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Abstract

We initiate the study of a new model of supervised learning under privacy con-
straints. Imagine a medical study where a dataset is sampled from a population
of both healthy and unhealthy individuals. Suppose healthy individuals have no
privacy concerns (in such case, we call their data “public”) while the unhealthy
individuals desire stringent privacy protection for their data. In this example,
the population (data distribution) is a mixture of private (unhealthy) and public
(healthy) sub-populations that could be very different.
Inspired by the above example, we consider a model in which the population D
is a mixture of two sub-populations: a private sub-population Dpriv of private and
sensitive data, and a public sub-population Dpub of data with no privacy concerns.
Each example drawn fromD is assumed to contain a privacy-status bit that indicates
whether the example is private or public. The goal is to design a learning algorithm
that satisfies differential privacy only with respect to the private examples.
Prior works in this context assumed a homogeneous population where private and
public data arise from the same distribution, and in particular designed solutions
which exploit this assumption. We demonstrate how to circumvent this assumption
by considering, as a case study, the problem of learning linear classifiers in Rd. We
show that in the case where the privacy status is correlated with the target label (as
in the above example), linear classifiers in Rd can be learned, in the agnostic as
well as the realizable setting, with sample complexity which is comparable to that
of the classical (non-private) PAC-learning. It is known that this task is impossible
if all the data is considered private.

1 Introduction

Despite the remarkable progress in privacy-preserving machine learning powered by the rigorous
framework of differential privacy (DP) [DMNS06], the current state of the art has several limitations.
Most of the existing works on differentially private learning follow a conventional model, where the
entirety of the input dataset to the learning algorithm is assumed to be sensitive and private, and hence,
requires protection via the stringent constraint of DP. Unfortunately, this conservative approach has
fundamental limitations that manifest in many problems. For example, learning even simple classes of
functions (e.g., one-dimensional thresholds over R) is provably impossible under that stringent model
[BNSV15, ALMM18] even though such classes are trivially learnable without privacy constraints.
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More recent works [BNS13, BTT18, ABM19, NB20, BCM+20] have considered a more relaxed
model, where the input dataset is made up of two parts: a private sample (as in the conventional
model), and a “public” sample that entails no privacy constraints. In this model, the algorithm is
required to satisfy DP only with respect to the private sample. Despite of the good news brought
by these works showing the possibility of circumventing some of the aforementioned limitations
by harnessing a limited amount of public data, all these works make the strong assumption that
both the private and public samples come from the same population (i.e., they arise from the same
distribution). This can limit the practical value of these results in many real-life scenarios, where
private and public data are naturally distinct.

Indeed, for a data record, the attribute of being sensitive can be strongly correlated with the value of
that record (i.e., the realization of the feature-vector and the label). For example, imagine a scenario
where a bank wants to predict the credit-worthiness of applicants for a credit card. To do this, a
training sample is drawn from a population of individuals with good and bad credit scores. Suppose
individuals with good credit score have no privacy concerns in sharing their data with the bank
(and hence, their data can be viewed as “public”), while those with bad credit score are concerned
about what the study may reveal about them to third parties and understandably so, because they
do not want such information to impact their chances in future opportunities. In this example, the
population is a mixture of two very different groups: a sub-population with a good credit score (public
sub-population), and a sub-population with bad credit score (private sub-population).

In this work, we introduce a new model for differentially private learning in which a learning
algorithm has access to a mixed dataset of private and public examples that arise from possibly
different distributions. The algorithm is required to satisfy DP only with respect to the private
examples. More specifically, in our model, the underlying population (data distribution) D is a
mixture of two possibly different sub-populations: a private sub-populationDpriv of sensitive data, and
public sub-population Dpub of data that is deemed by its original owner to have no risk to personal
privacy. We assume that each example drawn from the mixture D has a “privacy flag” which is a
binary label to indicate whether the example is private or public. As usual in the statistical learning
framework, we do not assume the knowledge of D or any of the sub-populations (or their respective
weights in the mixture).

Contributions

• Introducing PPM model: We formally describe the basic model of supervised learning from mix-
tures of private and public populations, and define the corresponding class of learning algorithms,
which we refer to as Private-Public Mixture (PPM) learners.

