
We thank reviewers for their efforts and insightful suggestions. In this work, we proposed an all-way Boolean Tensor1

Decomposition (BTD) method, GETF, by incorporating the geometric property of Boolean tensor data. We are2

encouraged that reviewers find our theoretical driven method effective and efficient, which provides a state-of-the-art3

way to solve an important problem. In the following, we answer the main questions and comments from the reviewers.4

We will also polish the paper writing to address all the minor issues pointed out by reviewers.5

To Reviewer #1, Q1 [...why binary representation is better than count representation...]. We think that both binary6

representation and count representation have their own merits and how to select the representation should depend7

on applications. In this work, we tackle the tensor decomposition problem in Boolean tensors and thus casting the8

crime dataset as a binary representation to indicate whether a crime has happened (1) or not (0) is the best choice to9

demonstrate our effectiveness. The proposed methods can also be applied to more general scenarios, such as knowledge10

graph, contextual recommender systems, search engine and high-dimensional spatial data modeling. Q3 [...What is the11

convergence tolerance?...]. Task completion for experiments is defined as achieving the convergence criteria, presented12

in Appendix line 171. And yes, the number of patterns is fixed as 5. We will polish the writing in the revised version to13

make it clear. Q4 [...the y-axis in Figures Figure 7C and 7D is the same...] The y-axis of Fig 7C-E are not the same.14

Definition of crime index/dates/counts are in the Appendix 4.2. GETF distinguishes the safe and dangerous regions by15

reconstructing the relational patterns of crimes, which forms a Boolean relational tensor data (region-date-year), on16

which GETF showed better performance over baselines.17

To Reviewer #1, Q2 [...Why not showing the scalability of GETF and other baselines...] and Reviewer #4, Q1 [...No18

comparisons with other methods were given...]. In Fig 6 and Appendix Fig 4, we compared GETF with SOTA baselines19

on reconstruction error along with the increase of dimensions on different tensor scale, density (corresponds to non-zeros,20

Fig 6A-B,G-H) and noise. Due to the page limit, we have to put detailed scalability experiments on real world datasets21

in Appendix 4.1, 4.2 and 4.3 (Appendix Figure 7,10), and we apologize for leading to this misunderstanding.22

To Reviewer #2, Q1 [...It would be good if the paper provides theoretical analysis...]. Thanks for the suggestion, we23

will work on this direction in the future.24

To Reviewer #2, Q2 [...none of the existing algorithms are designed to handle the HBTD problem for higher order25

tensors...] and Reviewer #3, Q4 [...While alternating optimization methods have not been written...] Thanks for26

pointing this out, and we agree that LOM can be theoretically extended to higher order. However, LOM’s Bayesian27

fitting scheme is too heavy on computational cost for most higher-order tensors. Empirically, LOM took an hour to28

converge on 3D data with 500 features on each dimension (Appendix Fig 5D). Increasing data dimension usually results29

in 2 magnitude of increase in data size, yet LOM will fail to converge. In terms of the alternative optimization, besides30

the high space/computation cost by Khatri-Rao product for the matricization of higher order tensor, the updating process31

is already above O(n) complexity on each dimensionality. For the noisy tensor, this usually results in excessive updating32

for this NP-hard problem. Partition the matricization could save some computations, but with a price of increased space33

complexity (Park et al ICDE2017). For fair comparisons, we compared our methods on 2D with MP and 3D with LOM,34

representing SOTA methods. But for higher order (4D, 5D), we showed the performance of GETF without comparison35

as all baseline methods failed to converge on such moderate sized higher order tensors.36

To Reviewer #2, Q4 [...Does it need all permutations...] and Reviewer #3, Q1 [...finding the right permutations up to37

a (k-1) LTL tensor...] The existence of (k-1)-LTL IRT for any tensor is given in line 154-156, and its uniqueness is38

supported by Lemma 3 (proof is in Appendix). Not all permutations of IRT are needed to achieve the (k-1)-LTL tensor.39

To Reviewer #3, Q2 [...a (k-1) LTL tensor and then its closest flat 2-LTL tensor...The existence of such tensor for any40

tensor is not assured]. GETF is designed based on the geometric property of Boolean tensor, where in a flat 2-LTL41

tensor, the largest pattern tensor resides on the 1/k segmentation point (Lemma1 Fig 2). Lemma 3 and 4 indicate the42

(k-1)-LTL IRT is the closest form to 2-LTL IRT. Even the 2-LTL IRT does not always exist, Lemma 2 indicates when43

a tensor is sparse and its largest pattern tensor is distinct, the pattern tensor can be sub-optimally detected by the flat44

2-LTL tensor with largest solid overlap with the unique (k-1)-LTL IRT. Noted, there are at most n flat 2-LTL tensors45

needed to be considered, here n is the tensor size.46

To Reviewer #2, Q3 [I actually have doubts on the efficiency of this step] and Reviewer #3, Q3 [...it may be47

computationally demanding...]. For a n = mk size tensor, since (k-1)-LTL IRT is unique and there are at most n flat48

2-LTL tensors to be considered, the 2_LTL_project is O(n). The complexity cost of the Pattern_fiber_finding algorithm49

is mk+1−m
m−1 + kmlog(m). On top of the identified pattern fiber, the Geometric_folding (Fig 5, main 3.4, Appendix50

3.6) algorithm recovered the rank 1 tensor by applying Pattern_fiber_finding sequencially that has a complexity cost51

at mk+2−m2

(m−1)2 − km
m−1 + k(k+1)

m−1 + k(k+1)
2 mlog(m) ∼ O(mk), which explained the computational efficiency of GETF.52

Moreover, the additional space complexity for GETF is mk−m
m−1 , also O(n). We highlighted the complexity analysis in53

main text Section 3.5 and will provide detailed derivation of complexity in the revised Appendix.54


