
Geometric All-Way Boolean Tensor Decomposition
APPENDIX

Changlin Wan1,2, Wennan Chang1,2, Tong Zhao3, Sha Cao2, Chi Zhang2

1 Purdue University, 2 Indiana University, 3 Amazon
{wan82,chang534}@purdue.edu, zhaoton@amazon.com, {shacao,czhang87}@iu.edu

1 Definitions

For ease of illustration, we first recap the definitions that appeared in main text.
Definition 1. (p-order slice). A p-order slice of a k order tensor Xm1×...×mk with fixed index set P
(p = |P|) is defined by Xi1,...,ik , where ik is a fixed value ∈ {1, ...,mk} if k ∈ P, and ik is unfixed
(ik =:) if k ∈ P̄. Specifically, we denote a |P| order slice of Xm1×...×mk with the index set |P| unfixed
as Xm1×...×mk

P,IP̄ or XP,IP̄ , in which P is the unfixed index set and IP̄ are fixed indices.

Definition 2. (Index Reordering Transformation (IRT)). The IRT of a k-order tensor
Xm1×,...×mk is defined by X̃P1P2,...,Pk

, where P1, ..., Pk are any permutation of the index sets,
{1, ...,m1}, ..., {1, ...,mk}.
Definition 3. (tensor slice sum), The tensor slice sum of a k-order tensor Xm1×...×mk with respect
to the index set P is defined as Tsum(X,P) ,

∑mi1
i1=1 ...

∑mi|P|
i|P|=1 X:...:i1:...:i|P|:....:, i1, ..., i|P| ∈ P.

Tsum(X,P) results in a k − |P| order tensor.
Definition 4. (p-left triangular like (p-LTL)), A k-order tensor Xm1×...×mk is called p-LTL, if any of
its p-order slice, XP,IP̄ , P ⊂ {1, ..., k} and |P| = p, and ∀j ∈ P, 1 ≤ j1 < j2 ≤ mj , Tsum(XP,IP̄ ,P\
{j})j1 ≤ Tsum(XP,IP̄ ,P \ {j})j2 .

Definition 5. (flat 2-LTL), A k-order 2-LTL tensor Xm1×...×mk is called flat 2-LTL within an error
range ε, if any of its 2-order slice, XP,IP̄ , P ⊂ {1, ..., k} and |P| = p, and ∀j ∈ P, 1 ≤ j1 < j2 ≤
mj , |Tsum(XP,IP̄ ,P \ {j})j1 + Tsum(XP,IP̄ ,P \ {j})j2 − 2Tsum(XP,IP̄ ,P \ {j})(j1+j2)/2| < ε.

2 Lemma

Lemma 1 (Geometric segmenting of a flat 2-LTL tensor). Assume X is a k-order flat 2-LTL
tensor and X has none zero fibers. Then the largest rank-1 subarray in X is seeded where one
of the pattern fibers is paralleled with the fiber that anchored on the 1/k segmenting point (entry
{|m1|/k, |m2|/k, ..., |mk|/k}) along the sides of the right angle.

Figure 1A,C illustrate flat 2-LTL matrix and 3-order tensor. Figure 1B,D illustrate the position
(yellow dash lines) of the most likely pattern fibers in the flat 2-LTL matrix and 3-order tensor. We
will first prove Lemma 1 holds for matrix and three-way tensor. Then we will generalize Lemma 1 to
all-way tensor.

Proof. (Lemma 1 holds for flat 2-LTL matrix) As in figure 1B, we regard flat 2-LTL matrix as a
right triangular with two right-angle sides of length x1,x2. The largest rank-1 submatrix is equivalent
to the rectangular with sides of length y1 and y2. Let f(y1, y2) denotes the area of rectangular.
Under geometric constrain, y1

x1
= x2−y2

x2
, s.t., f(y1, y2) = y1y2 = x1y2(x2−y2)

x2
. It is clear that f

achieves maximum value fmax = 1
4x1x2 when y1 = 1

2x1, y2 = 1
2x2. As indicated in Figure 1A, the

optimal basis (yellow colored) is paralleled with lines (pink colored) anchored on the 1/2 segmenting
point.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Figure 1: Optimal rank 1 subarray

Figure 2: Suboptimal subarray for k − 1 LTL tensor

Proof. (Lemma 1 holds for 3-way flat 2-LTL tensor) In figure 1D, 3-order flat 2-LTL tensor is
depicted as right tetrahedron with three right-angle sides of length x1, x2 and x3, respectively. We
also let f(y1, y2, y3) represents the volume of the cuboid of interest. Integrating geometric constrain
with Proof 1, y1 = x1

2 , y2 = x2

2 , y1

x1
= y2

x2
= x3−y3

x3
. s.t., f(y1, y2, y3) = y3 · (1

2 ·
x3−y3

x3
· x1) · (1

2 ·
x3−y3

x3
· x2) = y3 · (x3−y3

x3
)2 · 1

4x1x2. When y3 = x3

3 , f get the maximum value fmax = 1
27x1x2x3.

Additionally, y1 = x1

3 , y2 = x2

3 . As indicated in Figure 1C, the optimal basis (yellow colored) is
paralleled with lines (pink colored) anchored on the 1/3 segmenting point.