• Learning Halfspaces: Although the first quick impression about the model might be that it is a
bit too general to allow for interesting results beyond what is covered by the conventional model of
DP learning, we demonstrate that this is not the case and prove the first non-trivial result under this
model in the context of learning halfspaces (linear classifiers) in Rd (for any d ≥ 1). We give a
construction of a PPM learner for this problem in the case where the privacy status is correlated
with the target label, as in the credit-worthiness example above. Curiously, our PPM learner is
improper: it outputs a hypothesis (classifier) that can be described by at most d halfspaces. We
hence derive upper bounds on the sample complexity of this problem in both the realizable and
agnostic settings. In particular, we show that halfspaces in Rd can be learned in the aforementioned
PPM model up to (excess) error α using ≈ d2

α total examples in the realizable setting, and using
≈ d2

α2 total examples in the agnostic setting. As noted earlier, in the conventional model, where all
the examples drawn from D are considered private, this class cannot be learned in Rd (even for
d = 1) [BNSV15, ALMM18] 1. Our bounds are comparable to the classical, non-private sample
complexity of learning halfspaces. In particular, our bounds are only a factor of d worse than their
non-private counterparts. We leave the question of whether our bounds can be improved to future
work.

Techniques: The idea of our construction for learning halfspaces goes as follows. First, we use the
public examples to define a finite family of halfspaces C̃pub. Then, we employ a useful tool from

1[BNSV15, ALMM18] showed that the class of one-dimensional halfspaces over any finite domain X ⊆ R
requires sample complexity at least Ω (log? |X|).
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convex geometry known as Helly’s Theorem [Hel23] to argue the existence of a collection of at
most d halfspaces in C̃pub whose intersection is disjoint from the ERM halfspace (the halfspace with
smallest empirical error with respect to the entire set of training examples). This implies that there
is a hypothesis (described by the intersection of at most d halfspaces from C̃pub) whose empirical
error is not larger than that of the ERM halfspace. Hence, we reduce our learning task to DP learning
of a finite class G that contains all possible intersections of at most d halfspaces from C̃pub. We
note that the latter task is feasible since G is a finite class [KLN+08]. The description here is rather
simplified. The actual construction and our analysis entail more intricate details (e.g., we need to
carefully analyze the generalization error since the class G itself depends on the public part of the
training set). One clear aspect from the above description is that our construction is of an improper
learner since, in general, the output hypothesis is given by the intersection of at most d halfspaces.
Devising a construction of a proper learner for this problem is an interesting open question.

Related work: As mentioned earlier there have been some works that studied utilizing public data
in differentially private data analysis. In particular, the notion of differentially private PAC learning
assisted with public data was introduced by Beimel et al. in [BNS13], where it was called “semi-
private learning.” They gave a construction of a learning algorithm in this setting, and derived upper
bounds on the private and public sample complexities. Alon et al. [ABM19] revisited this problem
and gave nearly optimal bounds on the private and public sample complexities in the agnostic PAC
model. In particular, they showed that any hypothesis class H can be learned using ≈ VC(H)/α2

private examples and ≈ VC(H)/α public examples where, VC(H) is the VC-dimension ofH. The
work of [BCM+20] introduced the related, but distinct, problem of differentially private query release
assisted by public data, and gave upper and lower bounds on private and public sample complexities.
In another line of work, public data was utilized to improve differentially private learning via the
knowledge transfer technique [PAE+17, PSM+18, BTT18]. All these prior works assumed that
the private and public examples arise from the same distribution (i.e., Dpriv = Dpub), and their
constructions particularly exploited this assumption. To the best of our knowledge, our work is the
first to consider a formal model for learning from mixtures of private and public populations that
does not entail this assumption, and our construction for halfspaces demonstrates that this assumption
can be circumvented. It is also worth pointing out that, unlike the aforementioned prior work, a
PPM learner is only assumed to have access to examples from the mixture distribution D rather than
access to examples from each of Dpriv and Dpub. Hence, unlike prior work, our construction does not
require certain number of examples from each sub-population; it only requires a certain total number
of examples from the mixed population.

2 Preliminaries

In this section, we introduce some notation, state some basic concepts from learning theory, and
describe some geometric properties we use throughout the paper.

