
Appendices for “Finding Second-Order Stationary Points Efficiently
in Smooth Nonconvex Linearly Constrained Optimization Problems”

A Details of Implementation of Algorithms

In this section, we will elaborate more about the ideas of designing SNAP.

First, we give the main motivation of selecting the update directions.

A.1 Proof of Lemma 1

Proof. Suppose −qπ(x(r)) is chosen, and if α(r)
max in Algorithm is not chosen (i.e., if line 7 of

Algorithm 2 does not hold true). Then, by the L1-Lipschitz continuity, we have

f(x(r) + αd(r)) ≤ f(x(r)) + αqπ(x
(r))Td(r) +

α2L1

2
∥d(r)∥2, (17)

since ∇f(x(r)) = P(x(r))∇f(x(r)) + P⊥(x
(r))∇f(x(r)) and qπ(x

(r)) = P(x(r))∇f(x(r)).
Therefore, according to (17) and (58) in the proof of Lemma 5, the minimum decrease of the objec-
tive is dq , − 3

8L1
∥qπ(x(r))∥2. This is because the line search algorithm will terminate for some

α ≥ 1/(2L1) if −qπ(x(r)) is chosen; see the proof of Lemma 5 for details.

Further, if v(x(r)) is chosen and α(r)
max in Algorithm is not chosen, by L2-Lipschitz continuity, we

have

f(x(r) + αd(r)) ≤ f(x(r)) + αqπ(x
(r))Td(r) +

α2

2
(d(r))T∇2f(x(r))d(r) +

α3L2

6
∥d(r)∥3. (18)

Then, given by (18) and (61), the minimum amount of the objective decrease, denoted as dv, can be
expressed below:

dv , αqπ(x
(r))Tv(x(r))−

(
1− αL2

3ϵ′H(δ)

)
α2ϵ′H(δ)

2
. (19)

It can be shown that, if d(r) is chosen by v(x(r)), the line search will terminate with α ≥
9ϵ′H(δ)/(8L2) (see the proof of Lemma 6 for details). Therefore, the minimum decrease in this
case is at least

dv =
9ϵ′H(δ)

8L2
qπ(x

(r))Tv(x(r))− 81

128

5

8

ϵ′3H(δ)

L2
2

. (20)

If dq < dv, or equivalently

3L1ϵ
′
H(δ)

L2
qπ(x

(r))Tv(x(r))− 135L1ϵ
′3
H(δ)

128L2
2

≥ −∥qπ(x(r))∥2 (21)

where qπ(x(r))Tv(x(r)) ≤ 0, it implies that choosing qπ(x(r)) may provide more descent of the
objective value.

Next, we will give the detailed algorithm description of the line search used in SNAP.

A.2 Line Search Algorithm

To understand the algorithm, let us first define the set of inactive constraints as

AA(x) , [. . . Ai . . .]
T ∈ R|A(x)|×d, ∀i ∈ A(x). (22)

The details of the line search algorithm are shown in Algorithm 2. In particular, we will first decide
a maximum step-size α(r)

max > 0. Recall that AA(x) defined in (22) represents the set of constraints
that are inactive at point x.

13

Algorithm 2 Line search algorithm
1: Input: x(r),d(r), ϵ′H(δ), λ,A,b,F(x(r))

2: if ∃i, (b′ −AA(x(r))x(r))i/(AA(x(r))d(r))i > 0 then
3: Compute α

(r)
max by

α(r)
max , max{α > 0 | x(r) + αd(r) ∈ X} (23)

4: else
5: α

(r)
max = 1/L1 if d(r) = −qπ(x(r)) otherwise α

(r)
max = 9ϵ′H(δ)/(4L2)

6: end if
7: Update x(r+1) by: x(r+1) = x(r) + α

(r)
maxd

(r)

8: if f(x(r) + α
(r)
maxd

(r)) < f(x(r)) then
9: return (x(r+1), flag = ♢)

10: else
11: α← α

(r)
max

12: if d(r) = −qπ(x(r)) then
ρ(α) = −α∥qπ(x(r))∥2 (24)

13: else
ρ(α) = −α2ϵ′H(δ)

4
(25)

14: end if
15: while

f(x(r) + αd(r)) > f(x(r)) +
1

2
ρ(α) (26)

do
16: α← 1

2
α, compute ρ(α).

17: end while
18: α(r) ← α
19: x(r+1) = x(r) + α(r)d(r);
20: return (x(r+1), flag = ∅)
21: end if

Lemma 2. If there exists an index i ∈ A(x(r)) such that the following holds

α
(r)
i , (bA −AA(x

(r))x(r))i
(AA(x

(r))d(r))i
> 0, (27)

then, there exists a finite α(r)
max given below, which satisfies (23)

α(r)
max =

{
min{α(r)

i > 0} | (AA(x
(r))x(r) + α

(r)
i A′(x(r))d(r))i = (bA)i

}
. (28)

Proof. Since x(r) is within the feasible set, then based on the definition of inactive set we have
AA(x

(r))x(r) < bA. The largest step-size along the direction d(r) is determined by the largest
distance in which the boundary of the feasible solution will be touched, see (23). According to the
update rule of the iterate, we need

AA(x
(r))(x(r) + αd(r)) ≤ bA, (29)

which is equivalent to the following component-wise form:

α
(
AA(x

(r))d(r)
)
i
≤
(
bA −AA(x

(r))x(r)
)
i
, ∀i. (30)

If (AA(x
(r))d(r))i ≤ 0, then any α > 0 can satisfy (30). Alternatively, suppose (AA(x

(r))d(r))i >

0. Note that due to the feasibility of x(r), and the definition of inactive set, we have (bA −
AA(x

(r))x(r))i > 0. Then it is possible to pick a positive α satisfying α = (bA −
AA(x

(r))x(r))i/(AA(x
(r))d(r))i. That is, going along the current direction far enough will even-

tually reach the boundary of the feasible set.

Then it follows that if there exists a finite step-size α so that
(AA(x

(r))(x(r) + αd(r)))i = (bA)i, (31)

we can easily compute α(r)
max in the closed-form by (28).

14

On the other hand, if the condition (27) does not hold, it means that along the current direction the
problem is effectively unconstrained. Therefore, the line search algorithm reduces to the classic
unconstrained update. Then by setting α(r)

max = 1/L1, SNAP will give a sufficient decrease in this
case; see Lemma 5.

After choosing α(r)
max, we check if the following holds: f(x(r)+α

(r)
maxd(r)) < f(x(r)). If so, then the

algorithm either touches the boundary without increasing the objective, or it has already achieved
sufficient descent.

If the objective increases, then the algorithm will call the backtracking line search by successively
shrinking the step-size starting at α ← α

(r)
max. In particular, if f(x(r) + αd(r)) > f(x(r)) + λρ(α)

(where ρ(α) is some pre-determined negative quantity, see (24)–(25)), we will implement α ← 1
2α

until a sufficient descent is satisfied (note, such a sufficient descent can be eventually achieved, see
Lemma 5 and Lemma 6).

B Proofs Related to Stationary Points

B.1 Proof of Proposition 1

Proof. When f(x) = g(x) + qTx, the KKT conditions of (1) are given by

∇g(x∗) +
∑

j∈A(x∗)

µ∗
jAj = −q, (32a)

Ajx
∗ = bj , µj ≥ 0 ∀j ∈ A(x∗), (32b)

Ajx
∗ < bj , µ∗

j = 0, ∀j /∈ A(x∗). (32c)
If there is no active constraint at point x∗, then SC condition holds automatically. Here we assume
that x∗ has at least one active constraint, we have |A(x∗)| ≥ 1.

We prove the claim by contradiction. Assume that the strict complementarity condition does not
hold at x∗. Without loss of generality, assume that A1x

∗ = b1 and µ∗
1 = 0. Consider the Lipschitz

continuous map Φ defined below

Φ(x∗,µ∗) = ∇g(x∗) +
∑

j∈A(x∗)

µ∗
jAj . (33)

This is a mapping from the set T to the entire space of Rd (because q is generated from a continuous
measure in Rd), where the set T is given below:
T = {(x∗,µ∗)|Ajx

∗ = bj ,µ
∗
j ≥ 0, j ∈ A(x∗),Aj′x

∗ < bj′ ,µ
∗
j′ = 0, j′ /∈ A(x∗)}. (34)

In the following, we will quantify the dimension of T . By assumption, all the Aj’s with j ∈ A(x∗)
are linearly independent, that is, AA(x

∗) is a full row rank matrix. It follows that bA is in the
range space of matrix AA(x

∗). Since AA(x
∗)x∗ = bA, we know that the dimension of the active

space of x∗ is the rank of AA(x
∗), meaning that the dimension of the free space of x∗ is the

rank of Null(AA(x
∗)), i.e., (d − |A(x∗)|). 2 Note that there are |A(x∗)| active constraints and

µ∗
1 = 0, so the dimension of the free space of vector µ∗ is (|A(x∗)| − 1). Therefore, Φ maps from

a (d − 1)-dimensional subspace to a d-dimensional space, implying that the image of the mapping
is zero-measure in Rd. However, q is generated from a continuous measure, which results in a
contradiction of the assumption that the strict complementarity condition does not hold.

B.2 Proof of Corollary 1

Proof. We apply the same proof technique in Proposition 1 to show the claim of Corollary 1. Let
S(x∗) , {j | Aj , ∀j ∈ A(x∗) are linearly independent} and let S(x∗) denote the complement of
set S(x∗). Clearly, S(x∗) is a subset of A(x∗). First, we define the matrix AS(x

∗) as

AS(x
∗) ,


...
Aj

...

 ∈ R|S(x∗)|×d, ∀j ∈ S(x∗). (35)

2For the notations of the free and active space, please see section 4

15

Obviously, AS(x
∗) is a full row rank matrix, where the rank of AS(x

∗) is the size of S(x∗), i.e.,
|S(x∗)|. In the following, we will show that the number of simultaneously active constraints is at
most |S(x∗)|. We prove the claim by contradiction. Consider i ∈ S(x∗). Since i /∈ S(x∗), Ai can
be linearly represented by Ajs j ∈ A(x∗), i.e.,

Ai =
∑
j

αjAj , j ∈ A(x∗), (36)

where there exists at least one αj which is not zero. Since i, j ∈ A(x∗), we have Ajx
∗ = bj .

