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Abstract

In this paper, a rather general online problem called dynamic resource allocation
with capacity constraints (DRACC) is introduced and studied in the realm of posted
price mechanisms. This problem subsumes several applications of stateful pricing,
including but not limited to posted prices for online job scheduling and matching
over a dynamic bipartite graph. As the existing online learning techniques do not
yield vanishing-regret mechanisms for this problem, we develop a novel online
learning framework defined over deterministic Markov decision processes with
dynamic state transition and reward functions. We then prove that if the Markov
decision process is guaranteed to admit an oracle that can simulate any given
policy from any initial state with bounded loss — a condition that is satisfied in the
DRACC problem — then the online learning problem can be solved with vanishing
regret. Our proof technique is based on a reduction to online learning with switching
cost, in which an online decision maker incurs an extra cost every time she switches
from one arm to another. We formally demonstrate this connection and further
show how DRACC can be used in our proposed applications of stateful pricing.

1 Introduction

Price posting is a common selling mechanism across various corners of e-commerce. Its applications
span from more traditional domains such as selling flight tickets on Delta’s website or selling products
on Amazon, to more emerging domains such as selling cloud services on AWS or pricing ride-shares
in Uber. The prevalence of price posting comes from its several important advantages: it is incentive
compatible, simple to grasp, and can easily fit in an online (or dynamic) environment where buyers
arrive sequentially over time. Therefore, online posted pricing mechanisms, also known as dynamic
pricing, have been studied quite extensively in computer science, operations research, and economics
(for a comprehensive survey, see [19]).

A very useful method for devising online posted prices is via vanishing-regret online learning
algorithms in an adversarial environment [12, 11, 23, 9, 10, 28]. Here, a sequence of buyers arrive,
each associated with her own valuation function that is assumed to be devised by a malicious
adversary, and the goal is to post a sequence of price vectors that perform almost as good as the best
fixed pricing policy in hindsight. Despite its success, a technical limitation of this method (shared
by the aforementioned papers) forces the often less natural assumption of unlimited item supply to
ensure that the selling platform is stateless. However, in many applications of online posted pricing,
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the platform is stateful; indeed, prices can depend on previous sales that determine the platform’s
state. Examples for such stateful platforms include selling resources of limited supply, in which the
state encodes the number of remaining inventories of different products, and selling resources in
cloud computing to schedule online jobs, in which the state encodes the currently scheduled jobs.

The above mentioned limitation is in sharp contrast to the posted prices literature that consider stochas-
tic settings where the buyers’ valuations are drawn independently and identically from unknown
distributions [8, 7, 35], or independently from known distributions [14, 22, 15]. By exploiting the
randomness (and distributional knowledge) of the input and employing other algorithmic techniques,
these papers cope with limited supply and occasionally, with more complicated stateful pricing
scenarios. However, the stochastic approach does not encompass the (realistic) scenarios in which
the buyers’ valuations are correlated in various complex ways, scenarios that are typically handled
using adversarial models. The only exception in this regard is the work of Chawla et al. [16] that
takes a different approach: they consider the online job scheduling problem, and given access to a
collection of (truthful) posted price scheduling mechanisms, they show how to design a (truthful)
vanishing-regret online scheduling mechanism against this collection in an adversarial environment.

Motivated by the abundance of stateful posted pricing platforms, and inspired by [16], we study the
design of adversarial online learning algorithms with vanishing regret for a rather general online
resource allocation framework. In this framework, termed dynamic resource allocation with capacity
constraints (DRACC), dynamic resources of limited inventories arrive and depart over time, and an
online mechanism sequentially posts price vectors to (myopically) strategic buyers with adversarially
chosen combinatorial valuations (refer to Section 2 for the formal model). The goal is to post a
sequence of price vectors with the objective of maximizing revenue, while respecting the inventory
restrictions of dynamic resources for the periods of time in which they are active. We consider a
full-information setting, in which the buyers’ valuations are elicited by the platform after posting
prices in each round of the online execution.