Notation: For n ∈ N, we use [n] to denote the set {1, . . . , n}. We use standard notation from the
supervised learning literature (see, e.g. [SSBD14]). Let X denote an arbitrary domain (that represents
the space of feature vectors). Let Y = {0, 1}. A function h : X → Y is called a concept/hypothesis.
A family of concepts (hypotheses) C ⊆ YX is called a concept/hypothesis class. A learning algorithm,
receives as input i.i.d. samples generated from some arbitrary distribution D over X ×Y , and outputs
a hypothesis h ∈ YX .

Expected error: The expected/population error of a hypothesis h : X → Y with respect to a
distribution D over X × Y is defined by err(h;D) , E

(x,y)∼D
[1 (h(x) 6= y)].

A distribution D is called realizable by C if there exists h∗ ∈ C such that err(h∗;D) = 0. In this case,
the data distribution D over X × Y is completely described by a distribution DX over X and a true
labeling concept h∗ ∈ C.

Empirical error: The empirical error of an hypothesis h : X → {0, 1} with respect to a labeled
dataset S = {(x1, y1), . . . , (xn, yn)} will be denoted by êrr (h;S) , 1

n

∑n
i=1 1 (h(xi) 6= yi) .

The problem of minimizing the empirical error on a dataset (i.e. outputting an hypothesis in the class
with minimal error) is known as Empirical Risk Minimization (ERM).
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We next define the geometric concepts we use in this paper.

Halfspaces and Hyperplanes: For w = (w0, w1, . . . , wd) ∈ Rd+1, let hw denote the halfspace
defined as hw , {x ∈ Rd :

∑d
i=1 wixi ≥ w0}. We will overload the notation and use h to denote

both the halfspace and the corresponding binary hypothesis defined as the indicator function of the
halfspace. In particular, whenever we write h(x), we would be referring to h as the binary hypothesis
associated with the halfspace h, namely h(x) , 1 (x ∈ h). A pair of halfspaces hw and h−w will
be loosely referred to as “opposite” halfspaces. A pair of opposite halfspaces hw and h−w intersect
in the hyperplane hpw , {x ∈ Rd :

∑d
i=1 wixi = w0}. A finite set S ⊂ Rd is said to support a

halfspace hw if S is contained in the hyperplane hpw.

Affine subspace: A non-empty subset Aff ⊆ Rd is an affine subspace, if there exists a u ∈ Aff
such that Aff − u = {x − u | x ∈ Aff} is a linear subspace of Rd. Moreover, we say that Aff
is k-dimensional affine subspace, 1 ≤ k ≤ d, if the corresponding linear subspace Aff − u is
k-dimensional.

Since differential privacy is central to this work, we conclude this section by stating its definition.

Definition 2.1 (Differential Privacy [DKM+06, DMNS06, DR14]). Let ε, δ > 0. A (randomized)
algorithm M : {X × Y}n → R is (ε, δ)-differentially private if for all pairs of datasets S, S′ ∈
{X × Y} that differ in exactly one entry, and every measurable O ⊆ R, we have:

Pr (M(S) ∈ O) ≤ eε · Pr (M(S′) ∈ O) + δ.

3 Model and Definitions

In this paper, we consider a model of privacy-preserving learning, where the input dataset is a mixture
of private and public examples. We call such model Private-Public Mixture (PPM) learning. We
view each example in the input dataset as a triplet comprised of a feature vector x ∈ X , a target
label y ∈ Y , and a privacy status bit p ∈ P , {priv, pub}. The privacy status is a bit that describes
whether the example is private (p = priv) and hence requires protection via differential privacy, or
public (p = pub) and hence does not entail any privacy concerns. In this paper, the privacy status is
used only to distinguish between the private and public portions of the dataset. We stress that the
goal is to learn how to classify the target label (and not the privacy bit).

In our formulation, the training examples are i.i.d. from a distribution D over Z , X × Y × P .
Hence, the distribution D is a mixture of a public sub-population Dpub , DX×Y|pub and private
sub-populationDpriv , DX×Y|priv, whereDX×Y|p denotes the conditional distribution of the (x, y) ∈
X×Y given a privacy-status bit p ∈ P . A sample S ∼ Dn is a mixture of private and public examples
that can be distinguished using the privacy-status bit. Hence, we can partition the dataset S into: a
private dataset Spriv ∈ (X ×Y)npriv and a public dataset Spub ∈ (X ×Y)npub , where npriv +npub = n.
We note that Spriv ∼ D

npriv

priv and Spub ∼ D
npub

pub .