Combining (36), we have
∑

j αjbj = bi. Since bi is generated from a continuous measure,∑
j αjbj = bi will not hold with high probability. We have a contradiction. Therefore, we can

conclude that the dimension of the free space of x∗ is at least d− |S(x∗)|.
Next, we use the same argument as the proof of Proposition 1 to quantify the dimension of µ∗. Since
there are |S(x∗)| active constraints and µ∗

1 = 0, the dimension of µ∗ is at most |S(x∗)| − 1. Thus,
the dimension of T is d − 1, meaning that Φ defined in (33) maps from a d − 1 dimension subset
to a d-dimensional space. Therefore, the image is zero-measure in Rd. However, q is generated
from a continuous measure, which again results in a contradiction of the assumption that the strict
complementarity condition does not hold.

B.3 Equivalence of First-Order Conditions

Lemma 3. The conditions (8a) and (10a) are equivalent. That is, for any (x∗, ϵ̃G) that satisfies
(10a), it also satisfies (8a). Alternatively, for any (x∗, ϵG) that satisfies (8a), then (x∗, ϵ̃G) satisfies
(10a), with ϵ̃G , ϵG (α∥∇f(x∗)∥+ 1 + αϵG) .

Proof. First, suppose x∗ and ϵ̃G together satisfy (10a). Let us define x̃ , πX (x∗ − α∇f(x∗)), that
is, from the definition of πX (v) (i.e., πX (v) , argminw∈X ∥w − v∥2) we have

x̃ = argmin
y∈X
∥x∗ − α∇f(x∗)− y∥2. (37)

From the optimality condition of (37), we know
⟨x̃− (x∗ − α∇f(x∗)),y − x̃⟩ ≥ 0, ∀y ∈ X . (38)

Substituting y = x∗ into (38), we have ⟨x̃ − (x∗ − ∇f(x∗)),x∗ − x̃⟩ ≥ 0, which implies
α⟨∇f(x∗), x̃− x∗⟩ ≤ −∥x̃− x∗∥2. Therefore, we have

∥x̃− x∗∥ ≤ −α
⟨
∇f(x∗),

x̃− x∗

∥x̃− x∗∥

⟩
(10a)
≤ ϵ̃G,

meaning that ∥gπ(x∗)∥ ≤ ϵ̃G. This direction is completed.

Second, we suppose x∗ ∈ X and ϵG > 0 together satisfy (8a). Again let us define x̃ , πX (x∗ −
α∇f(x∗)). Consider an arbitrary point y ∈ X and x̃ + θ(y − x̃) ∈ X where θ ∈ (0, 1). We have,
for all y ∈ X , the following holds:

∥x∗ − α∇f(x∗)− x̃∥2 ≤ ∥x∗ − α∇f(x∗)− (x̃+ θ(y − x̃))∥2

=∥x∗ − α∇f(x∗)− x̃∥2 − 2θ⟨x∗ − α∇f(x∗)− x̃,y − x̃⟩+ θ2∥y − x̃∥2,
which is equivalent to

⟨x∗ − α∇f(x∗)− x̃,y − x̃⟩ ≤ θ

2
∥y − x̃∥2, ∀y ∈ X . (39)

The right-hand-side (RHS) of (39) can be made arbitrarily small by θ for a given y, so LHS of (39)
cannot be strictly positive. This further implies that

⟨∇f(x∗),y − x∗⟩ ≥ 1

α
⟨x∗ − x̃,y − x̃⟩+ ⟨∇f(x∗), x̃− x∗⟩

(a)

≥ − ϵG(∥y − x̃∥+ α∥∇f(x∗)∥) (40)
≥− ϵG(∥y − x∗∥+ ∥x∗ − x̃∥+ α∥∇f(x∗)∥) (41)
(b)

≥ − ϵG (α∥∇f(x∗)∥+ 1 + αϵG) , −ϵ̃G (42)
where in (a) we use (1/α)∥x∗ − x̃∥ ≤ ϵG and Cauchy-Schwartz inequality, in (b) we know ∥y −
x∗∥ ≤ 1 from condition (10a).

16

B.4 Proof of Proposition 2

Proof. The equivalence between FOSP1 and FOSP2 has been shown in Lemma 3. Below, we focus
on the equivalence of the second-order optimality conditions.

Sufficiency. First, assume that (8b) holds. For a given x satisfying ⟨∇f(x∗),x − x∗⟩ = 0, by
applying (11a), we have

∑m
j=1 µ

∗
j ⟨Aj ,x−x∗⟩ = 0. Further by (3), we can decompose the previous

sum into the following:∑
j∈A(x∗)

µ∗
j ⟨Aj ,x− x∗⟩+

∑
j /∈A(x∗)

µ∗
j ⟨Aj ,x− x∗⟩ = 0. (43)

Combining (43) with the complementarity conditions in (11b), we have∑
j∈A(x∗)

µ∗
j ⟨Aj ,x− x∗⟩ = 0. (44)

Also note that for each x ∈ X , and each active constraint j ∈ A(x∗), we have Ajx ≤ bj =
Ajx

∗, ∀ j ∈ A(x∗). It follows that ⟨Aj ,x − x∗⟩ ≤ 0, ∀ j ∈ A(x∗), and ∀x ∈ X . Due to
the assumed strict complementarity condition, we have µ∗

j > 0, j ∈ A(x∗).

Combining the above two facts, we conclude that each term in (44) is nonpositive. However, the
requirement that the sum of them equals to zero implies that ⟨Aj ,x−x∗⟩ = 0, ∀ j ∈ A(x∗). From
(8b), we know that ∀y,AA(x

∗)y = 0, we have yT∇2f(x∗)y ≥ 0.

Necessity. Second, let us suppose that x∗ satisfies the exact first-order stationary point, and for each
feasible x ∈ X that satisfies ⟨∇f(x∗),x− x∗⟩ = 0, we have

(x− x∗)T∇2f(x∗)(x− x∗) ≥ 0. (45)

Suppose at the KKT point x∗,µ∗ the SC is satisfied. Further we assume that for the inactive set, the
following holds:

Aix
∗ + ϵi = bi, for some ϵi > 0, ∀ i ∈ Ā(x∗).

Let ϵ = mini{ϵi} > 0. Take the inner product between x − x∗ and left-hand-side (LHS) of (11a)
we have

⟨∇f(x∗),x− x∗⟩ = −
m∑
j=1

µ∗
j ⟨Aj ,x− x∗⟩ (11b)

= −
∑

j∈A(x∗)

µ∗
j ⟨Aj ,x− x∗⟩. (46)

By SC condition we have Aj(x− x∗) = 0, ∀ j ∈ A(x∗). Consider any y that satisfies

Ajy = 0, ∀ j ∈ A(x∗). (47)

First, we argue that, if the following holds, then there exists x ∈ X such that y = x− x∗:

Ajy = 0, ∀ j ∈ A(x∗), Aiy ≤
ϵ

2
, ∀ i ∈ Ā(x∗). (48)

By setting y = z−x∗, for any z, we obtain Ai(z−x∗) ≤ ϵ/2, which implies Aiz ≤ Aix
∗+ ϵ

2 < bi

where the last inequality is due to the definition of ϵ. Further, for the active set, it is clear that
Ajz = Ajx

∗ = bj , ∀ j ∈ A(x∗), so z is feasible. Suppose that for a given y satisfying (47), we
cannot find any x ∈ X such that y = x − x∗, then it must be the case that there exists a subset
Q ∈ A(x∗) such that Aqy = θq >

ϵ
2 , ∀ q ∈ Q. Let us define θmax := maxq{θq}, and ỹ = 1

θmax

ϵ
2y,

and note that 1
θmax

ϵ
2 < 1. Then for this new ỹ, the following holds

Ajỹ = 0, ∀ j ∈ A(x∗), Aqỹ ≤ ϵ/2, ∀ q ∈ Q

Ajỹ =
1

θmax

ϵ

2
Ajy, ∀ j ∈ Ā(x∗), j /∈ Q.

Note that for all j ∈ A(x∗), j /∈ Q, Ajy ≤ ϵ/2. We have the following two cases for those indices.

Case 1. First, if Ajy ≤ 0 then it is clear that

Ajỹ =
1

θmax

ϵ

2
Ajy ≤ 0.

17

Case 2. Second, if 0 ≤ Ajy ≤ ϵ/2 then it is clear that

Ajỹ =
1

θmax

ϵ

2
Ajy

(a)

≤ Ajy ≤ ϵ/2

where (a) uses the fact that 1
θmax

ϵ
2 < 1, and 0 ≤ Ajy.

Overall we have Aiỹ ≤ ϵ/2, ∀ i ∈ Ā(x∗), and Ajỹ = 0, ∀ i ∈ A(x∗), i.e., condition (48) holds
for ỹ. Therefore, there must exist x ∈ X such that ỹ = x− x∗.

We conclude that for any y satisfying Aiy = 0, ∀ i ∈ A(x∗), there exists a constant θ and x ∈ X
such that θy = x− x∗. By (45), we obtain

θ2yT∇2f(x∗)y ≥ 0, or equivalently, yT∇2f(x∗)y ≥ 0. (49)

This direction is proved.

B.5 Proof of Corollary 2

Proof. It can be easily checked that Corollary 2 is true from the proof of Proposition 2 by letting
y = x− x∗ and considering ∥y∥ ≤ 1.

B.6 Proof of Proposition 3

Proof. Let x∗ be a limit point of the sequence {x(r)}. By restricting to a subsequence if necessary,
let us assume that limr→∞ x(r) = x∗. First notice that the function gπ(·) is continuous based on its
definition. Therefore, gπ(x∗) = limr→∞ gπ(x

r) = 0. Therefore, (7a) is satisfied at the point x∗.