Given a collection of pricing policies for the DRACC framework, we aim to construct a sequence
of price vectors that is guaranteed to admit a vanishing regret with respect to the best fixed pricing
policy in hindsight. Interestingly, our abstract framework is general enough to admit, as special cases,
two important applications of stateful posted pricing, namely, online job-scheduling and matching
over a dynamic bipartite graph; these applications, for which existing online learning techniques fail
to obtain vanishing regret, are discussed in detail in Appendix C.

Our Contributions and Techniques. Our main result is a vanishing-regret posted price mechanism
for the DRACC problem (refer to Section 3 for a formal exposition).

For any DRACC instance with T users and for any collection Γ of pricing policies,
the regret of our proposed posted price mechanism (in terms of expected revenue)
with respect to the in-hindsight best policy in Γ is sublinear in T .

We prove this result by abstracting away the details of the pricing problem and considering a
more general stateful decision making problem. To this end, we introduce a new framework,
termed dynamic deterministic Markov decision process (Dd-MDP), which generalizes the classic
deterministic MDP problem to an adversarial online learning dynamic setting. In this framework,
a decision maker picks a feasible action for the current state of the MDP, not knowing the state
transitions and the rewards associated with each transition; the state transition function and rewards
are then revealed. The goal of the decision maker is to pick a sequence of actions with the objective
of maximizing her total reward. In particular, we look at vanishing-regret online learning, where the
decision maker is aiming at minimizing her regret, defined with respect to the in-hindsight best fixed
policy (i.e., a mapping from states to actions) among the policies in a given collection Γ.

Not surprisingly, vanishing-regret online learning is impossible for this general problem (see Proposi-
tion 3.1). To circumvent this difficulty, we introduce a structural condition on Dd-MDPs that enables
online learning with vanishing regret. This structural condition ensures the existence of an ongoing
chasing oracle that allows one to simulate a given fixed policy from any initial state, irrespective of
the actual current state, while ensuring a small (vanishing) chasing regret. The crux of our technical
contribution is cast in proving that the Dd-MDPs induced by DRACC instances satisfy this chasability
condition.

Subject to the chasability condition, we establish a reduction from designing vanishing-regret online
algorithms for Dd-MDP to the extensively studied (classic stateless) setting of online learning with
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switching cost [26]. At high level, we have one arm for each policy in the given collection Γ and
employ the switching cost online algorithm to determine the next policy to pick. Each time this
algorithm suggests a switch to a new policy γ ∈ Γ, we invoke the chasing oracle that attempts to
simulate γ, starting from the current state of the algorithm which may differ from γ’s current state. In
summary, we obtain the following result (see Theorem 3.8 for a formal exposition).

For any T -round Dd-MDP instance that satisfies the chasability condition and
for any collection Γ of policies, the regret of our online learning algorithm with
respect to the in-hindsight best policy in Γ is sublinear (and optimal) in T .

We further study the bandit version of the above problem, where the state transition function is
revealed at the end of each round, but the learner only observes the current realized reward instead of
the complete reward function. By adapting the chasability condition to this setting, we obtain near
optimal regret bounds. See Theorem E.2 and Corollary E.3 in Appendix E for a formal statement.

Our abstract frameworks, both for stateful decision making and stateful pricing, are rather general
and we believe that they will turn out to capture many natural problems as special cases (on top
of the applications discussed in Appendix C). The reader is referred to Appendix A for a more
comprehensive discussion of the related literature.

2 Model and Definitions

The DRACC problem. Consider N dynamic resources and T strategic myopic users arriving
sequentially over rounds t = 1, . . . , T , where round t lasts over the time interval [t, t+ 1). Resource
i ∈ [N ] arrives at the beginning of round ta(i) and departs at the end of round te(i), where
1 ≤ ta(i) ≤ te(i) ≤ T ; upon arrival, it includes c(i) ∈ Z>0 units. We say that resource i is active at
time t if ta(i) ≤ t ≤ te(i) and denote the set of resources active at time t by At ⊆ [N ]. Let C and
W be upper bounds on maxi∈[N ] c(i) and maxt∈[T ] |At|, respectively.