Proof. (Lemma 1 holds for k-order flat 2-LTL tensor, k > 3) Since lemma 1 holds for ma-
trix and three-way tensor, the generality of lemma 1 for all-way flat 2-LTL tensor is introduced
by mathematical induction. We assume lemma 1 holds for flat 2-LTL tensor with order of
k − 1. And the largest subarray has volume fk−1(y1, y2, ..., yk−1). For k-way flat 2-LTL tensor,

f(y1, y2, ..., yk−1, yk) = yk(xk−yk

xk
)k−1fk−1(y1, y2, ..., yk−1), where fmax =

∏k
i=1 xi

kk is achieved
when yk = xk

k . By induction, yi = k−1
k ·

k−2
k−1 · ... ·

1
2xi = xi

k , ∀i ∈ [1, k− 1]. In all, Lemma 1 holds
for all-way flat 2-LTL tensor.

Lemma 2. (Geometric perspective in seeding the largest rank-1 pattern) For a k order tensor X
sparse enough and a given tensor size threshold λ, if its largest rank-1 pattern tensor is larger than λ,
the IRT that reorders X into a (k-1)-LTL tensor reorders the largest rank-1 pattern to a consecutive
block, which maximize the size of the connected solid shape overlapped with the k − 1 dimension
plane over a flat 2-LTL tensor larger than λ.

Proof. The (k-1)-LTL IRT may reorder the indices of these overlapped patterns to the most bottom
left position instead of the largest rank-1 pattern. However, if the tensor is sparse enough, i.e., the
overlapped region among rank-1 patterns is relative small, the largest rank-1 patterns will be reordered
to form a block in the (k-1)-LTL IRT. In addition, if the size of the overlapped pattern is significant
enough, e.g. larger than a given threshold, the overlapped patterns can be identified as a distinct
pattern. Otherwise, the largest rank-1 pattern has a distinct solid shape when intersecting with the
k-1 dimension plane of the flat 2-LTL tensor that most cross it (Figure 2C,D), while the overlapped
patterns in the (k-1)-LTL IRT will intersect with the k-1 dimension plane of the flat 2-LTL tensor
most cross it in a ring shape (Figure 2A,B).

Lemma 3. If a k-order tensor Xm1×...×mk can be transformed into a p-LTL tensor by IRT, the p-LTL
tensor is unique.

Proof. If the indices of the p-LTL tensor is not unique there are two p-LTL tensor can be achieved
by IRT of Xm1×...×mk , denoted as XA1A2...Ak

and XB1B2...Bk
, where A1, ..., Ak and B1, ..., Bk

2

are two permutations of the index sets {1, ...,m1}, ..., {1, ...,mk}. Then any p order slice, XP,IP̄ of
XA1A2,...,Ak

has an identical slice in XB1B2,...,Bk
, which can be denoted as XP,I′P̄

. By the definition
of p-LTL, ∀j ∈ P, 1 ≤ j1 < j2 ≤ mj , Tsum(XP,IP̄ ,P \ {j})j1 ≤ Tsum(XP,IP̄ ,P \ {j})j2 and
Tsum(XP,I′P̄

,P \ {j})j1 ≤ Tsum(XP,I′P̄
,P \ {j})j2 . Hence, either both Tsum(XP,I′P̄

,P \ {j})j and
Tsum(XP,IP̄ ,P \ {j})j are identical with respect to j, or the index order of the jth order are identical
in XP,IP̄ and XP,I′P̄

, suggesting the uniqueness of the p-LTL tensor achieved by IRT of X.

Lemma 4. If a k-order tensor is p-LTL, then it is x-LTL, for all the x=p,p+1,...,k.

Proof. For any of its P+1 order slice of X, denoted as XP+1,I ¯P+1
and ∀j ∈ P+ 1, 1 ≤ j1 < j2 ≤ mj ,

Tsum(XP+1,I ¯P+1
,P + 1 \ {j}) =

∑mt

q=1 Tsum(XP+1,I ¯P+1
,P + 1 \ {j, t}):,q , where P + 1 represents

a set of indices with |P|+ 1 elements, XP+1,I ¯P+1
is a |P|+ 1 order slice, and {t} = P + 1\P. Noting

Tsum(XP+1,I ¯P+1
,P + 1 \ {j, t}) is a tensor slice sum that takes a |P|+ 1 order slice as the input and

outputs a matrix, which is equivalent to separately compute the tensor slice sum that takes a |P| order
slice with fixed index on the tth order as the input and outputs a vector, i.e. Tsum(XP+1,I ¯P+1

,P + 1 \
{j, t}):,q = Tsum(XP,I ¯P+1∪{it=q},P \ {j}). By the definition of p−LTL, Tsum(XP+1,I ¯P+1

,P+ 1 \
{j}, t)j1 =

∑mt

q=1 Tsum(XP+1,I ¯P+1
,P+1\{j, t})j1,q ≤

∑mt

q=1 Tsum(XP+1,I ¯P+1
,P+1\{j, t})j2,q =

Tsum(XP+1,I ¯P+1
,P + 1 \ {j}, t)j2

3 Algorithms

In this sections, we will provide all the pesudo code of algorithms included in GETF framework.
Before we illustrate Pattern_basis_finding and Geometric_folding, we will introduce some
auxiliary algorithms first.

3.1 Direction generation

There are in total k! directions to construct a k− 1 LTL tensor. The first step for GETF is to construct
such directions set Ω, where o ∈ Ω is the non repetitive combination of 1 to k. Empirically, most of
the k! direction will generate the duplicated output resulted from the same or closely related end k−1
LTL structural. Such that, normally, k directions are more than enough to generate the suboptimal
rank 1 tensor. Still, we provide an Exha Boolean parameter represents exhaustive searching, where
Exha = 1, Ω′ = Ω while Exha = 0, Ω′ is the k sample of Ω. The final Ω′ is the direction set to
apply Geometric_folding.