In order to show (7b), let us define Y(r) , {y | AA(x
(r))y = 0} and Y∗ , {y | AA(x

∗)y = 0}.
We first prove that there exists an index r′ such that Y∗ ⊆ Y(r), ∀r ≥ r′. To show that, first
consider an inactive index j ∈ A(x∗). Clearly, Ajx

∗ ̸= b and therefore, there exists an index
r′j such that Ajx

(r) ̸= b, ∀r ≥ r′j . Thus, j ∈ A(x(r)), ∀r ≥ r′j . By repeating this argument
for all indices j and setting r′ = maxj{rj}, we have A(x∗) ⊆ A(x(r)), ∀r ≥ r′. Therefore,
A(x(r)) ⊆ A(x∗), ∀r ≥ r′, which immediately implies that

Y∗ ⊆ Y(r), ∀r ≥ r′. (50)

Furthermore, using the definition of exact SOSP1, we have

−ϵ(r)H ≤ min
y

yT∇2f(x(r))y, s.t. y ∈ Y(r).

By letting r →∞ and using (50), we obtain

0 ≤ min
y

yT∇2f(x∗)y, s.t. y ∈ Y∗.

Therefore, (7b) is satisfied at the point x∗.

C Proofs of SNAP

In this section, we show that SNAP converges to an (ϵG, ϵH)-SOSP1 in a finite number of steps.
In Algorithm 2, it can be observed that d(r) could be chosen by projected gradient qπ(x(r)) or
negative curvature v(x(r)). Using the line search algorithm ensures that the iterates stay in the
feasible set. When α(r)

max is chosen by (23), the objective function will not increase. When α(r)
max is

not chosen by (23), we will have a sufficient descent. We will give the following three lemmas that
quantify the minimum decrease of the objective value by implementing one step of the algorithm,
i.e., x(r+1) = x(r) + α(r)d(r). They serve as the stepping stones for the main result that follows.

The descent Lemma of PGD is given by the following.

18

C.1 Descent Lemmas

Lemma 4. If x(r+1) is computed by projected gradient descent with step-size chosen by 1/L1, then
f(x(r+1)) ≤ f(x(r))− ϵ2G

18L1
.

Proof. The proof follows the classic theory of the projected gradient descent. According to the
optimality condition of the projection, we have⟨

x(r+1) − (x(r) − απ∇f(x(r))),x− x(r+1)
⟩
≥ 0 x ∈ X . (51)

Applying this relation with x = x(r), we obtain⟨
∇f(x(r)),x(r+1) − x(r)

⟩
≤ − 1

απ
∥x(r+1) − x(r)∥2. (52)

According to L1-Lipschitz continuity, we have

f(x(r+1))− f(x(r)) ≤ ∇f(x(r))T (x(r+1) − x(r)) +
L1

2
∥x(r+1) − x(r)∥2, (53)

where
x(r+1) = πX (x(r) − απ∇f(x(r))). (54)

Then, we have

f(x(r+1)) ≤ f(x(r)) +

(
L1

2
− 1

απ

)
∥x(r+1) − x(r)∥2, (55)

where 0 < απ ≤ 1/L1, implying

f(x(r+1)) ≤f(x(r))− L1

2
∥x(r+1) − x(r)∥2

(a)

≤f(x(r))− L1

2(2
απ

+ L1)2
∥gπ(x(r))∥2

(b)

≤f(x(r))− ϵ2G
18L1

where in (a) we use the nonexpansiveness of the projection operator,and the details are as follows:

∥gπ(x(r))∥ = 1

απ
∥πX (x(r) − απ∇f(x(r)))− x(r)∥

=
1

απ
∥πX (x(r) − απ∇f(x(r)))− x(r+1) + x(r+1) − x(r)∥

≤ 1

απ
∥x(r+1) − x(r)∥+ 1

απ
∥x(r+1) − πX (x(r) − απ∇f(x(r)))∥

=
1

απ
∥x(r+1) − x(r)∥+ 1

απ
∥πX (x(r+1) − απ∇f(x(r+1)))− πX (x(r) − απ∇f(x(r)))∥

≤ 2

απ
∥x(r+1) − x(r)∥+ ∥∇f(x(r+1))−∇f(x(r))∥

≤
(

2

απ
+ L1

)
∥x(r+1) − x(r)∥; (56)

in (b) we take απ = 1/L1.

From (56), we have the sufficient descent of the objective value if the constant step-size is used.

Lemma 5. Suppose d(r) is chosen as −qπ(x(r)) and x(r+1) is computed by the NCD step of Al-
gorithm 1, and line 7 of Algorithm 2 does not hold, i.e., f(x(r) + α

(r)
maxd(r)) ≥ f(x(r)). Then,

α
(r)
max ≥ 1/L1 and the line search algorithm terminates with α ≥ 1/(2L1) and a descent of the

following can be achieved f(x(r+1)) ≤ f(x(r))− 3ϵ′3H(δ)/(8L2
2).

19

Proof. First, according to the L1-Lipschitz continuity, we have

f(x(r+1)) =f
(
x(r) − αqπ(x(r))

)
(a)

≤f(x(r))− α∇f(x(r))T qπ(x
(r)) +

α2

2
L1∥qπ(x(r))∥2

(b)
=f(x(r))− αqπ(x(r))T qπ(x

(r)) +
α2

2
L1∥qπ(x(r))∥2

=f(x(r))−
(
α− α2

2
L1

)
∥qπ(x(r))∥2 (57)

where in (a) we use the gradient Lipschitz continuity; (b) is true because ∇f(x(r)) =
P(x(r))∇f(x(r)) +P⊥(x

(r))∇f(x(r)) and qπ(x(r)) = P(x(r))∇f(x(r)). It can be observed that
there must exist a small α such that the objective is decreased, so the line search algorithm will be
terminated within finite number of steps.

Second, the definition of α(r)
max suggests that along the direction −qπ(x(r)), one can go as far as

α
(r)
max without being infeasible. Then we can determine a lower bound of α(r)

max before entering the
line search step. To determine such a lower bound, we have two steps.

Step (a) Suppose that α(r)
max satisfies (26), that is f(x(r) +α

(r)
maxd(r)) > f(x(r))+ 1

2ρ(α
(r)
max). Then

we must have α(r)
max ≥ 1

L1
, because otherwise, we have

α(r)
max ≤

1

L1
⇒ (α(r)

max −
(α

(r)
max)2L1

2
) ≥ 1

2
α(r)
max

The above fact combined with the descent estimate (57) implies that (26) stops to hold true, which
is a contradiction.

Step (b) Suppose that α(r)
max does not satisfy (26). This implies that line 8 of the line search algorithm

will hold, so the algorithm has already returned. This is a contradiction to the assumption that the
line search step will be performed. Therefore we conclude that the initial step-size α(r)

max before
entering the line search procedure is lower bounded by 1/L1.

Third, we will show that the line search terminates with α ≥ 1/(2L1) and has the sufficient descent.
By adopting the line search algorithm and applying stopping criteria (26), we know that α will
terminate in the interval [1/(2L1), 1/L1]. To show the minimum descent of the objective value,
note the following series of inequalities

f(x(r+1))
(a)

≤f(x(r))− 3

8L1
∥qπ(x(r))∥2

(b)
< f(x(r))− 3

8

ϵ′3H(δ)

L2
2

, (58)

where in (a) we substitute α = 1/(2L1) into (57) due to the monotonic behavior of the function
α−α2L1/2 over the interval [1/(2L1), 1/L1]; in (b) we use ∥qπ(x(r))∥2 ≥ 135L1ϵ

′3
H(δ)/(128L2

2)

since in line 8 of Algorithm 1 we know from the algorithm that −qπ(x(r)) is chosen when

−qπ(x(r))Tv(x(r))
3L1ϵ

′
H(δ)

L2
+

135L1ϵ
′3
H(δ)

128L2
2

≤ ∥qπ(x(r))∥2, qπ(x
(r))Tv(x(r)) ≤ 0.

This completes the proof.

Lemma 6. Suppose d(r) is chosen by v(x(r)), x(r+1) is computed by the NCD procedure in
Algorithm 1 and line 7 of Algorithm 2 does not hold, i.e., f(x(r) + α

(r)
maxd(r)) ≥ f(x(r)).

Then, α(r)
max ≥ 9ϵ′H(δ)

4L2
and the line search terminates with α ≥ 9ϵ′H(δ)/(8L2), and we have:

f(x(r+1)) ≤ f(x(r))− 3ϵ′3H(δ)/(8L2
2).

20

Proof. Suppose d(r) = v(x(r)) in line 10 of Algorithm 1. Then according to the L2-Lipschitz
continuity assumption, we have

f(x(r) + αv(x(r)))

≤f(x(r)) + αqπ(x
(r))Tv(x(r)) +

α2

2
v(x(r))T∇2f(x(r))v(x(r)) +

α3

6
L2∥v(x(r))∥3

=f(x(r)) + αqπ(x
(r))Tv(x(r)) +

α2

2
v(x(r))T∇2f(x(r))v(x(r)) +

α3

6
L2, (59)

where we used ∥v(x(r))∥ = 1. Since the following hold qπ(x(r))Tv(x(r)) ≤ 0
v(x(r))T∇2f(x(r))v(x(r)) ≤ −ϵ′H(δ), we know that

αqπ(x
(r))Tv(x(r)) +

α2

2
v(x(r))T∇2f(x(r))v(x(r)) ≤ −α

2ϵ′H(δ)

2
< 0. (60)

Then, combining (59) and (60) we obtain

f(x(r) + αv(x(r)))− f(x(r))≤−
(
1− αL2

3ϵ′H(δ)

)
α2ϵ′H(δ)

2
. (61)

It follows that when choosing 0 < α <
3ϵ′H(δ)

L2
, the objective function is decreasing. By using the

similar argument as in the previous lemma (by applying criteria (26)), we can conclude that the
initial α(r)

max before entering the line search procedure will satisfy:

α(r)
max ≥

9ϵ′H(δ)

4L2
. (62)

Finally, it is easy to see that by using the backtracking line search where each time the step-size is
shrunk by 1/2, the algorithm will stop at α ≥ 9ϵ′H(δ)/(8L2), therefore we will have at least the
following amount of descent:

f(x(r+1)) ≤ f(x(r))− 5

8

(98)
2ϵ′3H(δ)

2L2
2

< f(x(r))− 3

8

ϵ′3H(δ)

L2
2

, (63)

which completes the proof.