The arriving user at time t has a valuation function vt : 2At → [0, 1) that determines her value vt(A)
for each subset A ⊆ At of resources active at time t. We assume that vt(∅) = 0 and that the users are
quasi-linear, namely, if a subset A of resources is allocated to user t and she pays a total payment of
q in return, then her utility is vt(A) − q. A family of valuation functions that receives a separated
attention in this paper is that of kt-demand valuation functions, where user t is associated with an
integer parameter 1 ≤ kt ≤ |At| and with a value wit ∈ [0, 1) for each active resource i ∈ At so that
her value for a subset A ⊆ At is maxA′⊆A:|A′|≤kt

∑
i∈A′ w

i
t.

Stateful posted price mechanisms. We restrict our attention to dynamic posted price mechanisms
that work based on the following protocol. In each round t ∈ [T ], the mechanism first realizes which
resources i ∈ [N ] arrive at the beginning of round t, together with their initial capacity c(i), and
which resources departed at the end of round t− 1, thus updating its knowledge of At. It then posts a
price vector pt ∈ (0, 1]At that determines the price pt(i) of each resource i ∈ At at time t. Following
that, the mechanism elicits the valuation function vt of the current user t and allocates (or in other
words sells) one unit of each resource in the demand set Âpt

t to user t at a total price of q̂ptt , where

Âp
t = argmaxA⊆At

{
vt(A)−

∑
i∈A p(i)

}
and q̂pt =

∑
i∈Âp

t
p(i) (1)

for any price vector p ∈ (0, 1]At , consistently breaking argmax ties according to the lexicographic
order on At. A virtue of posted price mechanisms is that if the choice of pt does not depend on vt,
then it is dominant strategy for (myopic) user t to report her valuation vt truthfully.

Let λt ∈ {0, 1, . . . , C}At be the inventory vector that encodes the number λt(i) of units remaining
from resource i ∈ At at time t = 1, . . . , T . Formally, if ta(i) = t, then λt(i) = c(i); and if (a unit
of) i is allocated to user t and i is still active at time t+ 1, then λt+1(i) = λt(i)− 1. We say that a
price vector p is feasible for the inventory vector λt if p(i) = 1 for every i ∈ At such that λt(i) = 0,
that is, for every (active) resource i exhausted by round t. To ensure that the resource inventory is not
exceeded, we require that the posted price vector pt is feasible for λt for every 1 ≤ t ≤ T ; indeed,
since vt is always strictly smaller than 1, this requirement ensures that the utility of user t from any
resource subset A ⊆ At that includes an exhausted resource is negative, thus preventing A from
becoming the selected demand set, recalling that the utility obtained by user t from the empty set is 0.
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In this paper, we aim for posted price mechanisms whose objective is to maximize the extracted
revenue defined to be the total expected payment E[

∑T
t=1 q̂

pt
t ] received from all users, where the

expectation is over the mechanism’s internal randomness.1

Adversarial online learning over pricing policies. To measure the quality of the aforementioned
posted price mechanisms, we consider an adversarial online learning framework, where at each time
t ∈ [T ], the decision maker picks the price vector pt and an adaptive adversary simultaneously
picks the valuation function vt. The resource arrival times ta(i), departure times te(i), and initial
capacities c(i) are also determined by the adversary. We consider the full information setting, where
the valuation function vt of user t is reported to the decision maker at the end of each round t. It
is also assumed that the decision maker knows the parameters C and W upfront and that these
parameters are independent of the instance length T .

A (feasible) pricing policy γ is a function that maps each inventory vector λ ∈ {0, 1, . . . , C}At ,
t ∈ [T ], to a price vector p = γ(λ), subject to the constraint that p is feasible for λ.2 The pricing
policies are used as the benchmarks of our online learning framework: Given a pricing policy γ,
consider a decision maker that repeatedly plays according to γ; namely, she posts the price vector
pγt = γ(λγt ) at time t = 1, . . . , T , where λγt is the inventory vector at time t obtained by applying γ
recursively on previous inventory vectors λγt′ and posting prices γ(λγt′) at times t′ = 1, . . . , t − 1.
Denoting q̂γt = q̂

pγt
t , the revenue of this decision maker is given by

∑T
t=1 q̂

γ
t .

