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Abstract

This paper tackles the modelling of large, complex and multivariate time series
panels in a probabilistic setting. To this extent, we present a novel approach rec-
onciling classical state space models with deep learning methods. By augmenting
state space models with normalizing flows, we mitigate imprecisions stemming
from idealized assumptions in state space models. The resulting model is highly
flexible while still retaining many of the attractive properties of state space models,
e.g., uncertainty and observation errors are properly accounted for, inference is
tractable, sampling is efficient and good generalization performance is observed,
even in low data regimes. We demonstrate competitiveness against state-of-the-art
deep learning methods on the tasks of forecasting real world data and handling
varying levels of missing data.

1 Introduction

In most real world applications of time series analysis, e.g., risk management in finance, cannibal-
ization of products in retail or anomaly detection in cloud computing environments, time series are
not mutually independent and an accurate modelling approach must take these dependencies into
account [1]]. The classical approach [2] is to extend standard univariate models resulting in vector
autoregression [3]], multivariate GARCH [4] and multivariate state space models [3} 6]]. Although
these approaches yield useful theoretical properties, they make idealized assumptions like Gaussianity,
linear inter-dependencies, and are not scalable to even moderate number of time series [7]] due to the
number of parameters required to be estimated, which is restrictive for many modern applications
involving large panels of time series. Recently, more expressive, scalable deep learning methods [} 9]]
were developed for forecasting applications that learn a joint global model for multiple time series;
however, they still assume that these time series are mutually independent.

In this paper we propose the Normalizing Kalman Filter (NKF), a novel approach for modelling and
forecasting complex multivariate time series by augmenting classical linear Gaussian state space
models (LGM) with normalizing flows [10]]. The combined model allows us to leverage the flexibility
of normalizing flows (NF), alleviating strong assumptions of traditional multivariate models, while
still benefiting from the rich set of mathematical properties of LGM. In fact, we prove that despite
modelling non-Gaussian data with nonlinear inter-dependencies, we can achieve exact inference since
our model has closed-form expressions for filtering, smoothing and likelihood computation. We thus
retain the main attractive properties of LGM, in contrast to related methods [[11}12]. Moreover, since
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our model is based on LGM, handling of missing data and integrating prior knowledge, e.g., seasonality
and trend, becomes trivial. Therefore, the proposed model can be used in forecasting time series with
missing or noisy data irrespective of whether the data regime is sparse (in terms of observed time
points) or dense. More importantly, LGM directly gives us the ability to provide tractable multi-step
ahead forecast distributions while accounting for all uncertainties; this is in contrast to recent deep
learning-based autoregressive models [8. [1] that do not incorporate accumulated prediction errors
into forecast distributions since predictions of the model are used as lagged inputs in a multi-step
forecast scenario. For the forecasting application, we show that our method scales linearly with the
number of dimensions and number of time points, unlike most of the existing work that exhibits
quadratic scaling with the number of dimensions. The necessary structural assumptions do not result
in a loss of generality or expressiveness of the overall model.

In summary, our main contributions are as follows:

o A tractable method for modelling non-Gaussian multivariate time series data with nonlinear
inter-dependencies that has Kalman-like recursive updates for filtering and smoothing.

o A scalable, robust multivariate forecasting method that handles missing data naturally and
provides tractable multi-step ahead forecast distributions while accounting for uncertainties
unlike autoregressive models [} [1]].

o A thorough evaluation of applicability of normalizing flows in the context of high-dimensional
time series forecasting for handling non-Gaussian multivariate data with nonlinear dependencies.

2 Normalizing Kalman Filters

Lety, € RN denote the value of a multivariate time series at time ¢, with Yt,; € R the value of the
corresponding i-th univariate time series. Further, let 7, ; € R¥ be time varying covariate vectors

associated to each univariate time series at time ¢, and x; 1= [%41,...,Z¢N] € RE*N  Non-random
and random variables are denoted by normal and bold letters, i.e., x and x, respectively. We use the
shorthand y1.7 to denote the sequence {y1,y2,...,yr}

2.1 Generative Model

The core assumption behind our Normalizing Kalman Filter (NKF) model is the existence of a latent
state that evolves according to simple (linear) dynamics, with potentially complex and nonlinear
dependencies between latent state and observations—and thus, among observations. More precisely,
the dynamics of the latent state 1, € R? are governed by a time-dependent transition matrix F, € R¥*4,
up to additive Gaussian noise €, as in (Ib). The state is then mapped into the space of observations
with emission matrix A, € RN and additive Gaussian noise &; before being transformed by a
potentially nonlinear function f; : RY — R parametrized by A, generating observation y; € RV:

Iy ~ N(p1,%1) (initial state) (1a)
(NKF model) I; = Fili 1 + €, €~ N(0,%), (transition dynamics) (1b)
yi = fi(AT, + &), g; ~ N(0,Ty). (observation model) (1¢)

With parameters A and © = (uq1, X1, {T'y, Ai }i>1, {24, Fi }e>2), the model is fully speciﬁedE] Note
that the special case f; = id recovers the standard LGM where both the transition dynamics and
the observation model are linear. In the following, this similarity with LGM will yield numerous
computational benefits and it will further allow us to easily inject prior knowledge on the structural
form of the dynamics (e.g., levels, trends, seasonalities [S]) for good generalization properties.

We consider a flexible nonlinear transformation for the observation model, assuming invertibility of
ft. This guarantees the conservation of probability mass and allows the evaluation of the associated
density function at any given point of interest. In particular, the probability density of an observation

3Placing the noise before the non-linearity f; in the observation model is important to obtain tractability
for filtering and smoothing. However, this does not imply that data generated from a process where additive
noise is added after the non-linear function cannot be modelled; in fact we use this particular model (nonlinear
transformation with additive non-Gaussian noise) to generate data and test our method in the qualitative
experiments in Section 4.1 (refer to appendix C.1 in the supplementary material for details).



y; given the state [; can be computed using the change of variables formula:

p(ye|li; ©,A) = pZ(ftil(yt)‘lﬁ@) |det I:Jacyt(ftil)] ) (2)

where the first term in p,(2;|l;; ©) is the density of the Gaussian variable z; := A¢l; + €; conditioned
on [;, and the second is the absolute value of the determinant of the Jacobian of ft_1 given A, evaluated

at y;. This equation and Figure illustrate the intuition behind our approach: we would like f; * to
transform the observations such that the dynamics become simple and the noise is Gaussian.

Computing the density raises several issues: (i) finding a flexible f; while ensuring in-
vertibility, (ii) being able to compute the inverse efficiently and (iii) tractability of the com-
putation of the Jacobian term when the number of time series N is large. To this extent,
we will take inspiration from normalizing flows [13| [14, [15], which are invertible neural net-
works that typically transform isotropic Gaussians to fit a more complex data distribution.
These invertible networks are tailored to compute the Ja-

cobian term efficiently. Moreover, they have provento " "~ VT N i
work very well for nonlinear high-dimensional data, e.g.,
images [[14], both in terms of flexibility and generalization.

