
R2 & R3 - Why use ReLU: We use ReLU (f(x) = max(0, x)) to enforce P positive. As the solution to integer linear1

programming (ILP) problem in Eq.5 is non-differentiable and NP-complete, we relax this constraint to Eq.6 through2

ReLU. After that, we adopt the Dykstra’s projection algorithm to compute the intersection of convex sets by iteratively3

projecting P onto each of the convex sets, i.e., 1) Pij ≥ 0; 2) P1 = 1; 3) P>1 = 1. In summary, we adopt ReLU to4

meet the first constraint, and the other functions will be alternative as long as it could make P positive.5

R1 & R2 & R3 - Alignment module: The proposed module aligns the data with the computation complexity6

O(τ1τ2n2) (n is the batch size for training), and allows the network to utilize the available correspondence information7

from partially aligned data in an end-to-end manner, as shown in Eq.4. We use Adam optimizer for network training.8

The alignment module recurrently computes the permutation matrix, but it is not the RNN architecture. The proposed9

module is pluggable for any neural network such as DCCA/DCCAE by computing the pairwise distance on the learned10

representations and achieving the alignment by the proposed module.11

R1 & R2 & R3 & R4 - Convergence analysis: The convergence of the whole model could refer to Fig3.c. One could12

observe that the loss decreases a lot in the first 600 epochs, then continuously and smoothly decreases until convergence.13

As for the alignment module, we experimentally find that it converges fast with (τ1 = 30, τ2 = 10). The influence of14

the alignment module to the whole network is predictable, since PVC jointly learns the common representation and15

aligns the data to address the challenging PVP, it inevitably converges slower than representation learning only.16

R2 & R4 - Results compared to fully aligned: The possible reason is two-fold. First, Reuters is a document database17

that consists of English documents and its machine-translated versions. Thus there may be some noise/incorrect pairs in18

the fully-aligned dataset which could be addressed by our alignment module. Second, the re-aligned multi-view data19

may improve data consistency and meet the intrinsic data distribution, thus boosting the clustering performance.20

R1 - Literature review: 1) Multi-modality also faces the partially view-aligned problem (PVP) as different modality21

may be collected in the wrong order due to temporal and spatial complexity. 2) In the paper, L85-95 have indicated that22

only a few works try to alleviate the effect caused by PVP. The major reasons for hindering studies on PVP have been23

stated in L107-117. In short, the traditional shallow methods usually pre-align the data in the preprocessing phrase and24

then perform clustering on the re-aligned data with a two-stage paradigm, which is to avoid directly solving PVP. In25

other words, PVP is ignored in the traditional shallow setting which does not benefit from end-to-end optimization.26

Moreover, the non-differentiable alignment algorithms adopted by these methods hinder them extend to deep models,27

while the proposed differentiable alignment module is pluggable to multi-view models to address PVP and embrace28

the attributes of deep models. 3) The difference between PVC and the existing works is two-fold. First, the methods29

are shallow models and there are no efforts devoted to developing effective deep solutions so far as we knew, while30

PVC proposes the differentiable alignment module to facilitate the deep approach. Second, these works establish the31

correspondence of views in a separate step, while PVC jointly learns the common representations and aligns the data.32

R1 - Network setting, memory cost, and parameter complexity: We provide the configuration and implementation33

details of PVC in the supplementary material. For the memory cost and parameter complexity, we conduct experiments34

on Caltech101-20 compared to AE2-Nets. For training, PVC occupies 1126 MiB GPU memory and needs about 1.0235

hours to convergence, while AE2-Nets occupies 362 MiB and needs 0.62 hours to convergence. The reason why PVC36

needs more memory and computation cost is the additional memory and computation cost caused by the alignment37

module, which is to address the challenging PVP. For testing, Table 5 (Supplementary Materials) gives a comparison of38

the Hungarian and the alignment module. It shows that the proposed alignment module (0.09s) is much faster than the39

Hungarian (17.78s), which means PVC is more capable of practical applications when the model is well-trained.40

R1 - Clustering characteristics: As presented at L20-L22, most existing multi-view clustering approaches jointly41

learn a common representation to bridge the gap among different views and then achieve clustering on the common42

representation. In other words, learning the common representation is the key problem for multi-view clustering.43

Similarly, PVC jointly learns the common representation while enforcing the cross-view consistency with the help of44

the re-aligned data by the differentiable alignment module.45

R4 - When U larger than A: Fig.5 may be helpful to address this concern. The figure shows that our method achieves46

a promising result (ACC: 0.4517, NMI: 0.2231) when U (=0.8) is remarkably larger than A (=0.2), showing the47

superiority of PVC even there are more unaligned data than aligned ones.48

R4 - Multiple views: Our model could easily extend to multiple views by selecting one view as the anchor, and align49

the other views to establish the correspondence with the corresponding permutation matrix.50

R4 - Fluctuant curve: From Fig.3.c, one could see that PVC loss decreases a lot in the first 600 epochs, then51

continuously and smoothly decreases until convergence. As for ACC and NMI, they both increase roughly as the epoch52

increase with the fluctuant curve. The possible reason for the fluctuant curve is that the re-aligned data may contain53

noise/incorrect correspondence, thus leading to unstable ACC and NMI.54