Now, consider a collection Γ of pricing policies. The quality of a posted price mechanism {pt}Tt=1
is measured by means of the decision maker’s regret that compares her own revenue to the revenue
generated by the in-hindsight best pricing policy in Γ. Formally, the regret (with respect to Γ) is
defined to be

maxγ∈Γ

∑T
t=1 q̂

γ
t − E

[∑T
t=1 q̂

pt
t

]
,

where the expectation is taken over the decision maker’s randomness. The mechanism is said to have
vanishing regret if it is guaranteed that the decision maker’s regret is sublinear in T , which means
that the average regret per time unit vanishes as T →∞.

3 Dynamic Posted Pricing via Dd-MDP with Chasability

The online learning framework underlying the DRACC problem as defined in Section 2 is stateful
with the inventory vector λ playing the role of the framework’s state. In the current section, we
first introduce a generalization of this online learning framework in the form of a stateful online
decision making, formalized by means of dynamic deterministic Markov decision processes (Dd-
MDPs). Following that, we propose a structural condition called chasability and show that under this
condition, the Dd-MDP problem is amenable to vanishing-regret online learning algorithms. This last
result is obtained through a reduction to the extensively studied problem of “experts with switching
cost” [26]. Finally, we prove that the Dd-MDP instances that correspond to the DRACC problem
indeed satisfy the chasability condition.

3.1 Viewing DRACC as a Dd-MDP

A (static) deterministic Markov decision process (d-MDP) is defined over a set S of states and a set X
of actions. Each state s ∈ S is associated with a subset Xs ⊆ X of actions called the feasible actions
of s. A state transition function g maps each state s ∈ S and action x ∈ Xs to a state g(s, x) ∈ S.
This induces a directed graph over S, termed the state transition graph, where an edge labeled by
〈s, x〉 leads from node s to node s′ if and only if g(s, x) = s′. The d-MDP also includes a reward
function f that maps each state-action pair 〈s, x〉 with s ∈ S and x ∈ Xs to a real value in [0, 1].

Dynamic deterministic MDPs. Notably, static d-MDPs are not rich enough to capture the dynamic
aspects of the DRACC problem. We therefore introduce a more general object where the state
transition and reward functions are allowed to develop in an (adversarial) dynamic fashion.

1The techniques we use in this paper are applicable also to the objective of maximizing the social welfare.
2The seemingly more general setup, where the time t is passed as an argument to γ on top of λ, can be easily

reduced to our setup (e.g., by introducing a dummy resource it active only in round t).
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Consider a sequential game played between an online decision maker and an adversary. As in static
d-MDPs, the game is defined over a set S of states, a set X of actions, and a feasible action set Xs for
each s ∈ S . We further assume that the state and action sets are finite. The game is played in T ∈ N
rounds as follows. The decision maker starts from an initial state s1 ∈ S . In each round t = 1, . . . , T ,
she plays a (randomized) feasible action xt ∈ Xst , where st ∈ S is the state at the beginning of
round t. Simultaneously, the adversary selects the state transition function gt and the reward function
ft. The decision maker then moves to a new state st+1 = gt(st, xt) (which is viewed as a movement
along edge 〈st, xt〉 in the state transition graph induced by gt), obtains a reward ft(st, xt), and finally,
observes gt and ft as the current round’s (full information) feedback.3 The game then advances to
the next round t+ 1. The goal is to maximize the expected total reward E[

∑
t∈[T ] ft(st, xt)].

Policies, simulation, & regret. A (feasible) policy γ : S 7→ X is a function that maps each state
s ∈ S to an action γ(s) ∈ Xs. A simulation of policy γ over the round interval [1, T ] is given by the
state sequence {sγ(t)}Tt=1 and the action sequence {xγ(t)}Tt=1 defined by setting

sγ(t) ,

{
s1 if t = 1

gt−1 (sγ(t− 1), xγ(t− 1)) if t > 1
and xγ(t) ,

{
γ(s1) if t = 1

γ (sγ(t)) if t > 1
. (2)

The cumulative reward obtained by this simulation of γ is given by
∑
t∈[T ] ft (sγ(t), xγ(t)).