In our approach, we apply these invertible neural networks i f i f i | ¥ :

to temporal data, using them to map the distribution p, i t71 i ¢ ! i t+;1
given by the LGM to the complex data distribution. This | i | l | i
yields a powerful function f; where the Jacobian term is i @_} i i GD i i @9 E
computable in linear time in N. ! i ! i ! E
Inference and Learning. With the presented generative LGM
model it is possible to do inference (e.g., filtering and lt—? /lt\ 6 )
smoothing) and training in a simple and tractable way. NG +

Similar to the LGM, computing the filtered distribution

p(l¢|y1.¢;©, A) is essential as it determines our current Figure 1: Generative model of the NKF.
belief on the state having observed all the data up to time ~States l; and pseudo-observations z; are
t, and it takes part in the computation of the likelihood of ~produced from an LGM, which are then
the model parameters as well as the forecast distribution. transformed through a normalizing flow
For general nonlinear state space models its computation /f¢. producing observations y;.

is tedious as it involves integrating out previous states.

Methods such as Particle Filters [16] resort to Monte Carlo approximations of these integrals but
have difficulty scaling to high dimensions. Other methods circumvent this by locally linearizing the
nonlinear transformation [[17] or by using a finite sample approximation [[18] in order to apply—in
both cases— the techniques of the standard LGV, but introduce a bias. In contrast, our model allows
for computing this quantity in a tractable and efficient manner, without resorting to any form of
simplification or approximation. In fact, despite the nonlinear nature of f;, the filtered distribution
remains Gaussian and its parameters can be computed in closed form similarly to the Kalman Filter,
as shown in the following proposition.

Proposition 1 (Filtering). The filtered distributions of the NKF model are Gaussian and are given by
the filtered distributions of the corresponding LGM with pseudo-observations z; := ft_1 (y), t > 1.
That is, p(lt|y1.¢; ©, A) = preu (I¢]21.1; ©) where prey refers to the distribution given by the LGM.

This can be proved by induction using recursive Bayesian estimation and is available in Appendix [A.T]
along with the exact updates. Proposition[I]shows that filtered distributions for our model are available
in closed-form and have the same computational complexity as that of the LGM, plus the complexity
of the inverse of the nonlinear function f and the Jacobian term in (2) ff

Our nonlinear model (I) is also amenable to smoothing, i.e., computing the smoothed posterior
distribution p(l;|y1.7; ©, A), given past, present and future observations. Smoothing is a prevalent
problem in many fields, with applications such as estimating the distribution of missing data and
providing explanations in the context of offline anomaly detection. Smoothing can be obtained with a
backward iterative approach using the quantities computed during a preliminary filtering pass, starting
from the filtered distribution corresponding to step 7', p(I7|y1.7; ©). Similar to filtering, smoothing
updates also directly translate to the corresponding updates of the LGM.

*In Sec. [3| the complexity of the inverse is the same as the forward map, and the Jacobian term is linear in N.



Proposition 2 (Smoothing). The smoothed distributions of the NKF model are Gaussian and are given
by the smoothed distributions of the corresponding LGM with pseudo-observations z; := ft_l (y),t =
1,2...,T. Thatis, p(l¢|y1.7; 0, A) = pray (I¢|z1.7; ©).

The tractability of the computation of the filtered distribution implies that the likelihood of the model
parameters can be computed efficiently by integrating out the latent state. In case of the standard LGM,
the likelihood of its parameters © given the observations z1.p can be written as

T
0©) = [ prau(zt|z1:6-15©), (3)
t=1

where preu(z¢|21..—1; ©) is the predictive distribution of LGM. This distribution is available in closed-
form thanks to the filtering updates [[19]. We now show that the likelihood of our nonlinear model
given the observations {y;.7} is essentially a reweighted version of this expression with z, = £, ! ().

Proposition 3 (Likelihood). The likelihood of the parameters (6O, A) of the NKF model given the
observations {y1.7} can be computed as

T
6(63 A) = p(ylzT; 63 A) = HpLGM(Zt|Zl:t—1; 6) |det [Jaczt (ft)} |71 5 (4)
t=1

where z; = f[l (yi) and prem(z¢)|z1.4—1; ©) denotes the predictive distribution of LGM.

Hence, we can compute the likelihood of the parameters of the NKF exactly (Appendix [A.3]contains
the closed-form expressions), and fit our model to the given data by directly maximizing the likelihood.
This is done without resorting to any approximations typically required in other nonlinear extensions
of LGM such as the Particle Filter and the Extended/Unscented Kalman Filter.

2.2 Parameter Estimation using RNNs

In Sec. we assumed the data was generated from a given family of NKF state space models char-
acterized by its parameters O 1.7 = (u1, X1, {T', As 11, {24, Fy }1 ) along with A, the parameters
of the normalizing flow transformation f; (which we assume to be constant over time). However the
exact values of the parameters are unknown. Similar to [9, 8], we propose to predict the parameters
O from the covariates, using a recurrent neural network (RNN) where the recurrent function V¥ is
parametrized by ®, taking into account the possibly nonlinear relationship between covariates x;:

@t :U(ht;é), ht:\I/(xt,ht,l;@), t= ].,...T, (5)

where o denotes the transformation mapping of the RNN output to domains of the parameters
(Appendix B.I). The RNN allows our model to be more expressive by allowing time-varying
parameters along with temporal dependencies in the covariates, a requirement for forecasting. The
parameters of the RNN & and of the normalizing flow A are estimated by maximizing the conditional
likelihood,

p(yr.r|rrr; ®,A) = p(yr.7; Oy, A) (6)

where p(y1.7; ©1.7, A) is given by . Although the transition model in our case is linear, complex
dynamics can still be taken into account as the parameters of the LGM, which are now the outputs of a
RNN, may change in a nonlinear way.

2.3 Applications: Forecasting and Missing Values

Given a model for sequential data, we can apply it to obtain future time steps 7'+ 1:7+7, or in other
words, forecasts of the time series, starting from past observations ;.7 and covariates z1.7 .

In our case such a forecast distribution p(yr+1.7++|y1.7, Z1.74+; ®, A) can also be computed effi-
ciently and is available in closed-form. From this, not only can we readily evaluate possible future
scenarios (see Appendix [A.4), but also draw samples from it to generate forecasts.



This is achieved by first computing the filtered distribution for the input range 1 : 7', and then
recursively apply the transition equation and the observation model to generate prediction samples.
More precisely, starting with the RNN state hr and I7 sampled from p(l7|y1.1, 21.7; ©1.7), given
by (8) and (6)), respectively, we iteratively apply:

Fp, Ay, 2, Ty = o(hy; @), he = ¥ (e, hi—1; ®), (7a)
ly = Fyly_1 + e, €; sampled from N (0, 2;), (7b)
Yy = ft(AtTlt + &), ¢ sampled from N(0, T;), t=T+1,...,T+r. (7¢)

In contrast to alternative deep learning approaches [l I8} [11]], this generative procedure is not
autoregressive in the sense that observations y; are never fed to the model. Instead, it is the filtering
that correctly updates our beliefs based on the observed data. This has several notable consequences:
we do not have to resort to large and cumbersome beam searches to obtain proper uncertainty estimates,
noisy observations with varying levels of uncertainty can be properly handled, and long-term forecast
computations are accelerated as intermediate observations need not be computed.

In many real world applications, observations for each time step may not be available, e.g., out-
of-stock situations in the context of demand time series (no sales does not mean no demand if
out-of-stock) or network failures in the case of sensor data streams. Handling missing data is then
of central importance and there are two aspects to it: (i) learning in the presence of missing values
without imputing them and (ii) imputing the missing values. Similar to LGM [20], our approach offers
a straightforward, tractable and unbiased way for handling missing data in both of these scenarios.