The PPM Learning Model: A PPM learning model is described by the following components:
(i) a distribution D over X × Y × P; (ii) a dataset of n i.i.d. examples from D; (iii) a loss function
` : Y × Y → R+, which we fix to be the binary loss function, i.e., `(ŷ, y) , 1(ŷ 6= y), ŷ, y ∈ Y;
and (iv) a PPM learning algorithm, which we define below:

Definition 3.1 ((ε, δ, n)-PPM Learning Algorithm). Let ε, δ ∈ (0, 1), n ∈ N. An (ε, δ, n)-PPM
learning algorithm is a randomized map A : (X × Y × P)n → YX that maps datasets of size n (of
private and public examples) to binary hypotheses such that for any npub ≤ n and any realization
of the public portion of the input dataset Spub ∈ (X × Y)npub , the induced algorithm A(·, Spub) is
(ε, δ)-differentially private (w.r.t. the private portion of the input dataset).

Expected error of a PMM algorithm A: Let D̃ be a distribution over X × Y . Let ĥ denote the
hypothesis produced by A on input sample S of size n. The expected error of a PPM algorithm
w.r.t. D̃ is defined as err(A(S); D̃) = E

(x,y)∼D̃

[
1(ĥ(x) 6= y)

]
. Note that the distribution here is only

over X × Y since, as mentioned earlier, the goal is to learn how to classify the target label and not
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the privacy status. Namely, D̃ is the distribution that is obtained from the original distribution D by
marginalizing over the privacy status bit p.

Generally speaking, the goal in PPM learning is to design a PPM algorithm whose expected error is
as small as possible (with high probability over the input i.i.d. sample and the algorithm’s internal
randomness).

As stated, the above model does not specify how we quantify the learning goal over the choice of the
distribution and the sample size. This is done to maintain flexibility in defining the learning paradigm
based on the PPM model. Indeed, one can make different choices about such quantifiers and their
order, which would result in different modes of learnability. One standard paradigm, which we will
adopt in Section 4, is to assume that the learning algorithm has access to a fixed hypothesis class
C ⊆ YX and require that the algorithm attains small excess error, i.e., require that the expected error
incurred by the algorithm is close to the smallest expected error attained by a hypothesis in C (as
in (agnostic) PAC learning). However, we still need to specify how we will quantify this desired
goal over the distribution D. One possibility is to insist on uniform learnability; namely, require
that we design a PPM algorithm that given a sufficiently large sample is guaranteed to have a small
excess error (not exceeding a prespecified level) w.r.t. all distributions D over X × Y × P . However,
this route will lead us back to the conventional DP learning since the family of all distributions D
clearly subsumes those distributions where all examples are private. We thus propose a meaningful
alternative, where we fix a specific conditional distribution DP |X×Y of the privacy status bit p ∈ P
given labeled example (x, y) ∈ X × Y and quantify over all distributions D̃ over X × Y .

Privacy-data model DP |X×Y : The conditional distribution DP|X×Y is given by{
P [p = b | (x, y)] : b ∈ P, (x, y) ∈ X × Y

}
. In other words, it can be seen as a mapping

taking an example (x, y) to the conditional distribution of its privacy bit, P [p = ·|x, y]. We refer
to DP|X×Y as the privacy-data model. Such conditional distribution captures how likely a labeled
example (x, y) to be sensitive (from a privacy perspective). As discussed earlier, in many practical
scenarios, the attribute of being sensitive can strongly depend on the realization of the data record.

Label-determined privacy-data model: A special case of the above definition is when the privacy
status is perfectly correlated with the target label (as in the examples discussed in the introduction
and the abstract). Namely, in this case, we have p = priv ⇐⇒ y = 1 with probability 1 (or,
p = pub ⇐⇒ y = 1 with probability 1). We refer to this privacy-data model as label-determined.