Consider a decision maker that plays the sequential game by following the (randomized) state
sequence {st}Tt=1 and action sequence {xt}Tt=1, where xt ∈ Xst for every 1 ≤ t ≤ T . For a (finite)
set Γ of policies, the decision maker’s regret with respect to Γ is defined to be

maxγ∈Γ

∑
t∈[T ] ft (sγ(t), xγ(t)) −

∑
t∈[T ] E [ft(st, xt)] . (3)

Relation to the DRACC Problem

Dynamic posted pricing for the DRACC problem can be modeled as a Dd-MDP. To this end, we
identify the state set S with the set of possible inventory vectors λt, t = 1, . . . , T . If state s ∈ S is
identified with inventory vector λt, then we identify Xs with the set of price vectors feasible for λt.
The reward function ft is defined by setting

ft(s, x) = q̂ xt , (4)

where q̂ xt is defined as in Eq. (1), recalling that the valuation function vt, required for the computation
of q̂ xt , is available to the decision maker at the end of round t. As for the state transition function gt,
the new state s′ = gt(s, x) is the inventory vector obtained by posting the price vector x to user t
given the inventory vector s, namely,

s′(i) =

{
s(i)− 1i∈Âxt

if i ∈ At+1 ∩At
c
(
i
)

if i ∈ At+1 \At
.

Given the aforementioned definitions, the notion of (pricing) policies and their recursive simulations
and the notion of regret translate directly from the DRACC setting to that of Dd-MDPs.

3.2 The Chasability Condition

As the Dd-MDP framework is very inclusive, it is not surprising that in general, it does not allow for
vanishing regret (the proof of the following proposition is deferred to Appendix B).
Proposition 3.1. For every online learning algorithm, there exists a T -round Dd-MDP instance for
which the algorithm’s regret is Ω(T ).

As a remedy to the impossibility result established in Proposition 3.1, we introduce a structural
condition for Dd-MDPs that makes them amenable to online learning with vanishing regret.
Definition 3.2 (Chasability condition for Dd-MDPs). A Dd-MDP instance is called σ-chasable for
some σ > 0 if it admits an ongoing chasing oracle OChasing that works as follows for any given
target policy γ ∈ Γ. The chasing oracle is invoked at the beginning of some round tinit and provided

3No (time-wise) connectivity assumptions are made for the dynamic transition graph induced by {gt}Tt=1,
hence it may not be possible to devise a path between two given states as is done in [17] for static d-MDPs.
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with an initial state sinit ∈ S; this invocation is halted at the end of some round tfinal ≥ tinit. In each
round tinit ≤ t ≤ tfinal, the chasing oracle generates a (random) action x̂(t) that is feasible for state

ŝ(t) =

{
sinit if t = tinit

gt−1 (ŝ(t− 1), x̂(t− 1)) if tinit < t ≤ tfinal
; (5)

following that, the chasing oracle is provided with the Dd-MDP’s state transition function ft(·, ·) and
reward function gt(·, ·). The main guarantee of OChasing is that its chasing regret (CR) satisfies

CR ,
∑tfinal
t=tinit

ft (sγ(t), xγ(t))−
∑tfinal
t=tinit

E
[
ft

(
ŝ(t), x̂(t)

)]
≤ σ .

We emphasize that the initial state sinit provided to the chasing oracle may differ from sγ(tinit).

Relation to the DRACC Problem (continued)

In terms of the DRACC problem, chasability means that the online algorithm can simulate a given
pricing policy, while incurring a small revenue loss, even if the online algorithm starts from a
(coordinate-wise) smaller inventory vector. Interestingly, the Dd-MDPs corresponding to DRACC
instances are σ-chasable for σ = o(T ), where the exact bound on σ depends on whether we consider
general or kt-demand valuation functions. Before establishing these bounds, we show that the chasing
oracle must be randomized (proof deferred to Appendix B).
Proposition 3.3. There exists a family of T -round DRACC instances whose corresponding Dd-MDPs
do not admit a deterministic chasing oracle with o(T ) chasing regret CR.

We now turn to study chasing oracles for DRACC instances implemented by randomized procedures.
Theorem 3.4. The Dd-MDPs corresponding to T -round DRACC instances with kt-demand valuation
functions are O(

√
CW · T )-chasable.