Lemma 7. Algorithm 1 will stop if for min{d,m} consecutive iterations, its line search procedure
only returns with step-size α(r)

max chosen as in (23).

Proof. First, we show that dim(x(r)) is not increasing if x(r) is updated by NCD successively. Since
at the rth iteration, the equality AA(x

(r))x(r) = bA(x
(r)) holds (due to the definition of active set),

which implies that

AA(x
(r))x(r+1) = AA(x

(r))
(
x(r) + α(r)d(r)

)
= bA(x

(r)) + α(r)AA(x
(r))d(r) (a)

= bA(x
(r))

(64)
where (a) is true because d(r) ∈ Null(AA(x

(r))), so dim(F(x(r+1))) is no more than
dim(F(x(r))). Second, we show that if α(r)

max is chosen, dim(F(x(r))) is decreased at least by
1. Since at the r + 1th iteration the algorithm still chooses α(r+1)

max , meaning that iterate x(r+1) has
at least one new active constraint, i.e., dim(F(x(r))) ≥ dim(F(x(r+1))) + 1. In other words, when
step-size α(r)

max is chosen and updated by (23), the dimension of the free space is reduced at least
by 1. Therefore, if step-size α(r)

max is chosen consecutively and updated by (23), dim(F(x(r))) is
monotonically decreasing. Since the dimension of the subspace is at most d and the total number of
constraints is at most m, the algorithm consecutively performs NCD at most min{d,m} times.

21

C.2 Simplified SNAP

Before proving Theorem 1, we provide a simplified version of SNAP shown in Algorithm 3 and
show the convergence of this algorithm, which will be helpful of understanding the key steps in the
proof of SNAP. The reason is that some techniques, which are considered in SNAP to reduce the
computational complexity, involve multiple branches that SNAP may use. A combinatorial choice
of these subroutines makes the convergence analysis complicated, so it will be more intuitive to see
the proof for the simplified algorithm, which essentially has the same rate as SNAP. Here, we give a
concise proof for Algorithm 3 in the following.

Algorithm 3 A simplified Successive Negative-curvature grAdient Projection (sSNAP) algorithm
1: Input: x(1), ϵG, ϵH , L1, L2, απ = 1/L1, δ,A,b, flag = ♢
2: for r = 1, . . . do
3: if ∥gπ(x(r))∥ ≤ ϵG then
4: [flag,v(x(r)),−ϵ′H(δ)] = Negative-Eigen-Pair(x(r), f, δ)
5: if flag = ♢ then
6: Compute qπ(x

(r)) by (6)
7: Choose v(x(r)) such that qπ(x(r))Tv(x(r)) ≤ 0

8: d(r) = v(x(r)) ◃ Choose negative curvature direction
9: Update x(r+1) by Algorithm 2 ◃ Perform line search

10: else
11: Output x(r)

12: end if
13: else
14: Update x(r+1) by (13) ◃ Perform PGD
15: end if
16: end for

Proof. We will show that after a number of iterations given by Algorithm 3, the algorithm will
converge to an (ϵG, ϵH)-SOSP1 defined in (8).

Let us suppose that at a given point x(r), the condition (8) does not hold.

First suppose that the first-order condition is not satisfied, that is ∥gπ(x(r))∥ ≥ ϵG. Then the
algorithm will perform the PGD step (13). By Lemma 4, the descent of the objective value is given
by ϵ2G

18L1
.

Second, when the size of the gradient is small, but the second-order condition in (8b) is not satisfied
(i.e., when flag = ♢). Then in this case, NCD will be performed, and there are two choices for
selecting the step-size:
Case 1) (flagα = ∅): The algorithm implements x(r+1) = x(r) + α(r)d(r) without using α(r)

max

computed by (23).
Case 2) (flagα = ♢): α(r)

max is computed by (23) to update x(r+1).

In the first case, we know that if α(r)
max is not chosen by (23), then some sufficient descent will be

achieved. From Lemma 5, we know that after one step update the objective value decreases as

f(x(r+1)) ≤ f(x(r))−∆, where ∆ =
3ϵ′3H(δ)

8L2
2

. (65)

In the second case, the descent for each step may not be quantified. However, it is important to
see that, by Lemma 7, the algorithm can repeat this case (i.e., choosing α(r)

max by (23)) for at most
min{d,m} consecutive times.

By using the above fact, let us look at the second case in more detail and see how we can quantify
the descent achieved by some k ≤ min{d,m} consecutive times that Case 2) happens. Since Case
2) can happen at most min{d,m} consecutively times, our strategy is to trace back the steps of the
algorithm from the current iteration x(r) and see what happens. To this end, let us suppose that at
iteration r Case 2) happens.

22

First of all, if the sequence has never been updated by either Case 1 or PGD, the algorithm must
stop by at most d iterations. If the algorithm stops, it is clear that an (ϵG, ϵH)-SOSP1 solution is
obtained. This is because the inactive set becomes empty and (8b) is satisfied automatically.

Second, consider iteration from r − min{d,m} until r. The sequence must be updated by either
Case 1) or the PGD step, otherwise the algorithm will stop and output an (ϵG, ϵH)-SOSP1 solution.
Then we must have

f(x(r))− f(x(r−min{d,m})) < −min
{
ϵ2G/(18L1), 3ϵ

′3
H(δ)/(8L2

2)
}
, ∀r > min{d,m}. (66)

Summarizing the argument so far, we have that, after every consecutive min{d,m} iterations of the
algorithm, either the algorithms stops, or (66) holds true.

After applying the telescoping sum on (66), we have

f⋆ − f(x(1)) ≤ f(x(r))− f(x(1)) ≤ −r
min

{
ϵ2G/(18L1), 3ϵ

′3
H(δ)/(8L2

2)
}

min{d,m}
. (67)

where f⋆ denotes the minimum objective value achieved by the global optimal solution. By defining

∆′ , min

{
3ϵ′3H(δ)

8L2
2

,
ϵ2G

18L1

}
1

min{d,m}
, (68)

we obtain

r ≤ f(x(1))− f⋆

∆′ . (69)

Since the probability that eigen-pair fails to extract the negative curvature is δ, applying the union
bound, we only need to set δ′ = δ(f(x(1) − f⋆)/∆′ so that we can have the claim that SNAP will
output approximate SOSP1s with probability 1 − δ′. Note that γϵ′H(δ) > ϵH . We can obtain the
convergence rate of Algorithm 3 by

Õ

min{d,m}(f(x(1))− f⋆)

min
{

ϵ2G
L1
,
ϵ3H
L2

2

}
 , (70)

which completes the proof.

C.3 Proof of Theorem 1

Compared with the simplified SNAP, SNAP has two main differences: 1) d(r) can be chosen by
either −qπ(x(r)) or v(x(r)) in the NCD step based on the minimum amount of the objective reduc-
tion; 2) when flag(r)

α = ∅ there is a minimum number of iterations (denoted by rth) that SNAP calls
subroutine Negative-Eigen-Pair twice.

Proof. First, suppose that at a given point x(r), the condition (8) does not hold. If the first-order
condition is not satisfied, (i.e., ∥gπ(x(r))∥ ≥ ϵG), then by Lemma 4, we can show that performing
the PGD step (13) achieves the following descent:

f(x(r+1)) ≤ f(x(r))− ϵ2G
18L1

. (71)

Second, when ∥gπ(x(r))∥ is small, but the second-order condition (8b) is not satisfied. Then the
NCD will be performed, and there are two choices of step-sizes:
Case 1) (flagα = ∅): The algorithm implements x(r+1) = x(r) + α(r)d(r) without using α(r)

max

computed by (23).
Case 2) (flagα = ♢): α(r)

max is computed by (23) to update x(r+1).

In the first case, we know that if α(r)
max is not chosen by (23), then some sufficient descent will be

achieved. In particular, from Lemma 5–Lemma 6, no matter which direction (i.e., either −qπ(x(r))
or v(x(r))) is chosen, we have:

f(x(r+1)) ≤ f(x(r))−∆, where ∆ , 3ϵ′3H(δ)

8L2
2

. (72)

23

After performing one step, flagα becomes ♢. From the algorithm we know that rth number of PGD
will be performed. However, the amount of descent cannot be quantified (because we are in NCD
so ∥gπ(x(r))∥ ≤ ϵG). Thus, we still have

f(x(r+rth)) ≤ f(x(r))−∆. (73)

In the second case, the descent for each step may not be quantified. However, a key result shown
in Lemma 7 is that, the algorithm can repeat this case (i.e., choosing α(r)

max by (23)) for at most
min{d,m} consecutive times. Based on such a key result, let us analyze the descent when Case 2)
happens in k ≤ min{d,m} consecutive times. To this end, let us suppose that at iteration r Case 2)
happens.

First of all, if d iterations of Case 2) are executed, then the algorithm must stop and (ϵG, ϵH)-
SOSP1 solution is obtained. This is because the inactive set becomes empty and (8b) is satisfied
automatically.

Second, consider the iterations in [(r − min{d,m}), r]. The sequence must be updated by either
Case 1) or the PGD step, otherwise the algorithm will stop and output an (ϵG, ϵH)-SOSP1 solution
(as in the previous case). If either Case 1) or the PGD happens, we must have

f(x(r))− f(x(r−min{d,m})) ≤ −min
{
ϵ2G/(18L1), 3ϵ

′3
H(δ)/(8L2

2)
}
, ∀r > min{d,m}. (74)

Summarizing the argument so far, after every consecutive min{d,m} iterations of the algorithm,
either the algorithm stops or (74) holds true.