Next, we formally define one possible class of PPM learners based on the discussion above.
Definition 3.2 ((α, β, ε, δ)-PPM learner for a class C w.r.t. a privacy-data model DP |X×Y ). Let
C ⊆ YX be a concept class, let DP |X×Y be a privacy-data model, and let α, β, ε, δ ∈ (0, 1). A
randomized algorithm A is an (α, β, ε, δ)-PPM learner for C w.r.t. DP |X×Y with sample size n if
the following conditions hold:

1. A is an (ε, δ, n)-PPM learning algorithm (see Definition 3.1).

2. For every distribution D̃ over X × Y , given a dataset S ∼ Dn where D = D̃ × DP |X×Y ,
A outputs a hypothesis ĥ such that, with probability at least 1− β (over S ∼ Dn and the
internal randomness of A),

err
(
ĥ; D̃

)
≤ min

h∈C
err
(
h; D̃

)
+ α.

When the first condition is satisfied with δ = 0 (i.e., pure differential privacy), we refer to A as
(α, β, ε)-PPM learner for C w.r.t. DP |X×Y .

In the special case of label-determined privacy-data model, we say that A is an (α, β, ε, δ)-PPM
learner for a class C assuming label-determined privacy-data model.

4 Learning Halfspaces

We consider the problem of PPM learning for one of the most well-studied tasks in machine learning,
namely, learning halfspaces (linear classifiers) in Rd. We focus on the case of label-determined
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privacy-data model defined earlier; that is, we consider the case where the privacy-status bit is
perfectly correlated with the target label. In particular, a 1-labeled data point is considered to be a
private data point and a 0-labeled data point is a public data point. We give a construction for a PPM
learner for halfspaces in this case in both the agnostic and realizable settings. Our construction outputs
a hypothesis with excess true error α using an input sample of size Õ

(
d2

εα

)
in the realizable setting,

and a sample of size Õ
(
d2 max

(
1
α2 ,

1
εα

))
in the agnostic setting. Our algorithm is an improper

learner; specifically, the output hypothesis is given by the intersection of at most d halfspaces.

Relaxations to the label-determined privacy-data model: Since perfect correlation between the
privacy status and the target label might be a strong assumption to make in some practical scenarios,
it is important for us to point out that such strict correlation is not necessary. In particular, our results
(with exactly the same construction) still hold under either one of the following two relaxations to
this assumption: (i) when the privacy status is only sufficiently correlated with the output label (in
this case, the same construction will yield essentially the same accuracy since the impact of this
relaxation on the excess error will be small); or (ii) when only the private examples have the same
target label while the set of public examples can have both labels (in fact, our analysis will be exactly
the same in this case). However, to emphasize the conceptual basis of our construction and maintain
clarity and simplicity of the analysis, we opt to present the results for the simpler model that assumes
perfect correlation.

Overview: The input to our private algorithm is a dataset S ∈ (X × Y × P)n. The dataset S is
partitioned into: Spriv ∈ (X ×Y)npriv (private dataset) and Spub ∈ (X ×Y)npub (public dataset) using
the privacy-status bit in P , as described in Section 3, where npriv + npub = n. The main idea of
our algorithm is to construct a family of halfspaces in Rd, denoted by C̃pub, using the (unlabeled)
public data points, and then restrict the algorithm to a finite hypothesis class G made up of all
intersections of at most d halfspaces from C̃pub. That is, each hypothesis in the finite hypothesis
class G is represented by an intersection of at most d halfspaces from the family C̃pub. Using Helly’s
Theorem [Hel23, Rad21], we can show that G will contain one hypothesis whose error is comparable
to that of the ERM halfspace. Hence, given the finite hypothesis class G, we construct a private
learner that outputs a hypothesis from G via the exponential mechamishm [MT07]. Our construction
is described formally in Algorithm 2.

First, let’s start by describing the construction of C̃pub and the finite hypothesis class G.