3.2 Find the segmenting coordinate

As stated in Pattern_fiber_finding algorithm, an essential step is to retrieve the 1/n coordinate
point. This POS algorithm is designed for this task. The input for POS is a vector d, on which to
get the segmenting coordinate p, n is the denominator of the segmenting ratio and s is the noise level.

Algorithm 1: POS
Inputs: d, n, s
Outputs: p
POS(d, n, s):
m← the index of d > s
if length(m) < n then

return 0 # no need to segment
else

q ← length(m)//n
m′ ← order(dm, decreasing)
return m’q

end

3

3.3 Folding tensor based on fiber

This TENS_FOLD algorithm allows an efficient folding of k order tensor into k − 1 order tensor
by one dimension on the basis of a specific fiber as mentioned in the main content.

Algorithm 2: TENS_FOLD
Inputs: a k-order tensor Xm1×m2...×mk , the fiber f to be fold upon, and directions of this fiber o
Outputs: the (k − 1) order tensor H
TENS_FOLD(X, o,f):
d← diff(range(m), o) #the fold dimension
H ∈ {0}m1×...×md−1×md+1...×mk # initialization
Hi1i2...id−1id+1...ik ← Xi1i2...id−1:id+1...ik · f
return H

3.4 2 LTL projection

From Lemma 1, the 1/k segmentation pinpoint the optimal pattern basis for the flat 2−LTL tensor.
We could easily derive the (k-1)-LTL throught IRT. However, owing to the impact of different levels
of noise, lemma 1 does not hold on (k − 1) − LTL tensor in definite. The 2_LTL_projection
algorithm is to fill this gap. 2_LTL_projection finds a proper searching space that maintains the
flat 2 − LTL tensor property with limited noise. With 2_LTL_projection, we could find the
biggest rank 1 tensor patterns in the first iteration, the second biggest patterns in the second iteration,
so on and so forth. In practise, we omitted this process to further accelerate GETF. Without the
2_LTL_projection, the order of pattern size may vary with its sequential order. But it does not impact
the overall decomposition efficiency. A similar study on Boolean matrix can be found in [1].

Algorithm 3: 2_LTL_projection
Inputs: a k-order K-1 LTL tensor X ∈ {0, 1}m1×m2...×mk and the range of flat 2-LTL tensor
{ml

1, ...,m
h
1}⊗, ...,⊗{ml

k, ...,m
h
k}

Outputs: the flat 2-LTL tensor maximizes the overlap between its k-1 dimension plane and X

S ← 0(mh
1−m

1
1+1)×...×(mh

k−m
1
k+1)

for (i1, i2, ...ik) ∈ {1, ...,mh
1 −ml

1 + 1}⊗, ...,⊗{1, ...,mh
k −ml

k + 1} do
Xprojected ← project(X,Plane(i1, i2, ...ik))
Si1,i2,...ik ← sum(neighbor_weighted_scoring(Xprojected))

end
i∗1, i
∗
2, ...i

∗
k ← argmax{S}

return(i∗1, i
∗
2, ...i

∗
k)

3.5 Pattern fiber finding

Assume we find the pattern fiber along the direction o ∈ {1, ...k}. Derive from lemma 1. The
candidate pattern fiber is revealed recursively. The recursive algorithm first computes tensor slice sum
of X through mode o1 to ok−1, i.e., from Tsum(X, {o1}) to Tsum(X, {o1, ..., ok−1}) and identify the
first coordinate on the mode ok as the 1/k segmenting point of the computed slice sum. Then in
each recursive iteration n, there are k − 1 computed coordinates for the mode of ok−n+1 to ok and
the k − n order tensor of the slice sum of X through mode o1 to ok−n computed previously, which
together form a vector, on which the 1/(n+ 1) segmenting point is computed as the coordinate for
the mode ok−n. Denote (i01, ..., i

0
o1−1, i

0
o1+1, ..., i

0
k) as the identified coordinates, the mode-o1 pattern

fiber amo1×1,o1 = Xi01...i
0
o1−1i

0
o1+1,...i

0
k
. Detailed algorithm implementation is as followed.

The recursive algorithm first computes the tensor slice sum of X through mode {o1} to {ok−1} and
identify the first coordinate on the mode ok as the 1/k segmenting point of the computed tensor
slice sum. Then in each recursive iteration n, there are k − 1 computed coordinates for the mode
of ok−n+1 to ok and the k − n order tensor of the slice sum of X through mode o1 to ok−n that
computed previously, which together form a vector, on which the 1/(n + 1) segmenting point is

4

Algorithm 4: Pattern_fiber_finding
Inputs: a k-order tensor X ∈ {0, 1}m1×m2...×mk , the finding direction o as defined in algorithm
1, a segmentatin denominator n and the noise control prarmeter s.