Note that Case 1 and Case 2 are mutually exclusive. Take T ′ , min{d,m} · rth. From (72), we
know that

f(x(r+T ′))− f(x(r)) ≤ −min{d,m}3ϵ
′3
H(δ)

8L2
2

. (75)
From (74), we have

f(x(r))− f(x(r−T ′)) ≤ −rth min

{
ϵ2G

18L1
,
3ϵ′3H(δ)

8L2
2

}
. (76)

Putting (75) and (76) together, we have

f(x(r+T ′))− f(x(r−T ′)) ≤ −min

{
min{d,m}3ϵ

′3
H(δ)

8L2
2

, rth min

{
ϵ2G

18L1
,
3ϵ′3H(δ)

8L2
2

}}
. (77)

Let n be the number of 2T ′ blocks contained in [1, r]. After applying the telescoping sum on (71),
(77), we have

f⋆ − f(x(1)) ≤f(x(r))− f(x(1)) ≤ f(x(2nT ′+1))− f(x(1))

≤− nmin

{
min{d,m}3ϵ

′3
H(δ)

8L2
2

, rth min

{
ϵ2G

18L1
,
3ϵ′3H(δ)

8L2
2

}
, T ′ ϵ2G

18L1

}
(78)

where f⋆ denotes the minimum objective value achieved by the global optimal solution, and n ≥
(r − 1)/(2T ′). By defining

∆′ , min

{
min{d,m}3ϵ

′3
H(δ)

8L2
2

, rth min

{
ϵ2G

18L1
,
3ϵ′3H(δ)

8L2
2

}
, T ′ ϵ2G

18L1

}
, (79)

we obtain

n ≤ f(x(1))− f⋆

∆′ , r ≤ 2nT ′ + 1 ≤ 2T ′(f(x(1))− f⋆)
∆′ + 1. (80)

Since the probability that eigen-pair fails to extract the negative curvature is δ, applying the union
bound, we only need to set δ′ = δ(2T ′(f(x(1)) − f⋆)/∆′ + 1) so that we can have the claim that
SNAP will output approximate SOSP1s with probability 1− δ′.
Note that γϵ′H(δ) > ϵH . We can obtain the convergence rate of Algorithm 1 by (14), which com-
pletes the proof.

24

Algorithm 4 Negative Curvature Extraction by Subspace Gradient Descent from Noise (SGDN)
1: Input: x(r),F(x(r)), T, qπ,F ,R, β = 1/L1, d, δ, ĉ, ϵH
2: Generate z randomly from the sphere of an Euclidean ball of radius R in F(x(r)).
3: for τ = 1, . . . , T do

z(τ+1) = z(τ) − β(qπ(x
(r) + z(τ))− qπ(x

(r))) (81)
4: end for
5: if f(x(r) + z(T))− f(x(r))− qπ(x

(r))Tz(T) ≤ −1.5F then
6: return [♢, z(T)/∥z(T)∥,− ϵH

8ĉ log(
dL1
ϵHδ

)
]

7: else return [∅, 0, 0]
8: end if

D Proofs of SNAP+

D.1 Negative Curvature Extraction by Subspace Gradient Descent from Noise

The details of SGDN is shown in Algorithm 4.

D.2 Technical Lemmas

Before showing the convergence analysis, let us first have the following definitions and show some
basic properties of the SGDN iterates for the case where Assumption 1 holds.
Condition 1. A strict saddle point x satisfies λmin(HP(x)) ≤ −ϵH .

Note here it is not necessary to further require ∥gπ(x)∥ ≤ ϵG. Let e⃗ denote the eigenvector that
corresponds to the smallest eigenvalue of HP(x).

We define an auxiliary function as f̂x(z) , f(x+ z)− f(x)−∇xf(x)
Tz near a strict saddle point

x. Then, we can have ∇zf̂x(z) = ∇xf(x + z) − ∇xf(x). It is easy to see that ∇zf̂x(z) is also
L1-Lipschitz continuous.

In the rest of the paper, we just use f̂ to denote f̂x for simplicity. Let q̂π(z) , P∇zf̂(z) and P is
the projection matrix defined in (5). Then we can have q̂π(z) = qπ(x+ z)− qπ(x).
From the update rule of SGDN (15), the iterates can be rewritten as

z(r+1) = z(r) − βq̂π(z(r)). (82)

Towards this end, we will give the following a series of lemmas that pave the way of showing the
main convergence rate result. To be specific, Lemma 8 is a preliminary lemma which will be used
in Lemma 9 and Theorem 2. Further combining Lemma 9 and Lemma 10 leads to Theorem 2.
Lemma 8. If function f(·) is L2-Hessian Lipschitz, we have∥∥∥∥∫ 1

0

PT∇2f(θx)Pdθ −PT∇2f(x′)P

∥∥∥∥ ≤ L2∥x∥+ ∥x′∥, ∀x,x′ ∈ X . (83)

where P denotes the projection matrix and θ ∈ [0, 1].

Proof. We have the following relation:∥∥∥∥∫ 1

0

PT
(
∇2f(θx)−∇2f(x′)

)
Pdθ

∥∥∥∥
(a)

≤
∫ 1

0

∥∇2f(θx)−∇2f(x′)∥dθ

(b)

≤L2

∫ 1

0

∥θx− x′∥dθ ≤ L2

∫ 1

0

θ∥x∥dθ + L2∥x′∥ ≤ L2(∥x∥+ ∥x′∥)

where in (a)we use Cauchy-Schwarz inequality and ∥P∥ = 1; in (b) we use the L2-Hessian Lips-
chitz continuity.

25

To quantify the “sufficient” descent of SGDN when the iterates are around the strict saddle points,
we also need to introduce some constants defined as follows,

F , ϵ3H
L2
2ĉ

5
log−3

(
dκ

δ

)
, (84a)

S , ϵH
L2ĉ2

log−1

(
dκ

δ

)
, (84b)

T ,
log
(
dκ
δ

)
βϵH

. (84c)

These quantities refer to different units of the algorithm. Specifically, F accounts for the objective
value, S for the norm of the difference between iterates, and T for the number of iterations. Also,
we define a condition number in terms of ϵH as:

κ , L1

ϵH
≥ 1. (85)

In the process of the proofs, we also use conditions log(dκδ) ≥ 1 when δ ∈ (0, dκe] repeatedly to
simplify the expressions of the inequalities, where e stands for the natural logarithm constant.

The following Lemma 9 and Lemma 10 characterize the descent of SGDN around the strict saddle
points.

Lemma 9. Under Assumption 1, consider x that satisfies Condition 1 and a sequence u(r) generated
by SGDN. Define β ≤ 1/L1, and the following:

R , S

ĉ2κ log
(
dκ
e

) , and T , min

{
min
r≥1
{r|f̂(u(r))− f̂(u(1)) ≤ −2F}, ĉ ·T

}
. (86)

Then for any constant ĉ ≥
√
2, δ ∈ (0, dκe], when initial point u(1) satisfies

∥u(1) − x∥ ≤ 2R, (87)

the iterates generated by SGDN satisfy ∥u(r) − u(1)∥ ≤ 2S and ∥u(r) − x∥ ≤ 3S , ∀r < T .

Proof. Without loss of generality, let u(1) be the origin, i.e., u(1) = 0. According to the update rule
of SGDN, we have

u(r+1) = u(r) − βq̂π(u(r)). (88)

Similar as the derivation in (57), by the L1-gradient Lipschitz continuity, we have

f̂(u(r+1)) =f̂
(
u(r) − βq̂π(x(r))

)
≤ f̂(u(r))− β∇f̂(u(r))T q̂π(u

(r)) +
β2

2
L1∥q̂π(u(r))∥2

≤f̂(u(r))− βq̂π(u(r))T q̂π(u
(r)) +

β2

2
L1∥q̂π(u(r))∥2

=f̂(u(r))−
(
β − β2

2
L1

)
∥q̂π(u(r))∥2. (89)

From (89), we also know that

f̂(u(r+1))
(a)

≤ f̂(u(r))− β

2
∥q̂π(u(r))∥2

(88)
= f̂(u(r))− 1

2β
∥u(r+1) − u(r)∥2 (90)

where in (a) we choose β ≤ 1/L1.

By applying the telescoping sum of (90), we have

f̂(u(r+1)) ≤ f̂(u(1))− 1

2β

r∑
τ=1

∥u(τ+1) − u(τ)∥2, ∀r < T. (91)

26

According to the definition of T , we know that

f̂(u(1))− f̂(u(r)) < 2F , ∀r < T. (92)

Combining (91) and (92) , we know that

r−1∑
τ=1

∥u(τ+1) − u(τ)∥2 < 4βF . (93)

Next, we will get the upper bound of ∥u(r) − u(1)∥,∀r < T as the following. First, by the triangle
inequality, we have

∥u(r) − u(1)∥2 ≤(r − 1)
r−1∑
τ=1

∥u(τ+1) − u(τ)∥2 ≤ (T − 1)
r−1∑
τ=1

∥u(τ+1) − u(τ)∥2 (94)

(93)
≤ T4βF

(86)
≤ 4ĉβFT

(a)

≤ 4S 2, (95)

where in (a) we use the relation ĉβFT = S 2 by applying (84a)(84b)(84c).

Due to the following fact

∥u(r) − x∥ = ∥u(r) − u(1) + u(1) − x∥ ≤ ∥u(r) − u(1)∥︸ ︷︷ ︸
≤2S

+ ∥u(1) − x∥︸ ︷︷ ︸
≤ S

ĉ2 log(dκ
δ

)

≤ 3S (96)

where the last inequality is true when ĉ ≥ 1, and dκ/δ > e. Therefore, we know that ∥u(r) − x∥ ≤
3S , ∀r < T where β ≤ 1/L1, which completes the proof.