Let S̃pub ∈ Xnpub denote the unlabeled version of the public portion Spub of the input dataset. The
family of halfspaces C̃pub is constructed as follows. LetW , {Ŝ ⊆ S̃pub : |Ŝ| ≤ d}. Namely,W
is a collection of all the subsets of S̃pub of at most d points. Note that the size of such collection
is |W| = O(ndpub). For each Ŝ ∈ W , we find one arbitrary halfspace in Rd that is supported by Ŝ,
and its corresponding opposite halfspace. We add these two halfspaces to C̃pub. In addition to C̃pub,
we also define the affine subspace Aff that is spanned by the points in S̃pub (where the notion of an
affine subspace is as defined in Section 2). Note that, when the points of S̃pub are in general position,
Aff is trivially taken to be the entire Rd. The set Aff is merely needed when the public data points
lie in a lower dimensional affine subspace since in this case, we can simply restrict ourselves to the
intersections of the halfspaces in C̃pub with Aff. Finally, we get a family of halfspaces C̃pub whose
size is |C̃pub| = 2 |W| = O(ndpub), and one additional set Aff. We remark that if there are no public
examples in the dataset, (i.e., S̃pub = ∅), then we simply return the empty set, i.e., C̃pub = ∅. We
formally describe the construction of C̃pub and Aff in Algorithm 1 (denoted by AConstrHalf ).

Effective hypothesis class: In our main algorithm ALearnHalf (Algorithm 2 below), we construct
a finite hypothesis class G using C̃pub described above. Each hypothesis in G corresponds to the
intersection of at most d halfspaces in the collection C̃pub and the affine subspace Aff. Hence, it

follows that |G| ≤
(|C̃pub|
≤ d

)
= O(|C̃pub|d) = O(2d nd

2

pub). Note that we consider the intersection of at
most d halfspaces, so G is assumed to also contain a hypothesis that corresponds to the empty set ∅,
which assigns label 1 to all points in Rd (according to our definition in Step 8 of Algorithm 2).
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Algorithm 1 AConstrHalf : Construction of the family C̃pub halfspaces

Input: Dataset: Spub ∈ (Rd × Y)npub

1: Let S̃pub be the unlabeled version of Spub.
2: Initialize C̃pub = ∅.
3: LetW = {Ŝ ⊆ S̃pub : |Ŝ| ≤ d}.
4: for every Ŝ ∈ W: do
5: Find a halfspace h ∈ Rd that is supported by Ŝ, and its corresponding opposite halfspace h−.

{The notion of opposite halfspaces is defined in Section 2.}
6: Add h, h− to C̃pub.
7: Let Aff be the affine subspace spanned by S̃pub.

8: Output {C̃pub, Aff}.

Algorithm 2 ALearnHalf : PPM Learning of Halfspaces
Input: Class of halfspaces in Rd: C; Labeled dataset: S = {(x1, y1, p1), . . . , (xn, yn, pn)} ∈

(Rd × Y × P)n, Privacy parameter: ε
1: Initialize Spub ← ∅, S′ ← ∅, G ← ∅
2: for i = 1, . . . , n do
3: if pi = pub then
4: Add (xi, yi) to Spub.
5: {C̃pub, Aff} ← AConstrHalf(Spub).
6: for i = 1, . . . , n do
7: Add (xi, yi) to S′ {S′ consists of all the (x, y) pairs of S}
8: For every j ∈ [d], and every collection of distinct halfspaces h1, . . . , hj ∈ C̃pub, add a hypothesis
g to G, where g is defined as:

g(x) , 1

(
x /∈

(
j⋂
i=1

hi ∩ Aff

))
, x ∈ Rd.

9: Use the exponential mechanism with inputs S′, G, privacy parameter ε, and a score function
q(S′, g) , −êrr(g;S′) to select a hypothesis ĝ from G.

10: Output ĝ.

Lemma 4.1 (Privacy Guarantee of ALearnHalf). For any realization of the privacy-status bits
(p1, . . . , pn) ∈ Pn, and for any realization of Spub constructed in Steps (2 -4) of ALearnHalf (Al-
gorithm 2), ALearnHalf is ε-differentially private (w.r.t. the private portion of the input dataset).

The proof of the above lemma follows from the fact that {C̃pub,Aff} are constructed using only the
public data together with the privacy analysis of the exponential mechanism [MT07] (see details in
the full version [BMN20]).