Outputs: the coordinates (i1, ..., io1−1, io1+1, ..., ik) of the mode-o1 basis fiber.
Pattern_fiber_finding(X, o, s) :
if is.vector(X) then

return POS(X, n+ 1, s)
else

n← n+ 1 #total order of the current X
X← TENS_FOLD(X, on) #compute the Tsum(X, {on}) for the current on mode.
Cor ← Pattern_fiber_finding(X, o, s) # recursion starts for folding next dimension and
return coordinates.
ion−n ← POS(X:...:ion−n+1:...:ion :...:,n+1,s)∗
Cor ← append(Cor, ion−n) #integrate coordinates information
return Cor

end
∗ion−n+1, ..., ion are currently computed n coordinates of the mode on − n+ 1 to ok of the
pattern fiber.

computed as the coordinate for the mode ok−n. Denote (i01, ..., i
0
o1−1, i

0
o1+1, ..., i

0
k) as the identified

coordinates, the mode-o1 pattern fiber amo1×1,o1 = Xi01...i
0
o1−1i

0
o1+1,...i

0
k
.

Owing to the recursive property of Pattern_fiber_finding, for the ith iteration of a tensor has the size of
mk, the computational cost is mi for TENS_FOLD and mlog(m) for POS. Such that, the overall
computational cost for Pattern_fiber_finding is

∑k
i=1m

i +mlog(m) = mk+1−m
m−1 + kmlog(m).

3.6 Geometric folding

The geometric folding approach is to compute the rank-1 tensor component best fit via X
from the pattern fiber identified by the Pattern_fiber_finding algorithm. For a k-way tensor
Xm1×m2...×mk and a pattern fiber identified by Pattern_fiber_finding, denoted as X:i02...i

0
k
. The

algorithm further computes the inner product of between X:i02...i
0
k

and each fiber X:i2...ik , where
i2 = 1...m2 , ..., ik = 1...mk, which generates a new k − 1 order tensor Hm2×m3...×mk and
Hi2i3...im =

∑m1

j=1 Xji02...i
0
k
∧Xji2...ik . This new tensor is further discretized based on a user defined

noise tolerance level and generates a new binary k − 1 order tensor X′m2×m3...×mk . We call this
approach as geometric folding of a k-order tensor into a k-1 order tensor based on the pattern fiber
X:i02...i

0
k
. Then a pattern fiber of X′m2×m3...×mk will be identified by Pattern_fiber_finding,

based on which X′m2×m3...×mk will be further folded into a k − 2 order tensor. The algorithm will
be executed to fold the k-way tensor into a 2 dimensional matrix with k-2 rounds of the pattern fiber
finding and geometric folding, which will generate k-2 pattern fibers. The pattern fibers of the last
2 dimensional will be further derived via a discretization of the folded matrix and a BMF by using
MEBF [1]. It is worth to note that the Pattern_fiber_finding follows the same direction as the
further geometric folding process.

Geometric_folding also follows the recursive computing structure as Pattern_fiber_finding.
For ith iteration, the computation is mi+1−m

m−1 + imlog(m) for Pattern_fiber_finding, mi for
calculating the inner product and mi−1 for the discretization. Such that, the total computational cost
for Geometric_folding is

∑k
i=1

mi+1−m
m−1 + imlog(m) + mi + mi−1 = 2mk+2−mk

(m−1)2 + 1−2m2

(m−1)2 −
km
m−1 + k(k+1)

2 mlog(m).

3.7 Noise control

GETF tackles Boolean tensor decomposition in a geometric view. However, randomized noise will
hurt the geometric property which will result in identifying less representative pattern fibers. In
figure 3, we illustrate this situation in a 2D data. If we do not consider the noise, the segmenting

5

Algorithm 5: Geometric_folding
Inputs: A k-order tensor Xm1×m2...×mk , the direction of pettern fiber finding and geometric
folding o as defined in algorithm 1 and a noise tolerance parameter t

Outputs: Bases of the rank-1 tensor component a1, a2, ..., ak

Geometric_folding(X, o, t):
Xoriginal ← X
s← NOISE_CONTROL(X) # detect the noise level in X

ooriginal ← o
for i = 1, ..., k − 2 do

o← ooriginal
i...k

|o| = k − i+ 1, oj = oj − 1, if oj > oi−1

(i01, ..., i
0
o1−1, i

0
o1+1, ..., i

0
|o|)← Pattern_fiber_finding(X, o, s)

amo1×1,o1 = Xi01...i
0
o1−1i

0
o1+1...i

0
|o|

Hi1i2...i|o| ←
∑mo1

j=1 Xi01...i
0
o1−1i

0
o1+1...i

0
o|o|
∧ Xi1...io1−1io1+1...io|o|

X← H · 0
Xi1...io1−1io1+1...i|o| ← 1 if Hi1...io1−1io1+1...i|o| ≥ t · |a|

end
(amok−1

×1,ok−1 , amok×1,ok)←MEBF (X, t, s)
aoi ← amoi×1,oi , i = 1, ..., k
return a1, ..., ak

Figure 3: Noise control illustration of GETF

process will get the misleading patterns (yellow boxed in figure 3A). To identify the level of noise, we
calculate the slice sum of this matrix on either of its two directions. And fit two Gaussian distribution
corresponds to two modes based on the slice sum (figure 3C). The underlying assumption is that
noise or zero will dominate the left mode while the right mode is responsible for actual patterns. Also,
the right mode is not aiming to present actual pattern in exact, but to distinguish the noise level. The
noise level is regarded at the count number where p-value is 0.9, indicated by the dashed red line in
figure 3C. After this noise detection level, the adjusted fiber base (yellow boxed in figure 3B) regains
its representation and thus recovered the desired rank 1 pattern.