Lemma 10. Consider x that satisfies Condition 1. Suppose that there exist two sequences {u(r)}
and {w(r)}, generated by SGDN with two different initial points {u(1),w(1)} that satisfy

∥u(1) − x∥ ≤ R, w(1) = u(1) + υRe⃗, υ ∈ [δ/(2
√
d), 1], (97)

where R is defined in (86). Let us also define

T , min

{
min
r≥1
{r|f̂(w(r))− f̂(w(1)) ≤ −2F}, ĉ ·T

}
. (98)

Suppose ĉ ≥ 51, δ ∈ (0, dκe], β ≤ 1/L1, ∥u(r) − x∥ ≤ 3S , ∀r < T , then we will have T < ĉ · T ,
that is, we must have

f̂(w(r))− f̂(w(1)) ≤ −2F . (99)

Proof. LetH , HP(x), where x satisfies Condition 1. Without loss of generality, let u(1) = 0 and
define v(r) , w(r) − u(r). According to the assumption of Lemma 10, we know

v(1) = w(1) = υRe⃗ = υ
S

ĉ2κ log
(
dκ
e

) e⃗ (100)

where υ ∈ [δ/(2
√
d), 1]. Clearly we have ∥v(1)∥ ≤ R. From (82), it is clear that u(r) ∈ F(x(r)),

i.e., Pu(r) = u(r). Since w(r) is also generated by SGDN and the sequence is initialized in F(x)
as shown in (97), it is obvious that w(r) ∈ F(x), i.e., Pw(r) = w(r). Thus, we have v(r) ∈ F(x),

27

i.e., Pv(r) = v(r). Then sequence w(r+1) can be expressed by

u(r+1) + v(r+1)

=w(r+1) (101)

=w(r) − β
(
qπ(w

(r) + x)− qπ(x)
)

=u(r) + v(r) − β
(
qπ(u

(r) + v(r) + x)− qπ(x)
)

=u(r) + v(r) − β
(
qπ(u

(r) + v(r) + x)− qπ(u(r) + x) + qπ(u
(r) + x)− qπ(x)

)
(a)
=u(r) − β

(
qπ(u

(r) + x)− qπ(x)
)
+ v(r) − β

[∫ 1

0

PT∇2f(u(r) + x+ θv(r))Pdθ

]
v(r)

=u(r) − β
(
qπ(u

(r) + x)− qπ(x)
)
+ v(r) − β(H+∆(r))v(r)

=u(r+1) + (I− βH− β∆(r))v(r) (102)

where (a) uses the Mean Value Theorem and Pv(r) = v(r); ∆(r) =
∫ 1

0
PT∇2f(u(r) + x +

θv(r))dθ −H. Therefore, we have

v(r+1) = (I− βH− β∆(r))v(r). (103)

By applying Lemma 8 and L2-Lipschitz continuity of f(·), we have

∥∆(r)∥ ≤ L2(∥u(r)∥+ ∥v(r)∥+ 2∥x∥). (104)

Note that ∥w(1) − x∥ ≤ ∥u(1) − x∥ + ∥v(1)∥ ≤ 2R. This means that as a sequence generated by
SGDN, {w(r)} satisfies the assumption given in Lemma 9. Also note that we have assumed that
ĉ ≥ 51, then by the same lemma, it follows that

∥w(r) − x∥ ≤ 3S , ∀r < T.

Similarly, we can apply Lemma 9 again to obtain ∥u(r)−x∥ ≤ 3S , ∀r < T since we have assumed
∥u(1) − x∥ ≤ R. Combining these two results, we have

∥v(r)∥ = ∥w(r) − u(r)∥ ≤ ∥w(r) − x∥+ ∥u(r) − x∥ ≤ 6S . (105)

Next let us prove that the following hold: ∥x∥ ≤ R ≤ S , where the first inequality is because
the assumption that u(1) = 0 and ∥u(1) − x∥ ≤ R; the second inequality is due to the following
choices of the constants ĉ ≥ 1, κ ≥ 1 and log(dκ/δ) ≥ 1. Further, from (95) and the assumption
that u(1) = 0, we have ∥u(r)∥ ≤ 2S . Combining the above relations with (104), we conclude

∥∆(r)∥ ≤ 10L2S and β∥∆(r)∥ ≤ 10βL2S . (106)

By Condition 1 we know that I−βH has maximum eigenvalue at least 1+ ϵHβ. Let ϕ(r) denote the
norm of v(r) projected on the space spanned by e⃗ , and let ψ(r) denote the norm of v(r) projected
onto the remaining space. From (103), we have

ϕ(r+1) ≥(1 + ϵHβ)ϕ
(r) − µ

√
(ϕ(r))2 + (ψ(r))2, (107a)

ψ(r+1) ≤(1 + ϵHβ)ψ
(r) + µ

√
(ϕ(r))2 + (ψ(r))2, (107b)

where we have defined
µ = 10βL2S , (108)

and the inequalities are true due to the use of triangular inequality and the bound in (106). Then, we
will use mathematical induction to prove

ψ(r) ≤ 4µrϕ(r), ∀ r < T. (109)

28

Intuitively, the above result says that, the projection of v(r) in the negative curvature direction should
be relatively large, and this fact will finally lead to a fast descent in the objective. Let us prove (109).
It is true when r = 1, since by definition we have

v(1) = w(1) − u(1) = υRe⃗, (110)

which implies that ∥ψ(1)∥ = 0.

Next, let us assume that (109) is true at the rth iteration, we need to prove

ψ(r+1) ≤ 4µ(r + 1)ϕ(r+1), ∀ r < T − 1. (111)

To show this result, we utilize (107a) and (107b) to lower and upper bound 4µ(r + 1)ϕ(r+1) and
ψ(r+1), respectively. Substituting (107b) into LHS of (111), we have the upper bound of ψ(r+1),
i.e.,

ψ(r+1) ≤ (1 + ϵHβ) 4µrϕ
(r) + µ

√
(ϕ(r))2 + (ψ(r))2. (112)

Applying (107a) into RHS of (111), we have the lower bound of 4µ(r + 1)ϕ(r+1) as the following:

4µ(r + 1)ϕ(r+1) ≥ 4µ(r + 1)

(
(1 + ϵHβ)ϕ

(r) − µ
√

(ϕ(r))2 + (ψ(r))2
)
. (113)

Next, we will show that the following holds,

(1 + 4µ(r + 1))

(√
(ϕ(r))2 + (ψ(r))2

)
≤ 4ϕ(r). (114)

If this is true, then after manipulation, we can show that the RHS of (113) is greater than the RHS
of (112), which will eventually imply (111).

In the following, we will show that the above relation (114) is true, i.e., RHS of (107a) is greater
than RHS of (107b).

First step: We know that

4µ(r + 1) ≤ 4µT
(108)
≤ 40βL2ĉS ·T

(a)

≤ 40

ĉ

(b)

≤ 1 (115)

where the first inequality is true because r < T − 1; in (a) we use the relation βL2S ĉ · T = 1
ĉ by

applying (84b)(84c); (b) is true when ĉ ≥ 40.

Second step: By using the induction assumption and the previous step, we have

4ϕ(r) ≥ 2
√
2(ϕ(r))2

(109),(115)
≥ (1 + 4µ(r + 1))

√
(ϕ(r))2 + (ψ(r))2, (116)

which gives (114). Therefore, we can conclude that ψ(r+1) ≤ 4µ(r + 1)ϕ(r+1) is true, which
completes the induction.

Recursion of ϕ(r): Next we will show that the projection of vr on the negative curvature direction
e⃗ will be exponentially increasing.
Using (109), we have

ψ(r)
(109)
≤ 4µrϕ(r)

(115)
≤ ϕ(r). (117)

Then, we can get the recursion of ϕ(r+1) by the following steps.

ϕ(r+1)
(107a)
≥ (1 + ϵHβ)ϕ

(r) − µ
√
(ϕ(r))2 + (ψ(r))2

(a)

≥ (1 + ϵHβ)ϕ
(r) − µ

√
2ϕ(r)

(108)
= (1 + ϵHβ)ϕ

(r) − 10βL2S
√
2ϕ(r)

(84b)
= (1 + ϵHβ)ϕ

(r) − 10
√
2ϵHβ

ĉ2 log(dκδ)
ϕ(r)

(b)

≥(1 +
ϵHβ

2
)ϕ(r)

where (a) is true because (117); (b) is true when ĉ ≥ 2
√

5
√
2.

29

Quantifying Escaping Time: Next we estimate how many iterations does it require for w(r) to
reduce the objective value sufficiently.

From (105) and the definition of ϕ(r), we have

6S ≥∥v(r)∥ ≥ ϕ(r)

(118)
≥ (1 +

βϵH
2

)rϕ(1) (118)

(a)
=(1 +

βϵH
2

)r∥w(1) − u(1)∥ (119)

(b)

≥(1 +
βϵH
2

)r
δ

2
√
d

S

ĉ2κ
log−1(

dκ

δ
) ∀r < T (120)

where in (a) we used (97); in (b) we use condition υ ∈ [δ/(2
√
d), 1].

Since (120) is true ∀r < T , then it must hold for r = T − 1. Taking log on both sides of (120),
letting r = T − 1, we can have

T ≤
log(12ĉ2(κ

√
d

δ) log(dκδ))

log(1 + βϵH
2)

+ 1
(a)
<

4 log(12ĉ2(
√
dκ
δ) log(dκδ))

βϵH
+ 1

(b)
<
4 log(12ĉ2(dκδ)2)

βϵH
+ 1

(c),(84c)
≤ 4(2 + log(12ĉ2))T + 1

(d),(84c)
≤ 4(2

1

4
+ log(12ĉ2))T (121)

where (a) comes from inequality log(1 + x) > x/2 when x < 1, in (b) we used relation log(x) <
x, x > 0, and (c) is true because δ ∈ (0, dκe] and log(dκ/δ) > 1 so that log(12ĉ2) + 2 log(dκδ) ≤
(log(12ĉ2) + 2) log(dκδ); (d) is true due to the fact that βL1 ≤ 1, κ ≥ 1, and log(dκ/δ) ≥ 1 so we
have T ≥ 1 .

From (121), we know that when the following holds, we will have T < ĉT :

4

(
2
1

4
+ log(12ĉ2)

)
< ĉ, . (122)

It can be observed that LHS of (122) is a logarithmic with respect to ĉ and RHS of (122) is a linear
function in terms of ĉ, implying that when ĉ is large enough inequality (122) holds. It is can be
numerically checked that when ĉ ≥ 51 inequality (122) holds. The proof is complete.

D.3 Convergence Results of SGDN

Theorem 2. Suppose SGDN uses β ≤ 1/L1, and the following parameters:

T ≥
ĉ log(dL1

ϵHδ)

βϵH
+ 1, F =

ϵ3H
L2
2ĉ

5 log3(dL1

ϵHδ)
, R =

ϵ2H
L1L2ĉ4 log

2(dL1

ϵHδ)
(123)

where ĉ ≥ 51. Then, for any 0 < δ < 1, ϵH ≤ L1, SGDN returns ♢ and a vector z such that the
following holds:

zT∇2f(x)z

∥z∥2
≤ − ϵH

8ĉ log(dL1

ϵHδ)
(124)

with probability 1 − δ. Otherwise SGDN returns ∅ and vector 0, indicating that λmin(HP(x)) ≥
−ϵH with probability 1− δ.