Proof. Consider some DRACC instance and fix the target pricing policy γ ∈ Γ; in what follows,
we identify γ with a decision maker that repeatedly plays according to γ. Given an initial round
tinit and an initial inventory vector λ̂tinit , we construct a randomized chasing oracle OChasing that
works as follows until it is halted at the end of round tfinal ≥ tinit. For each round tinit ≤ t ≤ tfinal,
recall that λγt is the inventory vector at time t obtained by running γ from round 1 to t, and let λ̂t
be the inventory vector at time t obtained by OChasing as defined in Eq. (5). We partition the set At
of resources active at time t into Goodt = {i ∈ At | λγt (i) ≤ λ̂t(i)} and Badt = At \ Goodt. In
each round tinit ≤ t ≤ tfinal, the chasing oracle posts the (|At|-dimensional) all-1 price vector with
probability ε, where ε ∈ (0, 1) is a parameter to be determined later on; and it posts the price vector

p̂t =

{
pγt (i) if i ∈ Goodt

1 if i ∈ Badt

with probability 1− ε, observing that this price vector is feasible for λ̂t by the definition of Goodt
and Badt. Notice that OChasing never sells a resource i ∈ Badt and that p̂t(i) ≥ pγt (i) for all i ∈ At.
Moreover, if resource i arrives at time ta(i) = t > tinit, then i ∈ Goodt.

To analyze the CR, we classify the rounds in [tinit, tfinal] into two classes called Following and
Missing: round t is said to be Missing if at least one (unit of a) resource in Badt is sold by γ in
this round; otherwise, round t is said to be Following. For each Following round t, if OChasing

posts p̂t in round t, then OChasing sells exactly the same resources as γ for the exact same prices;
otherwise (OChasing posts the all-1 price vector in round t), OChasing does not sell any resource.
Hence, the CR increases in round t by at most ε in expectation. For each Missing round t, the CR
increases in round t by at most 1. Therefore the total CR over the interval [tinit, tfinal] is upper bounded
by ε · E[#F] + E[#M] ≤ ε · T + E[#M], where #F and #M denote the number of Following and
Missing rounds, respectively.

To bound E[#M], we introduce a potential function φ(t), tinit ≤ t ≤ tfinal, defined by setting

φ(t) =
∑
i∈Badt λ

γ
t (i)− λ̂t(i)

By definition, φ(tinit) ≤ CW and φ(tfinal) ≥ 0. We argue that φ(t) is non-increasing in t. To this end,
notice that if t is a Following round, then Badt+1 ⊆ Badt, hence φ(t+ 1) ≤ φ(t). If t is a Missing
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round and OChasing posts the all-1 price vector, then φ(t+ 1) < φ(t) as OChasing sells no resource
whereas γ sells at least one (unit of a) resource in Badt. So, it remains to consider a Missing round
t in which OChasing posts the price vector p̂t. Let Sγ and Ŝ be the sets of (active) resources sold
by γ and OChasing, respectively, in round t and notice that a resource i ∈ Ŝ \ Sγ may move from
i ∈ Goodt to i ∈ Badt+1. The key observation now is that since vt is a kt-demand valuation function,
it follows that Sγ ∩ Goodt ⊆ Ŝ ∩ Goodt, thus |Sγ ∩ Badt| ≥ |Ŝ \ Sγ |. As both γ and OChasing sell
exactly one unit of each resource in Sγ and Ŝ, respectively, we conclude that φ(t+ 1) ≤ φ(t).

Therefore, E[#M] is upper bounded by CW plus the expected number of Missing rounds in which
φ(t) does not decrease. Since φ(t) strictly decreases in each Missing round t in which OChasing

posts the all-1 price vector, it follows that the number of Missing rounds in which φ(t) does not
decrease is stochastically dominated by a negative binomial random variable Z with parameters CW
and ε. Recalling that E[Z] = (1 − ε) · CW/ε, we conclude that E[#M] ≤ CW + E[Z] = CW/ε.
The assertion is now established by setting ε =

√
CW/T .