Next, we turn to the analysis of the (excess) error of ALearnHalf . Let hERMS′ denote the ERM halfspace
with respect to the dataset S′; that is, hERMS′ = argmin

h∈C
êrr(h;S′). We will first show that the expected

error of the output hypothesis of ALearnHalf is close to that of hERMS′ . Then, we derive explicit sample
complexity bounds for ALearnHalf in the realizable and agnostic settings.

The first main step in our analysis is to show the existence of a hypothesis g∗ ∈ G whose empirical
error is not larger than the empirical error of hERMS′ . Let S̃pub \hERMS′ , {x ∈ S̃pub : x /∈ hERMS′ }. First,
we consider the corner case where S̃pub \ hERMS′ = ∅. In this case, all public examples are incorrectly
labeled (i.e., assigned label 1) by hERMS′ . Thus, the hypothesis g∗ ∈ G we are looking for is simply
the empty hypothesis, which assigns label 1 to all points in Rd. Indeed, in such case the empirical
error of g∗ cannot be larger than that of hERMS′ since g∗ correctly labels all the private examples and is
consistent with hERMS′ on all the public examples.
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Thus, in the remainder of our analysis, we will assume w.l.o.g. that S̃pub \ hERMS′ 6= ∅. We first state
some useful facts from convex geometry.

For any finite set T ⊂ Rd, we use V(T ) to denote the convex hull of all the data points in T . Note
that V(T ) is a convex polytope that is given by the intersection of at most O(|T |d) halfspaces. Hence,
V(S̃pub \ hERMS′ ) is a convex polytope that contains all the public data points that are labeled correctly
by hERMS′ . Moreover, V(S̃pub \ hERMS′ ) is given by the intersection of a sub-collection of halfspaces in
C̃pub and Aff. (As mentioned earlier, intersection with Aff is needed only when all the public data
points lie in a lower dimensional affine subspace. In this case, the convex hull V(S̃pub \ hERMS′ ) is a
“flat” set that lies in this affine subspace.) Thus, we can make the following immediate observation:

Observation 4.2. Let h1, . . . , hv be halfspaces in C̃pub such that
( v⋂
i=1

hi
)
∩ Aff = V(S̃pub \ hERMS′ ).

Then
(( v⋂
i=1

hi
)
∩ Aff

)
∩ hERMS′ = ∅.

A key step in our analysis relies on an application of a basic result in convex geometry known as
Helly’s Theorem, which we state below.

Lemma 4.3 (Helly’s Theorem restated [Hel23, Rad21]). Let N ∈ N. Let F = {C1, C2, . . . , CN}

be a family of convex sets in Rd. Suppose we have
N⋂
i=1

Ci = ∅, then there exists a collection

Ci1 , . . . , CiK , where K ≤ d+ 1, such that Ci1 ∩ . . . ∩ CiK = ∅.

Combining Observation 4.2 and Lemma 4.3, we obtain the following corollary:

Corollary 4.4. There exists a sub-collection of sets T ⊆ C̃pub ∪ {Aff}, where |T | ≤ d, such that( ⋂
h∈T

h

)
∩ hERMS′ = ∅.

Proof. By Lemma 4.3 and Observation 4.2, there exists a sub-collection T ′ ⊆
{h1, . . . , hv,Aff, hERMS′ } of size |T ′| ≤ d + 1 such that the intersection of the sets in T ′ is
empty (where h1, . . . , hv are the halfspaces in Observation 4.2). Observe that necessarily hERMS′ ∈ T ′

since
( v⋂
i=1

hi
)
∩ Aff = V(S̃pub \ hERMS′ ) 6= ∅. Therefore T = T ′ \ {hERMS′ } gives the desired

collection.

Define g∗(x) , 1
(
x /∈

⋂
h∈T

h
)
, x ∈ Rd, where T is the collection of at most d sets whose existence

is established in Corollary 4.4. Note that g∗ ∈ G. Given this definition of g∗, we note that all points
in S′ that are labeled correctly by hERMS′ are also labeled correctly by g∗. Indeed, for any private
(i.e. 1-labeled) data point x that hERMS′ labels correctly (i.e. x ∈ hERMS′ ), we have x /∈

( ⋂
h∈T

h
)

by

Corollary 4.4. Hence, g∗ labels x correctly. Conversely, for any public (i.e., 0-labeled) data point x
that hERMS′ labels correctly (i.e. x /∈ hERMS′ ), we must have x ∈ V(S̃pub \ hERMS′ ) ⊆

( ⋂
h∈T

h
)
, where the

last step follows from the definition of the collection T in the proof of Corollary 4.4. Hence, g∗ also
labels x correctly. This clearly implies that êrr(g∗;S′) ≤ êrr(hERMS′ ;S′).