The proof of Theorem 2 is similar as the one of proving convergence of PA-GD shown in [21, Lemma
9] or PGD shown in [17, Lemma 14,15] or NEON in [19, Theorem 2] but it is still sufficiently
different. Considering the completeness of this paper, here we give the following proof of this
theorem in details.

30

Proof. Let z(1) be a vector that follows uniform distribution within the ball B(d′)
x (R), where B(d′)

x

denotes the d′-dimensional ball centered at x with radius R and d′ = |F(x)|.
Step 1: We will quantify the decrease of the objective value after T number of iterations. Let x
denote a saddle point which satisfies Condition 1. Consider two sequences generated by SGDN, i.e.,
{u(r)} and {w(r)}, where the initial points of these two sequences satisfy the conditions (97) as
shown in Lemma 10.

Again, without loss of generality, we assume u(1) = 0 and let T ∗ , ĉT and T ′ ,
infr≥1

{
r|f̂(u(r))− f̂(u(1)) ≤ −2F

}
. Then, we have the following two cases to analyze the de-

crease of the objective value.

Case T ′ ≤ T ∗ Applying Lemma 9, we know that

f(x+ u(T ′))− f(x)−∇f(x)Tu(T ′)

≤ f(x+ u(1))− f(x)−∇f(x)Tu(1) − 2F
(a)

≤ L1

2
∥u(1)∥2 − 2F

(b)

≤ −2F (125)

where (a) is true because of the L1-gradient Lipschitz continuity; (b) is true because u(1) = 0.

From (82) and (57), we know that SGDN always reduces the approximate objective function f̂ .
When ĉ ≥ 1 for any T > ĉT = T ∗ ≥ T ′, we have

f(x+ u(T))− f(x)−∇f(x)Tu(T) ≤ f(x+ u(T∗))− f(x)−∇f(x)Tu(T∗)

≤f(x+ u(T ′))− f(x)−∇f(x)Tu(T ′) ≤ −2F . (126)

Also, since u(T ′) = u(T ′−1) − β(∇f(x + u(T ′−1)) − ∇f(x)), we have ∥u(T ′)∥ ≤ ∥u(T ′−1)∥ +
βL1∥u(T ′−1)∥ ≤ 4S by L1-gradient Lipschitz continuity, β ≤ 1/L1 and applying ∥u(r)−u(1)∥ ≤
2S in Lemma 9.

Case T ′ > T ∗ Applying Lemma 9, we know that ∥u(r) − u(1)∥ ≤ 2S for r < T ∗. Define
T ′′ = infr≥1

{
r|f̂(w(r))− f̂(w(1)) ≤ −2F

}
. Then, after applying Lemma 10, we know T ′′ <

T ∗. Using the same argument as the above case, for T ≥ ĉT = T ∗ > T ′′, we also have

f(x+w(T))− f(x)−∇f(x)Tw(T) ≤ f(w(T∗))− f(x)−∇f(x)Tw(T∗)

≤f(w(T ′′))− f(x)−∇f(x)Tw(T ′′)) ≤ f(w(1))− f(x)−∇f(x)Tw(1) − 2F

(a)

≤ L1

2
∥w(1)∥2 − 2F

(b)

≤ −1.5F (127)

where (a) is true again due to the L1-gradient Lipschitz continuity; in (b) we use the initialization
conditions of the iterates shown in (97) in Lemma 10 so that we have

L1R
2/2

(86),(84b)
= L1ϵ

2
H/(2ĉ

8κ2L2
2 log

4(dκ/δ))

(85)
≤ ϵ3H/(2ĉ

8κL2
2 log

3(dκ/δ)) ≤ ϵ3H/(2L2
2ĉ

5 log3(dκ/δ))
(84a)
= 0.5F . (128)

Also, similar as the previous case, we have ∥w(T ′′)∥ ≤ 4S since ∥w(1) − x∥ ≤ 2R.

Step 2: We show that at least one sequence, i.e., either u(r) or w(r), will give the sufficient descent
of the approximate objective value after T iterations. Combining (126) and (127), we have

min
{
f(x+ u(T))− f(x)−∇f(x)Tu(T), f(x+w(T))− f(x)−∇f(x)Tw(T)

}
≤ −1.5F , ∀T ≥ ĉT , (129)

meaning that at least one of the sequences can give a sufficient decrease of the objective function
if the initial points of the two sequences are separated apart with each other far enough along the
negative curvature direction e⃗.

Let Xstuck denote the set where a generic sequence u(r) is initialized such that the sequence cannot
escape from the strict saddle point after T iterations, i.e., f(x + u(T)) − f(x) − ∇f(x)Tu(T) >

31

−1.5F . According to (129) and Lemma 10, we can conclude that if u(1) ∈ Xstuck, then initialization
(u(1) ± υRe⃗) /∈ Xstuck where υ ∈ [δ

2
√
d
, 1].

Step 3: Next, by leveraging [17, Lemma 14] we give the upper bound of the volume of Xstuck,

Vol(Xstuck) =

∫
B(d′)
x

duIXstuck(u) =

∫
B(d′−1)
x

du−1

∫ x1+
√

R2−∥x−1−u−1∥2

x1−
√

R2−∥x−1−u−1∥2
du1IXstuck(u)

≤
∫
B(d′−1)
x

du−1

(
2

δ

2
√
d′R

)
= Vol

(
B(d′−1)

x (R)
) Rδ√

d′

where IXstuck(u) is an indicator function showing that u belongs to set Xstuck, and u1 represents the
component of vector u along e⃗ direction, and u−1 is the remaining d′ − 1 dimensional vector.

Then, the ratio of Vol(Xstuck) over the volume of the initialization/perturbation ball can be upper
bounded by

Vol(Xstuck)

Vol(B(d′)
x (R))

≤
Rδ√
d′ Vol(B(d′−1)

x (R))

Vol(B(d′)
x (R))

=
δ√
dπ

Γ(d
′

2 + 1)

Γ(d
′

2 + 1)
≤ δ√

d′π

√
d′

2
+

1

2
≤ δ

where Γ(·) denotes the Gamma function, and inequality is true due to the fact that Γ(x+ 1)/Γ(x+

1/2) <
√
x+ 1/2 when x ≥ 0.

Step 4: finally, we show that the output of SGDN can give an approximate eigenvector whose
smallest eigenvalue is less than −ϵH with high probability. Combining (129) and the results of the
last step, we can show that

f(x+ z(T))− f(x)−∇f(x)Tz(T) ≤ −1.5F (130)

with at least probability 1− δ. By the L2-Lipschitz continuity, we have∣∣∣∣f(x+ z(T))− f(x)−∇f(x)Tz(T) − 1

2
(u(T))T∇2f(x)u(T)

∣∣∣∣ ≤ L2

6
∥z(T)∥3. (131)

and ∥z(T)∥ ≤ 4S . Applying (130) into (131), we have

1

2
(u(T))T∇2f(x)u(T) ≤f(x+ z(T))− f(x)−∇f(x)Tz(T) +

L2

6
∥z(T)∥3

(a)

≤ − 1.5F + 0.5F ≤ −F (132)

where in (a) we use (84a)(84b) so that we have ĉL2S 3 = F where ĉ ≥ 51. Therefore, we have

(u(T))T∇2f(x)u(T)

∥z(T)∥2
≤ −2F

(4S)2

(84a),(84b)
≤ − ϵH

8ĉ log(dκ/δ)
(133)

so that we can claim that if SGDN returns ♢ then with probability 1 − δ (133) holds for the output
z(T), otherwise SGDN returns ∅ which indicates that λmin(HP(x)) ≥ −ϵH with probability 1 −
δ.

D.4 Proof of Corollary 3

Proof. The main difference between SNAP and SNAP+ is that we replace the oracle
Negative-Eigen-Pair by SGDN. Other steps of the convergence analysis are the same as the proof
of Theorem 1. Here, we only focus on the difference of the objective reduction between SNAP and
SNAP+. First, let the number of iterations run by SGDN for extracting the negative curvature once
be

TSGDN =
ĉ log(dL1

ϵHδ)

βϵH
+ 1 ∼ O

(
log(1/ϵH)

ϵH

)
. (134)

In the following, we show the objective reduction in the NCD step, where the number of iterations
required in the inner loop is taken into account.
Case 1) (flagα = ∅): The algorithm implements x(r+1) = x(r)+α(r)d(r) without using α(r)

max com-
puted by (23). By (73), we have the descent of the objective value by f(x(r+rth)) ≤ f(x(r))− ∆

TSGDN
.

32

Case 2) (flagα = ♢): α(r)
max is computed by (23) to update x(r+1); By (74), we have f(x(r)) −

f(x(r−min{d,m})) < −min
{
ϵ2G/(18L1), 3ϵ

′3
H(δ)/(8L2

2TSGDN)
}
, ∀r > min{d,m}. Applying

the same argument from (75) to (80), we know the upper bound of the number of iterations by
(f(x(1))−f⋆)

∆′ · TSGDN. From Theorem 2, we know that ϵ′H(δ) = ϵH
8ĉ log(dκ/δ) , i.e., γ = 8ĉ log(dκ/δ).

Applying ϵG = ϵ, ϵH =
√
L2ϵ and β ≤ 1/L1 (note that rth could be either a constant or chosen in

the order of O(L1/
√
L2ϵ)), we can obtain the convergence rate of SNAP+ by (16).

33

E Numerical Results

In this section, we will provide more numerical results that showcase the strength of SNAP+ and
SNAP in applications of solving non-convex machine learning problems.