In case of learning with missing values the likelihood terms corresponding to the missing entries
should be ignored. This amounts to effectively dealing with them in the filtering step. Without loss of
generality, let us assume that targets until time ¢ — 1 are observed but are missing for ¢. In this case,
we can compute the filtered distribution p(l;_1|y1.:—1; ©) with the method outlined in Sec.[2] As y;
is not observed, the filtered distribution at time ¢ then simply corresponds to p(l¢|y1.:—1; ©), and can
be obtained by applying the prediction step, starting from the filtered distribution at time ¢ — 1.

For the second case, we wish to impute missing values at time ¢ ¢ t°* based on observed values
at times t°*. This can be easily achieved by computing the smoothed distribution p(l; |y ; ©) in
the presence of missing data, and from this compute p(y:|yes; ©) (full details in Appendix [A.5)).
This distribution is available in closed form and can be readily sampled from. This allows us to use
the same model for forecasting and imputation without the need for bidirectional RNNs [21]] as the
smoothing procedure inherently handles future data.

3 Local-Global Instantiation

The number of parameters of the NKF scales quadratically in the dimensionality d of the state
(stemming from the covariance matrices of the Gaussian distributions) in the worst case. Leveraging
the strength of NF, we present an instantiation of NKF with an induced local-global structure, that
displays several advantages over the general unstructured form, e.g., exhibiting linear scaling in d.

We assume that each time series is associated with latent factors that evolve independently w.r.t. the
factors of the other time series. These factors will in turn be mixed together with the normalizing
flow, producing dependent time series observations. Formally, for each univariate time series ¢ we
associate a local LGM with parameters ) = (u{?, £ {1 A"}, {2 F7},2,), whose
dynamics are characterized by:

lf) _ Ft(i)lgi_)l n eff), egi) ~ /\/’(O,ZEZ‘)), (8a)
20 = AT e, e~ N(0,T), (80
Y :ft(zi(tl)7---7zi(tN))' (SC)

Note that here FEI) is a scalar and denotes variance of the Gaussian noise. This local-global structure
has several advantages: (i) the dynamics of the local states need not be the same for each time series
and thus, prior knowledge on the evolution can be readily injected per time series, (ii) computations
can be done in parallel for each time series and finally (iii) we may benefit from the effects of
amortization by predicting local parameters for each time series and sharing the same weights ®:



@ﬁ“ = \If(mgi), hii_)l; ®), allowing the RNN to make analogies between time series. In this case,
dependencies across time series are captured with the normalizing flow f;, mixing the components
together in a nonlinear fashion.

We now explain a possible instantation of the LGM (Eq. (8a)), (€b)), which is an innovation-based
model, similar to [9]. Note that this is a choice and not a requirement as any other LGM instance may
be used if that better reflects the data at hand. Nonetheless, with this form a wide range of phenomena
can be captured, e.g., long term direction (trends), patterns that repeat (seasonality), cycles with
different periodicity, multiplicative errors, etc.; we refer the reader to [S]]. In our instantiation, we
combine both level-trend and seasonality components, as described in Appendix

For f;, we use the RealNVP architecture [13]: it is a network that is composed of a series of
parametrized invertible transformations with a lower triangular Jacobian structure and vector com-
ponent permutations in order to capture complex dependencies. This structure has the advantage of
being flexible, while maintaining a tractable Jacobian term, computable in linear time. Moreover,
as opposed to more recent architectures e.g., [14]], the number of parameters scales linearly. For the
RNN, we use an LSTM with 2 layers.

In terms of parameter complexity, this particular instantiation scales as O(N) for each timestep,
due to the diagonal structure of the covariance matrices (although they do not correspond to the
effective number of parameters as these are predicted from the RNN). Moreover, time complexity
for likelihood computation and forecasting scales as O(N (d? + k)) for each timestep, where k is
the number of covariates and d is the dimension of latent state; in experiments d = 32 (24 hourly
components + 7 daily components + one level component) for hourly data and d = 8 for daily data.

Partial observations: The local-global instantiation model presented above could deal with partial
observations (i.e., only some entries of y; € R™ are missing but not all); however it would require
marginalisation over the missing dimensions, which cannot be done in closed-form. Alternatively, if
one is interested in dealing with partial observations, it is possible to consider an instantiation with a
global (i.e., multivariate) LGM with non-diagonal covariance matrix modelling linear dependencies
among the time-series y; € R™ at any given time step ¢, and a normalising flow applied locally to
each time-series: vy = fi(2¢) = (ue(21,4), ..., we(zn,t)), with u, : R — R (see ablation study in our
experiments). In this case, the marginalisation of any missing set of time series actually yields an
analytic form for the filtering, smoothing and forecast distribution [20], and hence the handling of
partial observations can be efficiently dealt with.

4 Experiments -

4.1 Qualitative Results B f . Jf p

We qualitatively assess our approach in o f 0 , J""
Section [3] with two synthetic datasets " 3(:

S1 and S2 with increasing difficultly. . f

The datasets are composed of 2 daily

univariate time series with a weekly
seasonality pattern. We compare our (2) 81 : Results with (left) and without (right) NF.
approach against a variant without any

normalizing flow (this amounts to setting I

f: = id in (B)). For dataset S1 the e ;
daily data has three different modes and * “ f
highly non-Gaussian time-independent w0 /

observational noise. S2 is similar, but of 3P Ay
the time series are mixed together in a N &~ .
nonlinear fashion, and the observational A Y
noise is not only non-Gaussian, but
time-dependent (Appendix [C.1] contains (b) 52 : Results with (left) and without (right) NF.

a detailed description). Target data

(blue) and forecasts (green) are plotted Figure 2: Evaluation w/ and w/o NF. The axes correspond
in Fig. 2] where the first and second to the two components of the 2D time series; the temporal
axis correspond to the first and second axis is marginalized out. Green points correspond to
time series respectively, and data is model samples when predicting 24 days ahead and blue
aggregated over the temporal axis. points to future samples from the data-generating process.




Approach VES VAR GARCH DeepAR GP-Copula KVAE NKF(Ours)

Multivariate v v v X v v v
Non-Linear, Non-Gaussian X X X v v v v
Filtering & Smoothing v.. NA NA NA NA v v
Tractable Multi-step Forecast v X X X X X v
Tractable Data Imputation v X X X X X v

Table 1: Comparative summary of competing approaches on various parameters.

Observations and forecasts can also be seen in Appendix from a viewpoint that better highlights
the seasonal nature of the observations.

For both datasets, the variant with f; = id captures the daily modes correctly, but assumptions such
as Gaussianity and independence between time series introduce errors. In contrast, visual inspection
reveals that applying the normalizing flow allows us to fit the data better, capturing the complex
dependencies between time series and the non-Gaussian noise, for both S1 and S2.

4.2 Quantitative Results

We follow the experimental set up proposed in [1] since it focusses on the same problem in the
forecasting application. In particular, we evaluate on the public datasets used in [1]]; see [C.2.1]for
details and Table for the summary of datasets. Similar to [1]], the forecasts of different methods are
evaluated by splitting each dataset in the following fashion: all data prior to a fixed forecast start
date compose the training set and the remainder is used as the test set. We measure the accuracy
of the forecasts of various methods on all the time points of the test set. The hyperparameters have
been selected using a validation set of equal size to the test set, created from the last time steps of the
training data.

