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A Proof of Proposition 3.1

Proof. The proof follows from some previous results by [1] and [4]. In fact, in the one dimensional
case, according to [1, Theorem 3.2], we know that if π satisfies that

J1(π) =

∫ ∞
−∞

√
F (x)(1− F (x))dx <∞ (A.1)

where F is the cumulative distribution function of π, then for every n ≥ 1,

EW1(Pn, π) ≤ J1(π)√
n
. (A.2)

The condition (A.1) is fulfilled if π has finite third moment since

J1(π) ≤
∫ ∞

0

√
P(|X| ≥ x)dx ≤ 1 +

∫ ∞
1

√
E|X|3

x
3
2

dx = 1 + 2
√
M3.

In the case that d ≥ 2, it follows from that [4, Theorem 3.1] if M3 = EX∼π|X|3dπ <∞, then there
exists a constant c > 0 independent of d such that

EW1(Pn, π) ≤ cM1/3
3 ·

{
logn√
n

if d = 2,
1

n1/d if d ≥ 3.
(A.3)

B Proof of Proposition 3.2

Proof. Thanks to [7, Proposition 3.1], one has that

MMD(Pn, π) =
∥∥∥∫

Rd
k(·, x)d(Pn − π)(x)

∥∥∥
Hk
.

Let us define ϕ(X1, X2, · · · , Xn) := ‖
∫
Rd k(·, x)d(Pn − π)(x)‖Hk . Then by definition

ϕ(X1, X2, · · · , Xn) satisfies that for any i ∈ {1, · · · , n},∣∣ϕ(X1, · · · , Xi−1, Xi, · · · , Xn)− ϕ(X1, · · · , Xi−1, X
′
i, · · · , Xn)

∣∣
≤ 2

N
sup
x
‖k(·, x)‖Hk

≤ 2
√
K0

N
,∀Xi, X

′
i ∈ Rd,
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where we have used that ‖k(·, x)‖Hk = supx
√
k(x, x) ≤

√
K0 by assumption. It follows from

above and the McDiarmid’s inequality that for every τ > 0, with probability 1− e−τ ,∥∥∥∫
Rd
k(·, x)d(Pn − π)(x)

∥∥∥
Hk
≤ E

∥∥∥∫
Rd
k(·, x)d(Pn − π)(x)

∥∥∥
Hk

+

√
2
√
K0τ

n
.

In addition, we have by the standard symmetrization argument that

E
∥∥∥ ∫

Rd
k(·, x)d(Pn − π)(x)

∥∥∥
Hk
≤ 2EEε

∥∥∥ 1

n

n∑
i=1

εik(·, Xi)
∥∥∥
Hk
,

where {εi}ni=1 are i.i.d. Radmacher variables and Eε represents the conditional expectation w.r.t
{εi}ni=1 given {Xi}ni=1. To bound the right hand side above, we can apply McDiarmid’s inequality
again to obtain that with probability at least 1− e−τ ,

EEε

∥∥∥ 1

n

n∑
i=1

εik(·, Xi)
∥∥∥
Hk
≤ Eε

∥∥∥ 1

n

n∑
i=1

εik(·, Xi)
∥∥∥
Hk

+

√
2
√
K0τ

n

≤
(
Eε

∥∥∥ 1

n

n∑
i=1

εik(·, Xi)
∥∥∥2

Hk

)1/2

+

√
2
√
K0τ

n

≤

√√
K0

n
+

√
2
√
K0τ

n
,

where we have used Jensen’s inequality for expectation in the second inequality and the independence
of εi and the definition of K0 in the last inequality. Combining the estimates above yields that with
probability at least 1− 2e−τ ,

MMD(Pn, π) =
∥∥∥∫

Rd
k(·, x)d(Pn − π)(x)

∥∥∥
Hk
≤ 2

√√
K0

n
+ 3

√
2
√
K0τ

n
.