3.8 Method discussion

Lemma 1, 3, and 4 are mathematically rigorous while Lemma 2 is relatively descriptive due to the
errors and level of overlaps among pattern tensors cannot be generally formulated, especially in a
high order tensor. However, our derivations in APPENDIX reflects the geometric property described
in Lemma 2 stands for most of the tensors whose pattern tensors are not heavily overlapped. The
advantage of GETF is significant. The computational cost of the IRT and identification of the
flat 2-LTL tensor mostly cross the largest pattern are all O(n), where n is the tensor size. The
property of the position of the most likely pattern fiber enables circumventing heuristic greedy search
or optimization for seeding the largest rank-1 pattern. Due to the heuristic consideration of the
algorithm, we focused on the method performance and robustness evaluation on an extensive set of
synthetic data to demonstrate GETF is robust for high order tensor decomposition with different level
of overlapped patterns and errors, followed by the applications on real-world datasets.

6

4 Experimental Results on Synthetic Datasets

In this section, we highlight the performance comparison of GETF with state-of-the-art approaches,
The evaluation focus on two metrics, time consumption and reconstruction error, defined below [2, 3].
Denote Am1×l,1, Am2×l,2, ..., Amk×l,k is the true pattern matrices of a k-order tensor Am1×l,1 ⊗
Am2×l,2...⊗ Amk×l,k, and A∗m1×l,1, A∗m2×l,2, ..., A∗mk×l,k as the pattern matrices identified by
each algorithm. All the experiments is running on the same super computer with 1 thread and 32G
memory.

Reconstruct error :=

(Am1×l,1 ⊗ ...⊗Amk×l,k)	 (A∗m1×l,1 ⊗ ...⊗A∗mk×l,k)∏k
i=1mi

Binary tensor is generated at the following scheme.

Xm1×m2...×mk = Am1×l,1 ⊗Am2×l,2...⊗Amk×l,k + Ef

Where
Am1×l,1

ij , Am2×l,2
ij , ..., Amk×l,k

ij ∼ Bernoulli(p0)

Efi1i2...ik
∼ Bernoulli(p)

"Ef " is a flipping operation which introduce errors. Overall

Xi1i2...ik =

{
∨lj=1(Am1×l,1

i1j
∧ ... ∧Amk×l,k

ikj
),Efi1i2...ik

= 0

¬ ∨lj=1 (Am1×l,1
i1j

∧ ... ∧Amk×l,k
ikj

,Efi1i2...ik
= 1)

To comprehensively benchmark GETF, we conducted the method evaluation on 4 scenarios, namely
(1) low density tensor without error, (2) low density tensor with error, (3) high density tensor without
error and (4) high density tensor without error. The density level is defined as d = |X|∏k

i=1 mi
. We set

d = 0.1 and d = 0.3 for low and high density, respectively. The number of rank-1 tensor component
l was set as 5 for all simulated data. The density level was achieved by adjusting po. The error level
p was set as 0.01. 20 simulations were conducted for each scenario. Averaged running time and
reconstruction error rate of 20 simulations were used for method comparison.

It is noteworthy that the GETF is capable for decomposing k-order binary tensor for k ≥ 2 while
most of other methods were designed for one specific k. Based on the recent reviews, we select
to benchmark GETF with MP on the 2D BMF problem and with LOM on the 3D BTD problem
[2, 4]. Both of the selected methods were recently developed and achieved high performance when
comparing with other methods. The convergent condition τ for all the algorithms is set as either of
the following criterion is met: 1) 10 rank-1 tensor component were identified; 2) the cost function γ
was not decreasing with newly identified pattern. It is noteworthy that increasing number of patterns
is equivalent to increasing the number of latent layers for fitting the probability distribution in the
LOM methods [4].

Figure 4 presented the reconstruction error (y-axis) of GETF, MP and LOM algorithms as a function of
the number of components on the x-axis, for different scenarios: low/high signal density, with/without
error, tensor dimensions. Standard derivation of the reconstruction error on 20 replicates is very low
for all algorithms, suggesting a robust performance, and it is represented by the size of the dot shapes.
GETF largely outperformed the other methods for all the scenarios except for the high density with
error case, where both methods performed comparatively. Notably, the reconstruction error curve of
GETF flattened after reaching the true number of components, i.e., 5, suggesting the robustness to
noisy of GETF. Figure 5 shows the time consumption of GETF, MP and LOM, where the error bar
stands for standard derivation for 20 replicates. Apparently, GETF is in orders of magnitude faster
than MP and LOM. In summary, GETF is the fastest and most robust algorithm compared with MP
and LOM across different scenarios. GETF achieves favorable reconstruction error with much less
time consumption than other algorithms. MP suffers in decomposing both low density data and noisy
data, and its convergence rate is slow compared with GETF. LOM performed robustly on noisy data,
but being a probability fitting model, LOM is severely impacted by the density of the data.

We show the performance of GETF on high order tensor data in Figure 6. Noted, when the order
increases, the tensor size would increase exponentially. BTD is very likely to become a memory

7

Figure 4: Performance of GETF, MP and LOM on the accuracy of decomposition

Figure 5: Performance of GETF, MP and LOM on time consumption

Figure 6: Performance of GETF on high order tensor data

8

Figure 7: Statistics of Chicago crime data analysis

Figure 8: The map visualization of Chicago city crime regions

bounded problem. In this case, an O(n) algorithm like GETF is suitable to tackle such scenarios.
GETF showed consistent performance with or without noise. Most importantly, for a 5-way tensor
with around 3 ∗ 108 elements, GETF finished decomposition in 1 minutes. Overall, the simulated
results truly advocated the efficiency and robustness of GETF for Boolean tensor decomposition,
irrespective of tensor order, data size, data density and noise level.