Remark 3.5. Theorem 3.4 can be in fact extended – using the exact same line of arguments – to a
more general family of valuation functions vt defined as follows. Let p be a price vector, B ⊆ At be
a subset of the active resources, and p′ be the price vector obtained from p by setting p′(i) = 1 if
i ∈ B; and p′(i) = p(i) otherwise. Then, |Âp

t ∩ B| ≥ |Â
p′

t \ Â
p
t |. Besides kt-demand valuations,

this class of valuation functions includes OXS valuations [29] and single-minded valuations [30].
Theorem 3.6. The Dd-MDPs corresponding to T -round DRACC instances with arbitrary valuation

functions are O
(
T

CW
CW+1

)
-chasable.

Proof. The proof follows the same line of arguments as that of Theorem 3.4, only that now, it no
longer holds that the potential function φ(t) is non-increasing in t. However, it is still true that
(I) 0 ≤ φ(t) ≤ CW for every tinit ≤ t ≤ tfinal; (II) if tinit ≤ t < tfinal is a Missing round and
OChasing posts the all-1 price vector in round t, then φ(t+ 1) < φ(t); and (III) if φ(t) = 0 for some
tinit ≤ t ≤ tfinal, then φ(t′) = 0 for all t < t′ ≤ tfinal. We conclude that if OChasing posts the all-1
price vector in CW contiguous Missing rounds, then φ(·) must reach zero and following that, there
are no more Missing rounds. Therefore the total number #M of Missing rounds is stochastically
dominated by CW times a geometric random variable Z with parameter εCW . Since E[Z] = ε−CW ,
it follows that E[#M] ≤ CW/εCW . Combined with the Following rounds, the CR is upper bounded
by ε · T + CW/εCW . The assertion is established by setting ε = (T/(CW ))−1/(CW+1).

3.3 Putting the Pieces Together: Reduction to Online Learning with Switching Cost

Having an ongoing chasing oracle with vanishing chasing regret in hand, our remaining key technical
idea is to reduce online decision making for the Dd-MDP problem to the well-studied problem of
online learning with switching cost (OLSC) [26]. The problem’s setup under full-information is
exactly the same as the classic problem of learning from experts’ advice, but the learner incurs an
extra cost ∆ > 0, a parameter referred to as the switching cost, whenever it switches from one expert
to another. Here, we have a finite set Γ of experts (often called actions or arms) and T ∈ Z>0 rounds.
The expert reward function Ft : Γ 7→ [0, 1) is revealed as feedback at the end of round t = 1, . . . , T .
The goal of an algorithm for this problem is to pick a sequence γ1, . . . , γT of experts in an online
fashion with the objective of minimizing the regret, now defined to be

maxγ∈Γ

∑
t∈[T ] Ft(γ)−

(∑
t∈[T ] E [Ft(γt)]−∆ ·

∑T
t=2 1γt 6=γt−1

)
.

Theorem 3.7 ([26]). The OLSC problem with switching cost ∆ admits an online algorithm A whose
regret is O

(√
∆ · T log |Γ|

)
.

Note that the same theorem also holds for independent stochastic switching costs with ∆ as the upper
bound on the expected switching cost, simply because of linearity of expectation and the fact that in
algorithms for OLSC, such as the Following-The-Perturbed-Leader [26], switching at each time is
independent of the realized cost of switching.

We now present our full-information online learning algorithm for σ-chasable Dd-MDP instances;
the reader is referred to Appendix E for the bandit version of this algorithm. Our (full-information)

7



ALGORITHM 1: Online Dd-MDP algorithm C&S
Input: Policy set Γ, OLSC algorithm A, chasing oracle OChasing, initial state s1;
Output: Sequence x1, . . . , xT of actions, (implicit) sequence s2, . . . , sT of states;
Start from initial state s1;
for each round t ∈ [T ] do

Invoke A to pick a policy γt at the beginning of round t;
if t > 1 and γt 6= γt−1 then

Invoke OChasing from scratch with target policy γt, initialized with round t and state st;
Select the action xt ← x̂(t) returned by OChasing;

else
Continue the existing run of OChasing and select the action xt ← x̂(t) it returns;

Feed OChasing with gt(·, ·) and ft(·, ·) as the state transition and reward functions of round t;
for each γ ∈ Γ do

Compute Ft(γ)← ft(s
γ(t), xγ(t)) by simulating policy γ up to time t (see Eq. (2));

Feed A with Ft(·) as the reward function of round t;

algorithm, called chasing and switching (C&S), requires a black box access to an algorithm A for
the OLSC problem with the following configuration: (1) the expert set of A is identified with the
policy collection Γ of the Dd-MDP instance; (2) the number of rounds of A is equal to the number of
rounds of the Dd-MDP instance (T ); and (3) the switching cost of A is set to ∆ = σ.