Our evaluation is extensive, covering relevant classical multivariate approaches as well as recent deep
learning based models. In particular, we compare against VES, a direct generalization of univariate
innovation state space model (a special case of LGM used in forecasting) to multivariate time series
(see Chapter 17 of [5]), VAR, a multivariate linear autoregressive model and GARCH a multivariate
conditional heteroskedastic model [22]]; we include result of Lasso-regularized VAR as well. We also
compare against the recent deep-learning based approaches GP-Copula [1]] and KVAE [[12] specifically
developed for handling non-Gaussian multivariate data with non-linear dependencies. GP-Copula
builds on ideas of VAR and relies on RNN and low-rank Gaussian Copula process for going beyond
Gaussianity and linearity. In contrast, KVAE uses a variational autoencoder on top of linear state space
models to achieve the same. Unlike our NKF model, inference and likelihood computation are not
tractable in KVAE and it relies on particle filters for their approximation. Additionally, we compare
with DeepAR [8] an autoregressive recurrent neural network based method for univariate time series
forecasting. DeepState [9]] is a special case of NKF model and is part of the ablation study. See
Table [T] for summary of the compared methods based on various parameters.

In order to evaluate forecasting models, continuous ranked probability score (CRPS) is generally
accepted as one of the most well-founded metrics[23| 24]. However, this metric is only defined for
univariate timeseries and cannot assess if dependencies across time series are accurately captured.
Different generalizations to the multivariate case have been used, e.g., the energy score, or CRPS-Sum
[1]]. We have opted for the CRPS-Sum, as the energy score suffers from the curse of dimensionality,
from both a statistical and computational viewpoint [25} 26]. The introduction of the CRPS-Sum [[1]]
was experimentally justified. In this work, we prove it is theoretically sound as justified formally
in Appendix [C.4]following the proper scoring rule framework [24]. Note that, opposed to [1I], as
different time series observations may have drastically different scales, we first normalize each time
series by the sum of its absolute values before computing this metric (hence the ‘-N’ suffix). We also
did not choose log-likelihood since not all methods yield analytical forecast distributions and is not
meaningful for some methods [[1]].

We report CRPS-Sum-N metric values achieved by all methods in Table [2| Classical methods,
because of the Gaussianity and linear dependency assumptions, typically yield inferior results; entries
marked with °-¢ are runs failed with numerical issues. Deep learning based models have superior



method exchange solar elec wiki traffic

VES 0.005 £+ 0.000 0.9 +£0.003 0.88 £0.0035 - 0.35 £ 0.0023
VAR 0.005 + 0.000 0.83 £ 0.006 0.039 £ 0.0005 - 0.29 £ 0.005
VAR-Lasso 0.012 £0.0002 0.51 £ 0.006 0.025 +0.0002 3.1 £0.004  0.15 £ 0.002
GARCH 0.023 £ 0.000 0.88 £0.002  0.19 £+ 0.001 - 0.37 £ 0.0016

DeepAR 0.006£0.001  0.336+0.014  0.023+0.001  0.127£0.042  0.055+0.003
GP-Copula 0.007+0.000 0.363+0.002  0.024+0.000  0.0924+0.012  0.051+0.000
KVAE 0.014 £0.002 0.34£0.025 0.051 £0.019 0.095+0.012 0.1 £ 0.005
NKF(Ours)  0.005 £ 0.000 0.320+£0.020  0.016+0.001  0.071£0.002  0.10£0.002

ablation [ f: = id 0.005+£0.000  0.415£0.002  0.026+0.000  0.082£0.000  0.123+0.000
study ft Local  0.005+£0.000 0.405£0.005 0.018+0.001  0.068+£0.004 0.102+0.013

Table 2: CRPS-Sum-N (lower is better), averaged over 3 runs. The case f; = id is DeepState [9]
and VES can be seen as part of ablation where normalizing flow and RNN are removed from NKF.

performance overall. In particular, NKF achieves the best result in 4 out of 5 datasets. On traffic
NKF is better than all methods except for DeepAR and GP-Copula which are purely data-driven
autoregressive approaches with minimal modelling assumptions. Given the domain of traffic
dataset is (0, 1), it would be interesting to verify in future work if the relatively weak performance is
due to a short-coming of the normalizing flow part or due to the modelling choice of adopting a state
space model instead of an autoregressive process.

Ablation Study First note that VES, which models only Gaussian data with linear dependencies, can
be seen as an ablation where RNN and normalizing flow are not used. Next, to evaluate the usefulness
of the normalizing flow in accurately modelling real world data, we analyze the performance of two
particular instances of NKF : (i) ‘ f; = 1d’: the normalizing flow is set to be the identity function, as
in Section 4.1} therefore also reducing to the DeepState model proposed in [9] (ii) ‘ f; Local’: the
normalizing flow is applied locally for each time series, modelling non-Gaussianity and non-linearity,
but not any dependencies between time series, as explained in Appendix [C.2.2] This ablation is
important in order to analyze the advantages of capturing the potential dependencies across time
series in the data. Overall, we observe (bottom lines in Table[2) a significant increase in performance
from the identity function to a local NF, along with another increase when applying the global NF
(see NKF results), apart from the wiki dataset. While we do not have a satisfying explanation, we
speculate that this is due to modelling errors, the optimization algorithm, or simply because the time
series may not exhibit much dependencies between each other.

Missing Data Experiment We evaluate our
model in the context of varying degrees of miss- .
ing data during training and evaluation. From 02001 > |
elec, we remove p = 10 + 20k, k = 0...,4, 0175 — xkF (Ours)
percent of the training data at random. This 050
dataset, while realistic, is highly regular with
clear seasonality patterns. The models are then
evaluated on rolling windows, where the in-
put range observations are missing with the 0075 1

same probability. In Fig. [3|and Appendix[C.3] 0050 \,//
we report results for our approach, along with
DeepAR, GP-Copula, KVAE. We observe that

CRPS-Sum-N for Varying Amounts of Missing Data, elec

0.1254

0.100 4

CRPS-Sum-N

0.025 4

0% 10% 30% 50% 70% 90%

not only does NKF outperform other approaches Porcentags of missing data
by a large margin, but its error also increases . ) . o
slower than in other methods when the percent- Figure 3: Forecasting with missing data.

age of missing data is increased. We believe that this is due to the proper handling of the uncertainties
in our approach since our model does not directly take observations as input. Moreover, the strong
results obtained for up to 90% of missing data demonstrate that our method encodes useful prior
knowledge due to the structure induced in the LGM, rendering this method useful even in low data
regimes (the same observation is made in [9] for this dataset).
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5 Related Work

Neural networks for forecasting have seen growing attention in recent years [8}[27, 128} 129,130} [31} [32]].
We refer to [33]] for an introductory overview. Most work concerns the univariate case using global
models, assuming that time series are independent given the covariates and the model parameters.
The family of global/local models, e.g., [34, 28], provide a more explicit way of incorporating global
effects into univariate time series, without attempting to estimate the covariance structure of the data.
An explicit probabilistic multivariate forecasting model is proposed in [1], which relies on Gaussian
copulas to model non-Gaussian multivariate data.

Further related work combines probabilistic time series models with neural networks (e.g.,
point/renewal processes and neural networks [35]] or exponential smoothing based expressions [27]).
We extend the approach in [9]] which uses an RNN to parametrize a state space model to the multi-
variate case alleviating Gaussianity and linear dependency assumptions in the observation model.