5 Experimental Results on Real Data

We also benchmarked GETF on two real-world data sets. Specially, the reconstruct error in the real
world experiments is defined by:

Reconstruct error :=
|X	 (A1∗ ⊗A2∗...⊗Ak∗)|∏k

i=1mi

, where X ∈ Rm1×m2...×mk denotes a real-world tensor data, and A1∗...Ak∗ represent the identified
bases for each k orders.

5.1 Chicago crime data

A real world event usually concerns multiple properties. Take crime as an example, when and where
it happens, whether arrested or not, which type it is, are all important properties of a crime event.
Here we take Chicago crime data1 as an example to benchmark GETF performance and illustrate its
applications of high-order binary data in a complex event setting.

Located on the shore of Lake Michigan, the windy city Chicago is the most populous city in the
Midwest US. High population boosts economy but also breeds crimes. Unfortunately, being the
central hub for US, Chicago suffered the highest crime rate across nation. Here we apply GETF to
analyze Chicago crime data from 2001 to 2019. The reasons we choose this dataset are as follows,
1) the commitment of crimes always have reasons or traces, which means, in general, crime data
contains certain pattern information. For example, most crimes such as theft and robbery have strong
date patterns. Criminals committed such action are frequently triggered by the need to pay rent
or credit cards that has a strict deadline once per month. In [1], we analyzed the relation of crime
commitment with date for individual years. By applying the all-way BTD method GETF, we could

1Chicago crime records downloaded on March 1st, 2020 from https://data.cityofchicago.org/Public-Safety

9

simultaneously mine the relations of crimes with date, year, arrest, domestic et al in a general and
comprehensive manner.

Here we construct a 3D tensor data from the crime records and evaluate performances of GETF with
LOM. We divide Chicago city area into 436 subregions of roughly equal size. The tensor is thus
constructed by three dimensions, subregions, date and year Xm1×m2×m3 . Where m1 is equal to 436,
m2 is 365 means the common days in a year. And m3 is 19 representing 19 year of crime records.
Xi1i2i3 = 1 indicates i1 region has non arrested crimes reported on the i2 date in i3 year. GETF
and LOM was then applied on the construct binary tensor data to retrieve A1∗, A2∗ and A3∗. The
convergence criteria τ is the same as in simulation comparison, 1) 10 patterns has been identified, 2)
the cost function stopped decreasing with newly identified patterns. Figure 8A shows the changes of
GETF and LOM in reconstruct error along with the addition of pattern numbers. GETF showed clear
advantage over LOM with faster decline in reconstruction error. GETF plateured after the first two
patterns, while it is more than eight for LOM (Figure 7A), which indicates GETF retrieved patterns
are of significantly importance that conveyed dominant information of the original data. Next, we
investigate the top GETF identified patterns to validate its capacity in the application of data mining.

To introduce the complex data scenario, we construct a 4D tensor data based on the crime report
with dimensions as subregion, year, data and arrest. Here arrest can be regarded as a representative
factor of the severeness of the crime. The tensor data is generalized as H ∈ R436×365×19×2, where
Hi1i2i31 = s indicates i1 region has s non-arrested crimes reported on the i2 date in i3 year and
Hi1i2i32 = s indicates i1 region has s arrested crimes reported on the i2 date in i3 year. The Boolean
relation tensor data X is thus derived from H. I.e., Xi1i2i3i4 = 1 if Hi1i2i3i4 > 0. GETF is currently
the only tool to handle such higher order Boolean tensor data (k = 4), where GETF decompose
original data X into X̂ = A436×l,1∗ ⊗A365×l,2∗ ⊗A19×l,3∗ ⊗A2×l,4∗. To help illustrate the finding
of GETF, we introduce follows metrics specific to this data scenario.

Crime index :=

¯365∑
i2=1

2∑
i4=1

X̂i1i2i3i4

Crime Dates :=

¯365∑
i2=1

2∑
i4=1

Xi1i2i3i4

Crime Counts :=

365∑
i2=1

19∑
i3=1

2∑
i4=1

Hi1i2i3i4

A very import metric to evaluate the crime situation for a specific region is to see how many days
in a year on average when crime has been committed. And by decomposition, the reconstructed
tenor X̂ conveys the date pattern information. Thus, Crime index is the yearly mean value of number
of crimes dates in reconstruct tensor data, which gives a distinctive overall evaluation of the crime
situation in that region.

Unlike crime index defined on the reconstructed tensor, Crime dates is defined on the original tensor
date. I.e. data pattern has not been refined or mined between features like crimes, region, dates et al.

Moreover, to evaluate the identified patterns can truly cover information. Here we introduce a outsider
factor . This factor is the total number of crimes happened in that region. This factor alone does not
convey any other information like date, year or arrest, which could serve as the overall indicator of
our observed patterns.