The operation of C&S is described in Algorithm 1. This algorithm maintains, in parallel, the OLSC
algorithmA and an ongoing chasing oracleOChasing; A produces a sequence {γt}Tt=1 of policies and
OChasing produces a sequence {xt}Tt=1 of actions based on that. Specifically, OChasing is restarted,
i.e., invoked from scratch with a fresh policy γ, whenever A switches to γ from some policy γ′ 6= γ.

Theorem 3.8. The regret of C&S for T -round σ-chasable Dd-MDP instances is O
(√

σ · T log |Γ|
)

.

Proof. Partition the T rounds into episodes {1, 2, . . . } so that each episode θ is a maximal contiguous
sequence of rounds in which the policy γθ chosen by A does not change. Let tθ and t′θ be the first
and last rounds of episode θ, respectively. Consider some episode θ with corresponding policy γθ.
Since C&S follows an action sequence generated by OChasing during the round interval [tθ, t

′
θ] and

since the chasing regret of OChasing is upper bounded by σ = ∆, it follows that∑t′θ
t=tθ

Ft(γθ)−
∑t′θ
t=tθ

E [ft(st, xt)] =
∑t′θ
t=tθ

ft (sγθ (t), xγθ (t))−
∑t′θ
t=tθ

E [ft(st, xt)] ≤ ∆ .

Therefore, for each policy γ ∈ Γ, we have

∑
t∈[T ]

ft (sγ(t), xγ(t))−
∑
t∈[T ]

E [ft(st, xt)] ≤
∑
t∈[T ]

ft (sγ(t), xγ(t))−
∑
θ

 t′θ∑
t=tθ

E [Ft(γθ)]−∆


=
∑
t∈[T ]

Ft(γ)−

∑
t∈[T ]

E [Ft(γt)]−∆ ·
T∑
t=2

1γt 6=γt−1

 .

By Theorem 3.7, the last expression is at most O
(√

∆ · T log |Γ|
)

= O
(√

σ · T log |Γ|
)

.

So far, we have only considered the notion of policy regret as defined in Eq. (3). An extension of our
results to the notion of external regret [4] is discussed in Appendix D. Furthermore, we investigate the
bandit version of the problem in Appendix E. In a nutshell, by introducing a stateless version of our
full-information chasing oracle and reducing to the adversarial multi-armed-bandit problem [5], we
obtain O(T 2/3) regret bound for Dd-MDP under bandit feedback. Finally, we obtain near-matching
lower bounds for both the full-information and bandit feedback versions of the Dd-MDP problem
under the chasability condition in Appendix F.
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Relation to the DRACC Problem (continued)

We can now use C&S (Algorithm 1) for Dd-MDPs that correspond to DRACC instances. This final
mechanism is called learning based posted pricing (LBPP). It first provides the input parameters of
C&S, including the collection Γ of pricing policies, the OLSC algorithm A, the ongoing chasing
oracle OChasing and the initial state s1. It then runs C&S by posting its price vectors (actions) and
updating the resulting inventory vectors (states). For OChasing, we employ the (randomized) chasing
oracles promised in Theorem 3.4 and Theorem 3.6. The following theorems can now be inferred
from Theorem 3.8, Theorem 3.4, and Theorem 3.6.
Theorem 3.9. The regret of LBPP for T -round DRACC instances with kt-demand valuation functions
(or more generally, with the valuation functions defined in Remark 3.5) is O

(
(CW )

1
4T

3
4

√
log |Γ|

)
.

Theorem 3.10. The regret of LBPP for T -round DRACC instances with with arbitrary valuation
functions is O

(
T

1
2 (1+ CW

CW+1 )√log |Γ|
)

.

Note that the regret bounds in Theorem 3.9 and Theorem 3.10 depend on the parameters C and W of
the DRACC problem; as shown in Appendix G, such a dependence is unavoidable.
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