Next, using the fact above together with the standard accuracy analysis of the exponential mechanism
[MT07, KLN+08], in the following claim we show that, with high probability, the empirical error
of output hypothesis ĝ of ALearnHalf is close to that of hERMS′ . The full details are deferred to the full
version [BMN20].

Claim 4.5 (Excess Empirical Error of ALearnHalf). Let α, β, ε ∈ (0, 1). Let S′ ∈ (Rd × Y)n be any

realization of the dataset. For n = O
(
d2 log(d/εα)+log(1/β)

ε α

)
, with probability at least 1− β (over

the randomness Step 9 of ALearnHalf ), ALearnHalf outputs a hypothesis ĝ ∈ G that satisfies:

êrr (ĝ;S′)− êrr(hERMS′ ;S′) ≤ α.
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Now the remaining ingredient in our analysis is to show that the generalization error of ALearnHalf is
also small. We do this by observing that each hypothesis in G can be described by a few data points
from the input dataset and then invoking standard sample compression bounds [LW86, SSBD14].
Specifically, we observe that each g ∈ G is an intersection of at most d halfspaces in C̃pub (restricted
to Aff), and each one of these halfspaces is represented by at most d points from the input dataset.
Hence, by putting all the ingredients together, we can finally arrive at our main result formally stated
in the theorem below. Due to space considerations, we defer the details of the sample compression
argument and the full proof of the theorem below to the full version [BMN20].
Theorem 4.6 (PPM learning of halfspaces). Let ε, α, β ∈ (0, 1). Assuming label-determined privacy-
data model, ALearnHalf (Algorithm 2) is an (α, β, ε)-PPM learner for halfspaces in Rd, with input
sample size

n = O

((
d2 log

(
d

εα

)
+ log(

1

β
)

)
max

(
1

α2
,

1

ε α

))
.

Moreover, if we assume realizability, then ALearnHalf is an (α, β, ε)-PPM learner for halfspaces in Rd
with input sample size:

n = O

(
d2 log(d/εα) + log(1/β)

ε α

)
.

5 Discussion

The main goal of this work is to introduce a new, more flexible framework for differentially private
learning that captures more realistic scenarios than prior works. Although the label-determined
privacy-data model that we assume for our results on learning halfspaces may seem a bit restrictive,
we want to point out that this model in fact captures some realistic scenarios. For example, imagine a
scenario where the data of individuals who tested positive for COVID-19 does not require privacy
protection (to enable contact tracing and symptom analysis), while the data of those who tested
negative remains protected. This scenario is exactly captured by the label-determined model.

There are various future directions that one may explore based on our general framework. Perhaps,
among the most realistic ones are those based on a distribution-dependent model, where one also
restricts the data distribution (and not only the concept class), or privacy models where the privacy
status can be correlated with the feature vector not just the target label. Also, in the distribution-
independent setting one may ask whether every VC class can be learned in the label-determined
setting. We note that in the other extreme, where the privacy status and the label are independent,
previous works [BNS13, ABM19] showed that every VC class is learnable, with significant savings
in sample complexity. Moreover, one may also consider privacy models that interpolate between
these two extremes (label-determined and label-independent), and explore the sample complexity in
this spectrum.

Broader Impact

Our work is theoretical in nature. Although there are no concrete, foreseeable ethical or societal
impact for the research presented here, we hope that the framework we present for learning from
mixtures of private and public populations could provide new insights that lead to a more realistic
modeling for the problem of learning under privacy constraints. In particular, we believe that our
framework can be a basis for a more general framework that captures and exploits the heterogeneous
nature of privacy constraints across a population. This, in turn, can lead to new practical privacy-
preserving learning algorithms that meaningfully exploit data with no (or weak) privacy concerns
while providing strong privacy protection for data of more sensitive nature. Making progress in this
direction can have significant impact on society in the long term.
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