We take the first two patterns from GETF decomposition in reconstruct our tensor data as they
contains the most of the information. Figure 7B,C,D represent the Crime index, Crime Dates and
Crime counts for 436 regions, respectively. In figure 7B, we witness a clear difference of regions
on Crime index. Regions marked with red dots has year round crime rate even in reconstructed
tensor. But regions displayed as blue dots has no date related crime patterns, indicates a rather safe
environment. And some regions marked with gray dots is slightly better than red dots regions. All
these regions have very noisy distribution on Crime Dates (figure 7C). Some blue regions that are
identified as safe region showed year round Crime Dates. Here, we introduced the Crime counts
metric in figure 7D. We deem this metric does not relate to dates, year or arrest. Such that, it could

10

Figure 9: Spatial tensor patterns of breast cancer tissue

Figure 10: Analysis of breast cancer tensor pattern

reflect the crime situation of blue or red regions. In figure 7D, we witness a very clear distinction
between blue and red regions. All the blue regions are underneath the red regions showing a decrease
crime numbers. This justified the data mining approach of identify different regions by GETF. The
blue(safe) region and red(dangerous) region, are refined from Date-related tensor data but shows the
general representating for the overall crime situation indicated by crime counts in figure 7D. Noted,
this classification can not be easily achieved by looking into Crime Dates directly, as indicated by
figure 7C. We also found that the Arrest factor does not make much difference in determine the blue
or red region. The explanation maybe that the severeness of a crime does not related to the frequency
of crimes. In figure 8, we visualize blue and red region on the map level. These regions also showed
geometric patterns. Blue regions reside at peripheral areas of the city. While red regions lie in the
center.

This example illustrates the ability of GETF in mining relational date with multiple properties, aka,
higher order binary tensor data. As suggested, GETF derived patterns represent the true property
of subregions, which is hard to derive by simply analyzing the original data. This example also
displayed the application of BTD methods in classification problems, as GETF accurately classified
safe and dangerous regions.

5.2 Spatial transcriptomics

Spatial molecular data is another example of high order tensor data. 3-D spatial transcriptomics
data composes four orders, namely three spatial coordinates X-Y-Z and the gene features. Here we
benchmark GETF on a breast cancer 3-D spatial transcriptomics data2 and highlight the application
of GETF in this data scenario that are with high noise level.

Recent single cell RNA sequencing technologies enable research to observe expression level of more
than 20,000 gene features in single cell resolution [5, 6], among which spatial single cell RNA-

2Breast cancer spatial transcriptomics data is retrieved from https://www.spatialresearch.org/resources-
published-datasets/doi-10-1126science-aaf2403/

11

sequencing data is one popular data type that can bridge molecular data with tissue spatial histological
information. Associating molecular features with spatial information on single cell resolution grants
a capability to explore of cell-cell interactions and cellular level signaling in complex tissues and
disease such as brain tissue and solid cancer, et al [7, 8, 9, 10]. A typical spatial transcriptomics data
is of 4 orders, i.e., gene features and X-Y-Z of 3D spatial coordinates. Here we apply GETF method
on a breast cancer spatial data set [7] consists of 1020 cell positions (x× y × z = 15× 17× 4) with
13360 genes features, i.e., H ∈ R13360×15×17×4.

The 3-D schematic diagram of a breast cancer tissue and the distribution of breast cancer cells with
certain gene expression patterns are illustrated in figure 9 [11]. The data conceived the information of
how the cells of different types and gene expressions distribute in a cancer tissue. Two distinct types
of cell distributions, namely (1) sparsely distributed cells of a rank-1 pattern (red blocks in figure 9)
and (2) densely distributed rank-1 patterns (blue block in figure 9). Here we apply GETF to identify
the cells with a certain number of gene features and spatial coordinates that form a rank-1 pattern.
The cells with the two types of distributions should be distinct biological characteristics, especially in
cell-cell interaction mechanism, since the 1st type of distribution have cells interact with other cell
types with cell of the 2nd type of distribution tend to only interact with themselves.

We first discretized the observed spatial transcriptomics data and build it into a 4D tensor X ∈
{0, 1}13360×15×17×4, by Xijkl = 1 if Hijkl > 0 and Xijkl = 0 if Hijkl = 0.Noted, unlike
the Chicago crime data, spatial transcriptomics data is genuinely noisy due to multiple sources
of experiment error. For GETF, τ was set to get at most 10 patterns or the cost function stopped
decreasing, the same as above content. Noise tolerance parameter t was set to 0.6 to cope with the
high noisy data scenario. LOM was conducted by using default parameters. We first compared the
performance of GETF and LOM on the 3D slices of this data, X:::l ∈ {0, 1}13360×15×17 for different
l. Figure 10A shows the reconstruct error of both methods along with the addition of pattern number.
The LOM method failed to identify any rank-1 pattern from this data set. On the other hand, GETF
managed to derive patterns gradually, which indicates the versatility of GETF in both clean (Chicago
crime) and noisy (spatial transcriptomics) real world data.

We also applied GETF to the whole 4-D tensor to identify the rank-1 patterns with sparse and dense
distribution, where the sparseness is determined by a parameter s defined by the number of cell
positions divided by the volume of the smallest cuboid that covers all the positions. The bigger
the sparsity parameter s, the denser the pattern. Among the top 10 patterns, we analyzed the two
extremest patterns with s = 0.5 (red) and s = 1.0 (blue), respectively. The sparse pattern has 24
cell position all express 232 genes (232 × 4 × 4 × 2). The dense pattern has 90 cell positions all
express 40 genes (40× 15× 3× 2). We first obtained the general information of these cell positions
by visualizing them in lower dimensions using UMAP[12]. We observed clear difference between
sparse positions (red dots) and dense positions (blue dots) (figure 10B).

