2 MAML

We use the objective value as the measurement. Since the objective is analytically intractable, we
evaluate the MAML objective via empirical objective obtained by empirical risk minimization:

F̂ (w) =
1

T̂

T̂∑
i=1

1

N̂

N̂∑
n=1

li

(
w − α · 1

M̂

M̂∑
m=1

∇wli(w,Di,m
support);D

i,n
query

)
, (60)

where the three sample sizes T̂ , N̂ and M̂ are set to be 100. when computing the approximate loss
function value, the sample tasks/data are selected randomly.

Figure 3 shows that the widely used first-order MAML [19], which ignores the Hessian information
when constructing the gradient estimator, may not converge. The number after each method denotes
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Table 4: Comparison of BSGD and SAA in Invariant Logistic Regression

σ1 = 1, σ2 = 1

m
Q = 105 Q = 5× 105 Q = 106

Mean Dev Mean Dev Mean Dev
1 9.28e-04 1.95e-04 6.23e-04 8.18e-05 5.81e-04 4.00e-05
5 1.04e-03 3.06e-04 2.08e-04 6.54e-05 1.77e-04 4.70e-05

10 1.22e-03 2.15e-04 3.69e-04 8.14e-05 2.91e-04 4.91e-05
20 1.46e-03 8.94e-04 3.22e-04 1.54e-04 1.66e-04 6.44e-05
50 1.53e-02 3.47e-03 8.82e-04 3.56e-04 3.94e-04 1.61e-04
100 3.40e-02 8.58e-03 1.94e-03 6.48e-04 9.27e-04 3.45e-04

SAA (m=100) 2.55e-03 9.34e-04 8.95e-04 3.78e-04 5.56e-04 2.81e-04
σ1 = 1, σ2 = 10

m
Q = 105 Q = 5× 105 Q = 106

Mean Dev Mean Dev Mean Dev
1 2.47e-03 1.12e-03 1.02e-03 2.83e-04 8.16e-04 1.38e-04
5 2.21e-03 9.22e-04 5.53e-04 1.30e-04 3.26e-04 1.15e-04

10 2.32e-03 5.29e-04 7.22e-04 2.55e-04 5.32e-04 1.72e-04
20 3.57e-03 7.88e-04 7.37e-04 3.25e-04 3.99e-04 1.37e-04
50 7.87e-03 2.96e-03 1.42e-03 7.57e-04 7.25e-04 3.65e-04
100 1.91e-02 6.46e-03 2.23e-03 1.01e-03 8.90e-04 4.83e-04

SAA (m=464) 8.69e-03 2.74e-03 3.70e-03 1.07e-03 2.14e-03 8.45e-04
σ1 = 1, σ2 = 100

m
Q = 105 Q = 5× 105 Q = 106

Mean Dev Mean Dev Mean Dev
1 7.32e-02 7.94e-03 6.82e-02 2.41e-03 6.69e-02 1.09e-03
5 1.53e-02 4.54e-03 3.30e-03 1.12e-03 1.61e-03 7.50e-04
10 1.46e-02 3.80e-03 3.28e-03 1.24e-03 1.70e-03 5.82e-04
20 1.73e-02 8.95e-03 3.19e-03 1.18e-03 1.52e-03 5.60e-04
50 1.47e-02 5.15e-03 3.36e-03 1.27e-03 1.50e-03 6.97e-04

100 3.20e-02 8.07e-03 5.81e-03 2.44e-03 3.39e-03 1.30e-03
SAA (m=1000) 4.33e-02 1.19e-03 1.50e-02 8.00e-04 1.12e-02 6.42e-04
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Figure 3: FO-MAML may not converge

the inner mini-batch size. It compares the convergences of the widely used First-order MAML(FO-
MAML)[19], BSGD, and Adam, each under the best-tuned inner batch size. BSGD achieves the least
error among the three methods with a proper inner batch size of 20. Adam requires a larger inner
batch size to achieve its best performance, which is less practical as some tasks only have a few or
even one sample.

Table 5 summarizes the detailed experimental results of BSGD, FO-MAML, Adam, and BSpiderBoost
with different inner mini-batch sizes. The total sample size is Q = 107. The stepsizes for BSGD,
FO-MAML, and BSpiderBoost are fine-tuned. Specifically for BSpiderBoost we set (N1 = 10, N2 =
1, q = 10). For each inner mini-batch size, we run each algorithm for 10 times and then calculate the
mean and the standard deviation of the output objectives of all trials. The best performance result for
each algorithm is highlighted using bold font.
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Table 5: Comparison of convergence results of BSGD, FO-MAML and Adam in MAML problem
with different inner mini-batch sizes.

α = 0.01

Method m
Q = 105 Q = 106 Q = 107

Mean Dev Mean Dev Mean Dev

BSGD

5 3.46e+00 1.81e-01 1.28e+00 1.72e-01 5.07e-01 1.02e-01
10 3.40e+00 2.43e-01 1.20e+00 2.68e-01 2.68e-01 8.09e-02
20 3.57e+00 3.18e-01 1.67e+00 6.87e-01 1.63e-01 5.82e-02
50 3.44e+00 2.07e-01 2.51e+00 6.12e-01 2.51e-01 5.21e-02
100 3.81e+00 3.66e-01 3.23e+00 2.99e-01 3.60e-01 9.05e-02

FO-MAML

5 3.89e+00 3.46e-01 3.21e+00 2.49e-01 8.48e-01 1.59e-01
10 3.72e+00 3.18e-01 2.07e+00 4.94e-01 2.58e-01 4.02e-02
20 4.03e+00 3.32e-01 3.15e+00 1.69e-01 1.82e+00 7.12e-01
50 3.90e+00 3.84e-01 3.26e+00 3.24e-01 3.52e+00 5.49e-01
100 3.80e+00 3.62e-01 3.48e+00 2.51e-01 4.09e+00 5.10e-01

Adam

5 2.95e+00 5.90e-01 1.45e+00 4.15e-01 1.04e+00 3.83e-01
10 3.03e+00 4.26e-01 1.34e+00 5.61e-01 6.09e-01 7.59e-01
20 3.47e+00 3.01e-01 1.11e+00 3.63e-01 2.82e-01 8.85e-02
50 3.36e+00 3.43e-01 1.53e+00 5.20e-01 2.35e-01 8.32e-02
100 3.60e+00 2.86e-01 2.52e+00 5.28e-01 3.92e-01 2.20e-01

BSpiderBoost

10 2.47e+00 1.02e+00 2.65e+00 1.08e+00 2.56e+00 1.04e+00
20 6.81e-01 6.50e-01 1.95e-01 4.49e-02 1.43e-01 2.57e-02
50 6.15e-01 1.93e-01 2.54e-01 6.38e-02 2.10e-01 3.56e-02
100 3.21e+00 1.12e+00 2.76e+00 1.45e+00 2.98e+00 1.55e+00
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