E.1 Toy Example

First, we test the algorithms on a toy example where the objective function is constructed by spline
functions as the following. Consider function l(t) defined as

l(t) =


t3, t ∈ [0, 12τ),

(t− nτ)3 + 1
4nτ

3 t ∈ [nτ − 1
2τ, nτ +

1
2τ), n = 1, . . . , N,

(t−Nτ)3 + 1
4Nτ

3, t ∈ [Nτ + 1
2τ,∞)

(135)

where N and τ are some constants. It is clear that the points at t = L/2, t = 1.5L, . . . , are strict
saddle points and the one at t = 0 is the global optimal solution. Then, we define the objective
function as f(x) = l((1/d)

∑d
i=1 xi), where x ∈ Rd. This type of staircase-like function has

been widely used in the unconstrained non-convex problems for showing the capability of PGD to
escape from saddle points [48, 49]. Here, we choose τ = 1 and N = 4, and require x ≥ 1 as
constraints. Therefore, the optimization problem is minx≥1 l((1/d)x

Tx). Further, we randomly
initialize x(1) ∈ R500 where each entry follows a uniform distribution in [0, 4], set the step-sizes of
PGD, SNAP, and SNAP+ as απ = 0.1, take πA⊥(·) = max{·, 1}, and select the hyper-parameters
ϵG = 1 × 10−3, T = 100, rth = 300 for SNAP and β = 0.01, R = 1 × 10−4 and F = 100 for
SGDN.

Iteration (r)

L
os
s
va
lu
e

SNAP
SNAP+

PGD
PGD-LS

(a) Loss value versus iteration
Computational time (s)

L
os
s
va
lu
e

SNAP
SNAP+

PGD
PGD-LS

(b) Loss value versus computational time

Figure 2: The convergence behaviors of SNAP, SNAP+, PGD, and PGD-LS for the staircase-like
objective function under linear constraints.

From Figure 2, it can be shown that both SNAP and SNAP+ are able to escape from the saddle
points and converge to a lower optimal point compared with both PGD and PGD-LS. Regarding the
computational time, SNAP+ converges faster than SNAP since EVD is avoided during the process
of exploring the directions of negative curvature.

E.2 NMF Problems

We also consider the NMF problem, which is

min
W∈Rn×k,H∈Rp×k

∥WHT −M∥2 (136)

s.t. W ≥ 0,H ≥ 0. (137)

In particular, we compare the algorithms on both synthetic and real datasets for the MNF problem
and show the superiority of exploiting negative curvatures in constrained non-convex problems.

34

E.2.1 Synthetic Dataset

The data matrices are randomly generated, where p = 20, n = 50, k = 10, M = WHT , and
[W;H] ∈ R(n+p)×k follows the uniform distribution in the interval [0, 1]. Further, we randomly set
5% entries of M as 0. The starting point for all the algorithms is X(1) = cπA⊥([W(1);H(1)]), where
W(1) and H(1) are randomly generated and follow Gaussian distribution CN (0, 1) and πA⊥(·) here
is component-wise projection operator π+(·) = max{·, 0}. Clearly, the origin point is a strict saddle
point. We use three different constants c to initialize sequence X(r) and the results are shown in
Figure 3–Figure 5, where step-size απ chosen for PGD, SNAP, and SNAP+ is 0.01 and the step-size
for the gradient based Alt-Min is 0.02, β = 0.01, ϵG = 1×10−3, T = 100, rth = 600, R = 1×10−4

and F = 100. Note that the stopping criteria are removed in the simulation, otherwise PGD and
PGD-LS will not give any output if the initialing point is close to origin.

(a) Loss value versus iteration (b) Loss value versus computational time

Figure 3: The convergence behaviors of SNAP, SNAP+, PGD, PGD-LS, Alt-Min for NMF, where
c = 1.

(a) Loss value versus iteration (b) Loss value versus computational time

Figure 4: The convergence behaviors of SNAP, SNAP+, PGD, PGD-LS, Alt-Min for NMF, where
c = 1× 10−5.

It can be observed that when c is large, all algorithms can converge to the global optimal point of
this NMF problem, whereas when c is small as shown in Figure 5 PGD and PGD-LS only converge
to a point that has a very large loss value compared with the ones achieved by SNAP and SNAP+.
These results show that when the iterates are near the strict saddle points, by exploring the negative
curvature, SNAP and SNAP+ are able to escape from the saddle points quickly and converge to
the global optimal solutions. Comparing SNAP and SNAP+, we can see that the computational
time of SNAP+ is less than SNAP. The reason is simple, which is the computational complexity
of calculation of Hessian and eigen-decomposition is too high so that SNAP takes more time to
converge. By accessing the gradient and loss value of the objective function, SNAP+ is only required

35

(a) Loss value versus iteration (b) Loss value versus computational time

Figure 5: The convergence behaviors of SNAP, SNAP+, PGD, PGD-LS, Alt-Min for NMF, where
c = 1× 10−10.

to compute one eigen-vector whose eigenvalue is the smallest of Hessian around the strict saddle
point. The line search algorithm is one of the most effective ways of computing step-sizes. From
Figure 3 and Figure 4, it can be observed that PGD-LS converges faster than PGD in terms of
iterations but costs more computational time. SNAP and SNAP+ are using line search occasionally
rather than each step, so the computational time is not as high as PGD-LS.

E.2.2 Real Dataset

We also compare the convergence behaviours of the algorithms on USPS handwritten digits dataset
[50], where images are 16 × 16 grayscale pixels. In Figure 6, we use the p = 3250, n = 256,
k = 5. Since the problem size is large, performing eigenvalue decomposition is prohibitive, so we
only compare SNAP+, PGD, and PGD-LS, where απ = 5× 10−3 and β = 5× 10−3.

SNAP
+

PGD

PGD-LS

(a) Loss value versus iteration

SNAP
+

PGD

PGD-LS

(b) Loss value versus computational time

Figure 6: The convergence behaviors of SNAP+, PGD, PGD-LS for NMF, where c = 1× 10−10.

E.3 Nonnegative Two Layer Non-linear Neural Networks

In this section, we consider a nonnegative two layer non-linear neural network, which is

min
W∈Rk×d,H∈Rp×k

∥Wσ(HTX)−Y∥2

s.t. W ≥ 0,H ≥ 0 (138)

where σ(·) denotes the activation function. The formulation has a wide applications in regression
and learning problems.

36

In the numerical simulation, the activation function is chosen as sigmoid. Data matrix X ∈ Rp×n is
randomly generated which follows uniform distribution in the interval [0, 1], where n = 100 denotes
the number of samples and p = 50 denotes the number of features. Weight matrices W ∈ Rk×d and
H ∈ Rp×d are also randomly generated, where k = 10 denotes dimension of the output, d = 15 is
the dimension of the hidden layer. Then, data matrix Y ∈ Rk×n is generated by Y = Wσ(HTX).
The step-size απ for PGD, SNAP+ is 0.001, β = 0.001, rth = 50, T = 50, R = 1×10−4, F = 50,
and ϵG = 1 × 10−2. From Figure 7, it can be observed that SNAP+ can find the stationary points
faster than PGD and PGD-LS.

Iteration (r)

L
os
s
va
lu
e

SNAP+

PGD
PGD-LS

(a) Loss value versus iteration
Computational time (s)

L
os
s
va
lu
e

SNAP+

PGD
PGD-LS

(b) Loss value versus computational time

Figure 7: The convergence behaviors of SNAP+, PGD, PGD-LS for NNN, where c = 1.

E.4 Symmetric Matrix Factorization over Simplex

In application of topic modelling, the simplex constraint turns out to be essential in modeling
(marginal) probability mass functions. In this section, we also consider symmetric matrix factor-
ization over a simplex constraint as the following,

min
X∈Rn×k

∥M−HHT∥

s.t. H ≥ 0, HT1 = 1.

In the numerical experiments, the data is generated similar as the NMF case, where n = 100, k = 5
and each column of H is normalized. We set απ = 1× 10−2, T = 100, rth = 100, R = 1× 10−4

and F = 100. From Figure 8, it is interesting to see that three algorithms converge to different
objective values. It turns out there would be multiple stationary points around the origin, where
SNAP+ finds the lowest one.

E.5 Penalized NMF
We also consider a penalized version of NMF, i.e.,

min
W∈Rn×k,H∈Rp×k

∥WHT −M∥2 + ρ

2

m∑
i

(
(1Thi)

2 − ∥hi∥2
)

s.t. W ≥ 0,H ≥ 0

where hi denotes the columns of H. It has been shown in [51] that this variant of NMF could
provide improved clustering accuracy, compared with the classic NMF. Here, we only utilize this
formulation to evaluate the performance of the algorithms. In the numerical experiments, we have
the similar experimental step-up as the NMF case in E.2.1. The problem size is p = 100, n = 40 and
k = 5. We select ρ = 0.1, απ = β = 1× 10−3, T = 100, rth = 20, R = 1× 10−4 and F = 100.
It can be observed from Figure 9, SNAP+ converges to the global minimum points of this penalized
NMF problem while other ones converge to some points that have relatively large objective values.

Further, we also implement the algorithms on a relatively larger problem, where p = 2000, n = 50,
k = 5. In this case, we compare the algorithms by a large initialization, i.e., c = 1. It can be
observed from Figure 10 that SNAP+ converges faster with respect to the number of iterations.

37

Iteration (r)

L
os
s
va
lu
e

SNAP+

PGD

PGD-LS

(a) Loss value versus iteration
Computational time (s)

L
os
s
va
lu
e

SNAP+

PGD

PGD-LS

(b) Loss value versus computational time

Figure 8: The convergence behaviors of SNAP+, PGD, PGD-LS for matrix factorization under
simplex constraints, where c = 1× 10−10.

Iteration (r)

L
os
s
va
lu
e SNAP+

PGD

PGD-LS

(a) Loss value versus iteration
Computational time (s)

L
os
s
va
lu
e

SNAP+

PGD

PGD-LS

(b) Loss value versus computational time

Figure 9: The convergence behaviors of SNAP+, PGD, PGD-LS for penalized NMF, where c =
1× 10−10.

Iteration (r)

L
os
s
va
lu
e

SNAP+

PGD
PGD-LS

(a) Loss value versus iteration
Computational time (s)

L
os
s
va
lu
e

SNAP+

PGD
PGD-LS

(b) Loss value versus computational time

Figure 10: The convergence behaviors of SNAP+, PGD, PGD-LS for penalized NMF, where c = 1.

38