The idea to take advantage of the appealing properties of Kalman Filters (KF) [36] while relaxing
its assumptions is not new. Prominent examples include the Extended Kalman Filter (EKF) [17],
the Unscented Kalman Filter (UKF) [18] and Particle Filters (PF) [37] that relax the linearity and
Gaussianity assumption by approximation or sampling techniques. The Gaussian process state space
model (GPSSM) [38] 139] is a nonlinear dynamical system that extends LGMs by using GPs as the
transition and/or observation mappings but typically assume the noise is additive Gaussian. If the
noise is non-Gaussian, then these models again have to resort to approximation techniques similar to
Particle Filters. Kernel Kalman Filters [40] address the linearity limitation of LGMs by defining the
state space model in the reproducing Kernel Hilbert space (RKHS). In particular, the random latent
state and the observation variable are mapped to RKHS and the state dynamics and the observation
model are assumed to be linear in the kernel space. Note, however, that this approach still relies on
the assumption that the noise is additive Gaussian.

Similarly, combining KF with neural networks is not new. Additionally to [9], [L1] proposes to
combine KF with Variational Auto-Encoders (KVAE) and [12] proposes variational approximations
of the predictive distribution in nonlinear state space models. Finally, while most work on normalizing
flows [13114}41,[15] was presented in the i.i.d. setting, extensions to sequential data have recently
been proposed [42, 43|, 144]. Concurrent independent work by [45] also addresses the multivariate
time series forecasting problem by combining normalizing flows with (deep) autoregressive models
instead of state space models as in our work.

6 Discussion and Conclusion

In this paper we presented a simple, tractable and scalable approach to high-dimensional multivariate
time series analysis, combining classical state space models with normalizing flows. Our approach can
capture non-linear dependencies in the data and non-Gaussian noise, while still inheriting important
analytic properties of the linear Gaussian state space model. This model is flexible, while still
retaining interesting prior structural information, paramount to good generalization in low data
regimes. Experimentally, our approach achieves the best results among a wide panel of competing
methods on the tasks of forecasting and missing value handling. One caveat of our approach is that
we no longer have identifiability w.r.t. the state space parameters: an interesting avenue of research is
to work towards identifiability, e.g. by constraining the normalizing flow’s expressivity.



Broader Impact

The present article stems from the authors’ work on time series forecasting and anomaly detection in
industrial settings. The methods proposed here are not tied to specific time series applications, but
will likely be beneficial in supply chain and monitoring settings where large panels of time series
data are commonly produced, data generation processes are too complex to be modelled fully and
full automation is an aspirational goal.

Beneficiaries of applications of this work are therefore primarily companies with data gathering
infrastructure and historical data. Such companies will be able to make their processes more efficient
given better time series analytics as proposed here. Societal consequences will be similar to other
cases where resources can be put to a more efficient usage: less waste, lower energy consumption,
less need for human intervention. While this sounds generally appealing, e.g., from an environmental
perspective, there is a price for increased efficiency which we are observing in the present time: lack
of robustness in the face of disaster.

The current COVID-19 crisis has revealed how overly lean supply chains (e.g., for medical supplies)
can result in shortages. This phenomenon is not new and has been observed in the automotive industry
for example in 2011 after an earthquake and tsunami stroke in Japan [46]. We speculate that such
phenomena may occur in other application scenarios as well where the reduction of buffers is enabled
through better predictive accuracies as presented here at the consequence of worse disaster recovery
(e.g., more efficient usage of cloud compute resources). A large discussion in society is needed how
we should balance efficiency and robustness in critical areas and the identification of these critical
areas.

The central assumption in our methodology is that the past is a meaningful indication of the future.
This assumption is, when disaster occurs, violated. Hence, systems relying on methods as ours need
to handle such violations gracefully (see [47] for an early example). At present, human intervention
and overrides must be enabled in systems incorporating our method. This central assumption also
means that potential biases in the data will be reproduced unless otherwise intervened.

Finally, we remark that multivariate time series models may be attractive to model epidemics as the
present and that it may be tempting to try out our method on the high-dimensional data currently
observed. We strongly advise against drawing conclusions from such experiments. The spreading
of diseases is a well-understood process and interventions such as lock-downs need to be properly
modelled and accounted for. Much further work is needed to allow such fine-grained analysis with
our method and a naive application of the present method will almost surely result in unwanted results
and unnecessary confusion.
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A Proofs

For completeness, we restate the NKF model:

lt = Ftlt—l + €, € ~ N(O, Et)7

9
yi = fi(A{l + &), & ~N(0,Ty). ®

A.1 Filtering

Proposition 1 (Filtering). The filtered distributions of the NKF model are Gaussian and are given by
the filtered distributions of the corresponding LGM with pseudo-observations z; := ft_1 (ye), t > 1.
That is, p(lt|y1.¢; ©, A) = preu (I¢]21.1; ©) where prey refers to the distribution given by the LGM.

Proof. Note that for simplicity we omit conditioning on the parameters. Let us first recall the
recursive Bayesian estimation, consisting of two distinct steps, predict and update of the latent state
l; given by

predict:  p(le|y1:¢—1) = /p(lt‘ltfl)p(ltfl|ylzt71)dlt717

P(yelle)p(le|yre—1)
update: lilyie) = .
P Pllelye) Jo(ye|l)p(Le|yre—1)dl

(10)

The filtered distribution p(l;|y1.¢) is obtained recursively applying both these steps until time ¢,
starting from a prior on the state p(/;). However, in its current form one could expect that computing
the latter would require approximating integrals, as equation[J]is non-linear and non-Gaussian, which
is prohibitive in the high-dimensional setting. But we show by induction that filtered distributions are
Gaussian and in fact coincide with the filtered distributions of the underlying linear Gaussian state
space model.
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Let z2; := A;l; + &; so that z; = f{l(yt)Nt = 1,2,...,T. Since y; is observed and f; is an
invertible, deterministic function, we can view z; as the pseudo-observation generated from the
underlying linear Gaussian state space model (LGM),

L =Fl_1+e, €~N(01X),
= AtTlt + €, €t NN(Ovrt)a

By making use of the change of variables formula, the likelihood term in the update step of (I0) can
be written as:

Y

p(yelle) = Pz, (2e10) DI (W), (12)

where Dg(x ) |det [Jac,(g)]| is the absolute value of the determinant of the Jacobian of g evaluated
at z. By Eq. , Dz, (2¢|l;) is the density of the Gaussian variable z; = A?lt + &; conditioned on [,
and from thlS we obtainVt =1,2,...7T,

p(yelle) = N (ze] AL 1, Do) Df (). (13)

We proceed with inductive proof, first showing that the filtered distribution for the base case ¢t = 1,
p(l1]y1), is Gaussian and the same as that of the underlying LGM. For this, we start with the first
prediction step p(ly) = N(u1,X1), which is assumed to be Gaussian. From Eq. (12), assuming

fol(yl) is non-zero, we get:

plalys) = pl)p(yall) (ll)pzl(Zﬂll)fol( 1) (ll)PZ1(21|ll)
[ p(l)p(y1]i)dl fp 1)Pz, (z1)l1) DSy (yl)dll fp 1)Pzy (21]l1)dls

_pLGM(ll‘Zl)-

This is exactly the first filtered distribution for LGM with observation z; and is in fact Gaussian

since p(z1|l1) is Gaussian by Eq. and p(ly) is assumed to be Gaussian. Let u{, E{ denote the
mean and covariance of this filtered distribution. For the inductive step assume that p(l;_1|y1.t—1) is

Gaussian with mean ,utffl and variance E{q’ and is the same as preu(li—1|21.4—1). We will prove
that p(l¢|y1:¢) = pram(le|z1:¢)-
As both p(l;_1|y1.4—1) and p(l;|l;—1) = N (l;|Fili—1, 2;) are Gaussian, it follows that the distribu-
tion obtained from the prediction step must also be Gaussian, i.e., p(l¢|y1.c—1) = N (l|pd, XF), Ve =
2,...,T, with:

[y = Ft/‘{flv

14)
P = Fyl FT 4+ 3,

In fact, this coincides with pren(l¢|21..—1) given that ,u{_l, Zf_l are the same for both LGM and our
model and both use the same transition for the latent state.