We further justified the top rank-1 patterns with sparse and dense spatial distributions identified by
GETF with their biological significance. In order to explore how the cells with the two distribution
types behave on individual gene level, we conduct gene ontology enrichment analysis of the gene
features of the sparse and dense patterns. We showed the top 5 biological processes enriched by the
genes of each pattern in figure 10C and 10D, where each bar illustrates the negative logarithm of the P
value of each pathway assessed by hypergeometric test. Cells of the dense pattern positions are with
high expression of the genes related to translation (ribosome small subunit assembly, translational
initiation, SRP-dependent cotranslational protein targeting to membrane) and transcription (viral
transcription, nuclear-transcribed mRNA catabolic process, nonsense-mediated decay) (figure 10C).
Whereas the cell positions of sparse pattern indicate the properties of cancer peripheral tissues. These
positions are in charge of maintaining cancer tissue structure (positive regulation of amyloid fibril
formation, positive regulation of intracellular mRNA localization), stabilizing cancer cells (telomerase
holoenzyme complex assembly), battling immune system (astrocyre activation involved in immune
response) and suppressing anti-tumor effect (negative regulation of polynucleotide adenylytransferase)
(figure 10D). Biological implication can be made here includes the dense pattern keeps the vibrancy
of cancer tissue by showing strong activities in transcription and translation, while the sparse pattern
maintains the tissue structure and suppress anti-tumor immune effect. Our analysis demonstrated that
the GETF-derived patterns reveal the complicated but integrated spatial structure of breast cancer
tissue with different functionalities.

12

In summary, we validated the performance and application of GETF in these two real-world data.
To the best of our knowledge, GETF is the first all-way Boolean tensor factorization method, which
brings vast potential in analyzing relation events in a complex setting like spatial-temporal crime
records data and spatial biological data. In addition, our analysis demonstrated the GETF derived
patterns accurately represent the low rank structure of the data. In certain case, GETF also serve as a
classification approach that could not be easily achieved by analyzing original data.

References
[1] Changlin Wan, Wennan Chang, Tong Zhao, Mengya Li, Sha Cao, and Chi Zhang. Fast and

efficient boolean matrix factorization by geometric segmentation. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2020.

[2] Siamak Ravanbakhsh, Barnabás Póczos, and Russell Greiner. Boolean matrix factorization and
noisy completion via message passing. In ICML, pages 945–954, 2016.

[3] Tammo Rukat, Chris C Holmes, Michalis K Titsias, and Christopher Yau. Bayesian boolean
matrix factorisation. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 2969–2978. JMLR. org, 2017.

[4] Tammo Rukat, Chris Holmes, and Christopher Yau. Probabilistic boolean tensor decomposition.
In International conference on machine learning, pages 4413–4422, 2018.

[5] Itay Tirosh, Benjamin Izar, Sanjay M Prakadan, Marc H Wadsworth, Daniel Treacy, John J
Trombetta, Asaf Rotem, Christopher Rodman, Christine Lian, George Murphy, et al. Dissecting
the multicellular ecosystem of metastatic melanoma by single-cell rna-seq. Science, 352(6282):
189–196, 2016.

[6] Yu Zhang, Changlin Wan, Pengcheng Wang, Wennan Chang, Yan Huo, Jian Chen, Qin Ma, Sha
Cao, and Chi Zhang. M3s: A comprehensive model selection for multi-modal single-cell rna
sequencing data. BMC bioinformatics, 20(24):1–5, 2019.

[7] Patrik L Ståhl, Fredrik Salmén, Sanja Vickovic, Anna Lundmark, José Fernández Navarro,
Jens Magnusson, Stefania Giacomello, Michaela Asp, Jakub O Westholm, Mikael Huss, et al.
Visualization and analysis of gene expression in tissue sections by spatial transcriptomics.
Science, 353(6294):78–82, 2016.

[8] Kok Hao Chen, Alistair N Boettiger, Jeffrey R Moffitt, Siyuan Wang, and Xiaowei Zhuang.
Spatially resolved, highly multiplexed rna profiling in single cells. Science, 348(6233):aaa6090,
2015.

[9] Sheel Shah, Eric Lubeck, Wen Zhou, and Long Cai. seqfish accurately detects transcripts in
single cells and reveals robust spatial organization in the hippocampus. Neuron, 94(4):752–758,
2017.

[10] Xiao Wang, William E Allen, Matthew A Wright, Emily L Sylwestrak, Nikolay Samusik, Sam
Vesuna, Kathryn Evans, Cindy Liu, Charu Ramakrishnan, Jia Liu, et al. Three-dimensional
intact-tissue sequencing of single-cell transcriptional states. Science, 361(6400):eaat5691, 2018.

[11] Nan Wu, Jason Phang, Jungkyu Park, Yiqiu Shen, Zhe Huang, Masha Zorin, Stanislaw Jastrzeb-
ski, Thibault Fevry, Joe Katsnelson, Eric Kim, et al. Deep neural networks improve radiologists’
performance in breast cancer screening. IEEE transactions on medical imaging, 2019.

[12] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

13

	Definitions
	Lemma
	Algorithms
	Direction generation
	Find the segmenting coordinate
	Folding tensor based on fiber
	2 LTL projection
	Pattern fiber finding
	Geometric folding
	Noise control
	Method discussion

	Experimental Results on Synthetic Datasets
	Experimental Results on Real Data
	Chicago crime data
	Spatial transcriptomics