Similar to the base case, the filtered distribution for ¢ > 1 is
p(yelle)p(lelyr1—1)
fp (elle)p(lelyr:e—1)dl
Df (yt)pzt(Zt|lt)p(lt|y1:t71)

fot (We)pa, (f o) ll)p(elyre—1)dl (15)
Pz, (2e|le)pran(le|z1:6-1)
B fpzt(Zt|lt)pLGM(lt|let71)dlt
= pran(le|21:¢),

which is the same as the filtered distribution of the corresponding LGM. In fact, one can deduce this
filtered distribution in closed-form:

plelyre) =

p(lelyre) = N (2| ATL TON (|t 2F)
t i) —
SN (| AL, TON (| pf, 27)dle (16)
:N(lt| /,L{,Ef)7
where pf = pP + Ki[f " (ye) — ATp?), 5] = (I — K, AT)SP, and K; = 5P A (ATSP A, +T,) !

This recursive formula for the filtered dlstrlbutlon is valid for ¢ > 1 and the same for the base case
t = 1 is obtained by noting that yf = p1 and ) = %;. O
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A.2 Smoothing

Proposition 2 (Smoothing). The smoothed distributions of the NKF model are Gaussian and are given
by the smoothed distributions of the corresponding LGM with pseudo-observations z; := ft_1 (ye),t =
1,2...,T. Thatis, p(l¢|y1.7; ©, A) = pren (It|21.7; O).

Proof. Note that for simplicity, we omit conditioning on the parameters. This can again be proved by
induction starting with the base case ¢ = 7" and running backwards. For the base case the smoothed
distribution p(lr|y;.7) coincides with the filtered distribution for the final time step 7", which was
already shown to be equal to that of the standard LGM. For the inductive step assume that in time step
t + 1 it holds that p({;+1|y1.7) = Prem (le+1]21.7). We will prove that the same is true in time step ¢,

i.e., p(le|yrr) = prow (le]z1:1).

p(le|yr.r) = /p(ltvlt+1|y1:T)dlt+1
:/P(lt+1|y1:T)p(lt\lt+17yl:T)dlt+1

= p(lt+1|y1:T)p(lt‘lt+17 ylzt)dltJrl (17

p(lt+1 |y1:T)p(lt+1 |lt)
p( t|y1't)/ p(lt+1|y1:t)

l . l l
:pLGM(lt|let)/PLGM( i+1l207)p(l41] t)dltﬂ
pLGM(lt+1|let)

dly i1

= pLGM(Zt|Zl:T)7

where in the penultimate step we used the fact that the predictive distribution p(l;41|y1.+) and the
filtered distribution p(I;|y;.;) of our model are the same as those of the standard LGM (see Proposition
and (I4)). The smoothed distribution of the standard LGM is Gaussian with mean 4§ and variance Y3

such that, starting from p5. = ué, X5 = Eé:

i =gl + Gelpg g — ), (18a)
55 =% + Gy, - Ih], (18b)
Gy =S A2, 7Y (18¢)

where ,u{ , E{ correspond to mean and covariance computed during the update step of the NKF, and
ul . 3 computed in the prediction step (refer to Eq. (14)).

O
A.3 Likelihood

Proposition 3 (Likelihood). The likelihood of the parameters (O, A) of the NKF model given the
observations {y;.7} can be computed as

T
(0, A) = p(y1:7; 0, A) = | [ pran(tl21:4-15 ©) |det [Jac., (£,)]| ", )
t=1

where z; = ft_1 (y¢) and prem(z¢|z1.4—1; ©) denotes the predictive distribution of LGM.
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Proof. We can compute the likelihood by decomposing it into telescoping conditional distributions
and using the substitution z; = f~1(y;),

p(y1:T;@’A) (yt|y1t 1;0, A)

/‘det Jac,, ( [1)}’pzt(zt|lt)p(lt\y1;t,1;@)dlt

I
s TS HEH

’det [Jacyt |/pZt (ze|le)pram(le]z1:4—1; ©)dle (19)

~
Il
-

I
o

|det [Jacy, (fi )] | preu(2e|21:0-15©)

~
Il
-

I
o

|det [Jacy, (f; ]|N zisvy, IY),

o~
Il
_

where in the third step we used the fact that predictive distributions of our model (9) and the standard
LGM are the same. This is true because the filtered distributions of our model and the LGM are the same
since both use the same transition for the latent state, as shown in Proposition E] (see @])). In the
final step we used the fact that the predictive distribution p(z¢|21.;—1) of the standard LGM is Gaussian
with mean v¥ and covariance T'Y given by the analytical expressions [[19]:

P = ATFpl |, 17 = A7 (B3 FF+5) A+ T, t>1,
:AtT,ul, ].—‘}17 :AthlAt+F1, t=1.

A.4 Forecasting Distribution

The joint forecasting distribution of the future time steps 7' 4 1 : 7" + 7 can be obtained in terms of
the predictive distribution of the corresponding LGM with z; = f~1(y;),

TH4T1

prirri-lyir w1ri-0,8) = ] pron(zelz1-1;0) [det Pac., (f)]| 7. (20)
t=T+1

The exact analytical expressions for the forecasting distribution is given by:

T+t
p(yT+17~">yT+‘r|y17"'7yTa®) H N yt Vt7rp ‘det [Jacyt(f 1)} ) (21)
t=T+1
= ATl W= Foul_y, (22)
I? = ATSP A, + Ty, P = pyl (FT 4%, (23)

where (p?, ) and (v, T7) are the parameters of the predictive distributions for the latent state and
observations given in Propositions|l|and [3] respectively.

A.5 Handling Missing Data

Given a subset of observed targets y..s, what can we say about the missing observations? Said
otherwise, what is the probability of p(y|y.es )? This data imputation problem is of central importance
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in numerous applications. This problem can be solved by first solving the smoothing problem in
order to obtain the posterior p(l;|ygos ):

P(yY|ygons) = /p(y,l|ytobs)dl

— [ plolDpltlgee o
= HpLGM(zt\ztobs) |det [Jaczt(ft)]rl

t
= [INV(zel AT ui®, AT Ay +Ty) |det [Jac, (£)]] 7
t

(24)

U,S

where (p;°%,3;"%) corresponds to the parameters of the smoothed distribution in the presence of
missing data. Once again, this distribution admits an analytical expression and can be readily sampled
from.

B Model: Additional Details

B.1 Encoding of the LGM Parameters

In order to constrain the real-valued outputs h; at time ¢ of the RNN W to the parameter domains
of the LGM, we apply a sequence of transformations. For the j-th state space model parameter, ©7,
we initially compute the affine transformation ©] = ij ht + b;, where the weights and biases are

different for each parameter and are all included in ® and learned. We then transform (:)g to the
domain of the parameter by applying:

o for real-valued parameters: no transformation i.e., @{ = ég,

o for positive parameters: the softplus function ©7 = log(1 + exp(©7)),

j
¢
o for bounded parameters in [a, b]: a scaled and shifted sigmoid ©7 = (b— a) m +a.

In practice, it is often advisable to impose stricter bounds than theoretically required, e.g., enforcing
an upper bound on the observation noise variance or a lower bound on the innovation strengths can
stabilize the training procedure in the presence of outliers.

B.2 Local-Global Instantiation

As in [9], the evolution of the latent state 1§i) for each time series ¢ is captured using a composition of

level-trend and seasonality model, described below.

Local Level-Trend Model In the level-trend model, the latent state has two dimensions and is

characterized by:
|11 @ |1
-l i) -]

. a? 0 .
o = [Ot 82| T eR .

=

F
(25)

Local Seasonality Model In the case of seasonality-based models, each seasonality pattern can be
described by a set of seasonal factors (or seasons) associated with it. For example, in the day-of-week
pattern there are seven factors, one for each day of the week. We can represent each factor as a
component of the latent state 1, € R”. Then, for the day-of-week seasonality model, we have

Ft('b) — I7 A)(fl) = 1{day(t)=j}]7.:17

, ) . (26)
oY = ofdiag(Af”), T{” €Ryy.
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Composite Model We concatenate the state of the level-trend model and the seasonality model in
order to take into account both types of dynamics.

Note that in order to take into account the correlations across time series, the pseudo-observations
generated by the composite state space model are given to the normalizing flow f;, which will
implicitly capture these correlations.

C Experimental Details

We use the same hyperparameters for the model architecture across all datasets. For the RNN, we
use an LSTM with the same architecture and hyperparameters as those proposed in DeepState [9],
based on the open-source implementation from [48]]. To avoid numerical issues arising during the

NKF update step, we find it useful to lower bound the observation noise ng) to 0.1 for elec, solar,
wiki, and 0.01 for the rest. The numerical issues are perhaps due to the overfitting of LGM parameters
to the training data; the open-source implementation [48] of DeepState [9] also recommends such
safe guards on the noise terms. Note that in the experiments f; is the same across all time steps;
however time-dependant noise may still be captured as the parameters of the LGM are time-dependent.
An interesting research avenue for future work may be to consider a time-varying normalizing flow
by conditioning it on temporal features, thus bringing us to consider conditional NFs [10]] .

We evaluated various NF proposed in the literature: Real/NVP [[13[], Glow [14] and iResnet [41]. We
have finally opted for ReaNVP which is straightforward to implement and does not suffer from
drawbacks of the other methods. In particular, the number of parameters in Glow scales quadratically
in the number of dimensions due to the fully connected layers in the permutation step: for the wiki
dataset, as the dimension of the observations is 2 x 102, this would imply that just one permutation
layer would have 4 x 10° parameters. In iResnet, the estimator of the Jacobian term yielded a high
variance in the high dimensional setting and requires a number of forward passes in order to compute
the inverse. For all the experiments, we have set the number of blocks of the ReaINVP to 9. Each
affine-coupling is parameterized by a 2-layer neural network with the numbers of hidden dimensions
set to 16, without batch-normalization.

During training we tune the number of epochs for each dataset on a separate validation set of equal
size to the test set. We use the Adam optimizer with 2 x 10~% learning rate and 1 x 10~ weight-decay.

As in [1], the evaluation is done in a rolling fashion: for hourly datasets accuracy is measured on
7 rolling time windows where each roll corresponds to 24 hours, thus covering 7 days of the test
set. For all the other datasets we use 5 windows. More details on the forecast horizon 7, domain,
frequency, dimension N and length of training timesteps 7" are given in the Appendix

C.1 Qualitative Experiments
C.1.1 Datasets

Both datasets are composed of 2 daily univariate time series with weekly seasonality, correlated in
different ways. The time series observations y;.7, with T = 120, are generated according to the
following state space model:

ltilt_1+€t, € NN(O, 1073 XI),

(27
Yt = m(A?It) + Mt mne ~ D(t)7

where 1; = [lgl); 1§2>] € R and each component of lgi) € R7 is associated to a day of the week,
Ay € R™*2 js block diagonal where Aii) =1 {day0=i}7_, selects the corresponding state component
based on ¢, m : R> — R? is a mixing function, and D(t) is a highly non-Gaussian, time-dependent
distribution. The initial state lii) is sampled from a Gaussian distribution N (19, 1073 x I), with 3
different mean levels according to the day of the weekﬂ w1 = [-10,-10,0,0,0,10,10]%.

For the first experiment (corresponding to Figure [2a) we consider the simple case where no mixing
occurs, i.e., m is the identity function. The observational noise 7); is the same for every ¢ and highly

>Note that in our notation (see Eq. ), the prior state 1; is indexed by 1 not 0.
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non-Gaussian. To this respect, ngl) follows an 1D Uniform distribution and nt@) is the image of 77,51)

when mapped through a cosine function.

For the second experiment (corresponding to Figure 2b) we consider a more complex setting where
mixing occurs and the observational noise 7, is time-dependent. Artificial dependencies across time
series are induced, setting the mixing function m to m([z,y]T) = [z y,z + y]T. The observational
noise 7; follows a day-of-week pattern, where three non-Gaussian distributions are selected based on
the day of the week, similarly as for y;: for the first two days 7, is the same in the first experiment,
for the three next days 7, follows a mixture of two Gaussians, and for the weekend 7, is a simple
line generated from an 1D Uniform distribution.

C.1.2 Forecast Samples

Time-series n°0 Time-series n°0
10 1
100 A
0 T 50 .
—-10 0
Time-series n°1 Time-series n°1

[
U

Figure 4: Forecast results with NF (NKF model) for both time-series of dataset S1 (left) and S2 (right).
For each forecast: In blue, the values of the input (left of red line) and target (right of red line) time
series. In dark green, the forecasts mean, and quantiles [0.1, 0.9] are filled light green.

C.2 Quantitative Experiments
C.2.1 Datasets

We evaluate on the public datasets (with the same training and test splits) used in [1]: exchange:
daily exchange rate between 8 currencies as used in [49]]; solar: hourly photo-voltaic production of
137 stations in Alabama State used in [49]]; elec: hourly time series of the electricity consumption
of 370 customers [50]; traffic: hourly occupancy rate, between 0 and 1, of 963 San Francisco car
lanes [50]]; wiki: daily page views of 2000 Wikipedia pages used in [29]. Similar to [1]], the forecasts
of different methods are evaluated by splitting each dataset in the following fashion: all data prior
to a fixed forecast start date compose the training set and the remainder is used as the test set. We
measure the accuracy of the forecasts of various methods on all the time points of the test set.

In Table Blwe summarize the details of the datasets used to evaluate the models.

C.2.2 Ablation Study: f; Local

Here we give additional details for the local variant of our model NKF-Local. This variant uses the
same form for the state-space model (Eq. (8a) and (8b)), with an alternative local normalizing flow
u; : R — R, applied to each time-series independently:

ft(Zt) = (Ut(ZLt), e ,’UJt(ZN7t)). (28)
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dataset 7 (num steps predicted) domain frequency dimension IV time steps 1’

exchange 30 RT daily 8 6071
solar 24 RT hourly 137 7009
elec 24 RT hourly 370 5790

traffic 24 RT hourly 963 10413
wiki 30 N daily 2000 792

Table 3: Summary of the datasets used to test the models. Number of steps forecasted, data domain
D, frequency of observations, dimension of series N, and number of time steps 7.

In this case, the conditional density in Eq. (2)) of variables formula can easily be expressed in terms
of normalizing flow u;, and reduces to:

P(yt\lﬁ o, A) = p(yl,t7 ) yN,t‘th o, A)

. o ~ . (29)
=z (uy (Y1), uy  (Yn,e); ©) H |det [Jacyt,q, (uy )] | .
1=1

Written in this form, we can see that the computation of the Jacobian term scales linearly in the
dimension, as y; ; € R and can be calculated in parallel.

For the univariate u; , we use non-time dependent iResnet [41]], with 6 invertible blocks, LipSwish
activation, spectral normalizing coefficient of 0.9, and 10 fixed-point iterations for the computation
of the inverse, and 1 iteration for the power iteration method. We set the learning rate associated to
the RNN to 0.001, and 0.00001 for the normalizing flow.

C.3 Handling Missing Data

Here we report the exact numbers for the missing data experiment, Table

elecl0% elec30% elec50% elec70% elec90%

KVAE 0.046 £ 0.0048 0.051 £ 0.0062 0.13 £0.059 0.15 £ 0.039 0.16 = 0.051
DeepAR 0.045+0.001  0.068+£0.001  0.079+£0.009 0.09740.010 0.145+£0.023
GP-Copula 0.036+0.0013 0.045+£0.002  0.046£0.0046 0.09240.0091 0.094+0.0077
NKF 0.015+0.001  0.016£0.001  0.016:£0.000 0.018+0.001 0.026-0.0019

Table 4: CRPS-Sum-N (lower is better), averaged over 3 runs.

C.4 A Note on Evaluation Multivariate Metrics for Probabilistic Forecasting

CRPS relies on the pinball loss that measures the fit at each quantile between the quantile function

F~1 and an observation:
Aa(g,y) = (a = Liy<q})(y — @), (30)
where « € [0, 1] is the quantile level and q the respective quantile of the probability distribution.

The integrated pinball loss over all quantile levels a € [0, 1] is defined as the CRPS:
1
CRPS(F~ ' y) = / 20, (F~ (), y) da. (31
0

We estimate F'~! by drawing 100 samples and sorting them.

Although CRPS is a widely accepted metric for assessing the quality of probabilistic forecasts in the
univariate case, it is not applicable in the multivariate setting as it does not capture correlations across
time-series. Instead, [1]] introduced CRPS-Sum an extension of CRPS to the multivariate case:

E([CRPS(F ™, "y,
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where F'~! is estimated by summing the samples across dimensions and then computing the quantiles
by sorting. However, [1] does not give a theoretical justification of CRPS-Sum.

Below, we prove that CRPS-Sum is a proper scoring rule.

We restate fundamental definitions and results from [24]] on proper scoring rules first before showing
that CRPS-Sum-N is a proper scoring rule.

Let §2 be the sample space, let A be a o-algebra on €2, and let P be a convex class of probability
measures on (2, A).

Definition 1. A scoring rule is a function S : P x 0 — [—00, o0], such that for every P € P we
have that E(S(P,-)) exists (and is possibly non-finite). For such an S, and for every P,Q € P,
define

S(P,Q) = /S(P, )dQ.

Properness is defined thusly:

Definition 2. A scoring rule is proper with respect to P’ C P if VP, QQ € P’ we have that S(P, P) >
S(Q, P). It is called strictly proper with respect to P’ if equality holds iff P = @ a.s.

Theorem 3. Let Q) = R, and A be the Borel o-algebra. Then the function

CRPS(P.a) = = [ (P({tt < 1)) = lox )Py

is a proper scoring rule with respect to the set P of probability measures on A. Furthermore, if we
restrict to the subclass P’ of probability measures with finite first moment, then it can be shown that

1
CRPS(P,z) = §Ep(|X - X') - Ep(|X —z),

where X and X' are understood as independent random variables that have the distribution P, and
CRPS is strictly proper with respect to P’.

Note 4.

1. The term “Ep(|X — X’|) where X and X’ are understood as independent random variables
that have the distribution P means, by definition: [, , [p1 — p2|d(P x P), where p; is

the projection to the i*" coordinate.
2. Tt is crucial in the definition of properness that we require that VP, Q € P’ we have that

S(P,P) > S(Q, P) rather than S(P, P) > S(P, (). Indeed, it is easy to see that if P
follows a standard normal distribution and () is the constant distribution 0, then

CRPS(P, Q) — CRPS(P, P) =
Ep(|X - X'|) - Ep(|X]) =

2 2
- > 0.

VT T
3. The proof of strict properness in Theorem [3| with respect to P’ boils down to the statement
that for any independent X and X’ following a probability distribution P € P’, and Y and
Y independent of each other and of X and X', following a probability distribution Q € P’,
we have that:
2E(X ~ Y) - B(X - X'|) - B(IY —Y')) =

/ (P({tt < y}) — Q{tlt < y}))dy.

and is therefore non-negative, and zero iff P = () a.s. An elementary proof can be found in
pages 5 and 6 of [51].

In the case that Q@ = R? and A is its associated Borel o-algebra, we introduce the following new
scoring rule.
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Definition 5. For any choice of a measurable function L : R? — R w.r.t to the Borel o-algebras,
define:
CRPS(L, P,z) := CRPS(L. P, L(x)),

where L, P is the pushforward measure of P by L.

It is trivial to verify that for every such choice of L, the function CRPS(L, -, -) is a scoring rule.
Also note that the scoring rule CRPS — Sum — N from Appendix G.1 of [1] is none other than
CRPS(L, -, -) for L defined by

L(zy,...,xq) =1 + ... + 24.

In what follows we will not restrict to this choice of L.
Lemma 6. The following equality holds for all probability measures P and Q:

CRPS(L, P,Q) = CRPS(L.P, L.Q).
Proof. This boils down to the change-of-variables formula in measure theory:

CRPS(L, P,Q) = / CRPS(L, P, L(z))dQ =

Rd

/ CRPS(L, P, 2)dL.Q = CRPS(L. P, L,Q)
R

O
Therefore, we get the easy corollary:
Corollary 7. CRPS(L, -, ) is proper with respect to the Borel measurable sets.
Proof. For any two probabilty distributions on the Borel measurable sets on R%:
CRPS(L,Q, P) = CRPS(L.Q, L.P) <
CRPS(L.P, L.P)=CRPS(L, P, P).
O

If d > 1, then for any reasonable large convex set of probability measures P’ (e.g., the class of
probabilty measures with finite first moments), and for any P € P’, it is always possible to find
multiple @Q’s in P’ such that L,.Q) = L. P. Therefore d > 1 implies that CRPS(L, -, -) is proper but
not strictly proper.
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