C Proof of Proposition 3.3

Thanks to [6, Theorem 3.6], KSD(Pn, π) is evaluated explicitly as

KSD(Pn, π) =
√
Ex,y∼Pn [uπ(x, y)] =

√√√√ 1

n2

n∑
i,j=1

uπ(Xi, Xj), (C.1)

where uπ is a new kernel defined by
uπ(x, y) = sπ(x)Tk(x, y)sπ(y) + sπ(x)T∇yk(x, y)

+ sπ(y)T∇xk(x, y) + Tr(∇x∇yk(x, y))

with sπ(x) = ∇ log π(x). Moreover, according to [6, Proposition 3.3], if k satisfies Assumption K1,
then KSD(Pn, π) is non-negative.

Our proof of Proposition 3.3 relies on the fact that KSD2(Pn, π) can be viewed as a von Mises’
statistics (V -statistics) and an important Bernstein type inequality due to [2] for the distribution of
V -statistics, which gives a concentration bound of KSD2(Pn, π) around its mean (which is zero). We
recall this inequality in the theorem below, which is a restatement of [2, Theorem 1] for second order
degenerate V -statistics.

C.1 Bernstein type inequality for von Mises’ statistics

Let X1, · · · , Xn, · · · be a sequence of i.i.d. random variables on Rd. For a kernel h(x, y) : Rd ×
Rd→R, we call

Vn =

n∑
i,j=1

h(Xi, Xj) (C.2)
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a von-Mises’ statistic of order 2 with kernel h. We say that the kernel h is degenerate if the following
holds:

E[h(X1, X2)|X1] = E[h(X1, X2)|X2] = 0. (C.3)

Theorem C.1 ([2, Theorem 1]). Consider the V -statistic Mn defined by (C.2) with a degenerate
kernel h. Assume the kernel satisfies that

|h(x, y)| ≤ g(x) · g(y) (C.4)

for all x, y ∈ Rd with a function g : Rd→R satisfying for ξ, J > 0,

E[g(X1)k] ≤ ξ2Jk−2k!/2, (C.5)

for all k = 2, 3, · · · . Then there exist some generic constants C1, C2 > 0 independent of k, h, l, ξ
such that for any t ≥ 0 that

P(|Vn| ≥ n2t) ≤ C1 exp
(
− C2nt

ξ2 + Jt1/2

)
. (C.6)

Remark C.1. As noted in [2, Remark 1], the inequality (C.6) is to some extent optimal. Moreover, a
straightforward calculation shows that inequality (C.6) implies that for any δ ∈ (0, 1),

P
( 1

n2
|Vn| ≤

V

n

)
≥ 1− δ, (C.7)

where

V =
(J log(C1

δ )

C2
+

√
log(C1

δ )

C2
ξ
)2

.

C.2 Moment bound of sub-Gaussian random vectors

Let us first recall a useful concentration result on sub-Gaussian random vectors.
Theorem C.2 ([3, Theorem 2.1]). Let X ∈ Rd be a sub-Gaussian random vector with parameters
m ∈ Rd and υ > 0. Then for any t > 0,

P
(
|X −m| ≥ υ

√
d+ 2

√
dt+ 2t

)
≤ e−t. (C.8)

Moreover, for any 0 ≤ η < 1
2υ2 ,

E exp(η|X −m|2) ≤ exp(υ2dη +
υ4dη2

1− 2υ2η
). (C.9)

As a direct consequence of Theorem C.2, we have the following useful moment bound for sub-
Gaussian random vectors.
Proposition C.1. Let X ∈ Rd be a sub-Gaussian random vector with parameters m ∈ Rd and
υ > 0. Then for any k ≥ 2,

E|X −m|k ≤ k
(
(2υ
√
d)k +

1

2
(

4υ√
2

)kkk/2
)
. (C.10)

Proof. From the concentration bound (C.8) and the simple fact that

d+ 2
√
dt+ 2t = 2

(√
t+

√
d

2

)2

+
d

2
≤ 4
(√

t+

√
d

2

)2

,

one can obtain that

P
(
|X −m| ≥ 2υ

(√
t+

√
d

2

))
≤ P

(
|X −m| ≥ υ

√
d+ 2

√
dt+ 2t

)
≤ e−t.

Therefore, for any s ≥ υ
√
d, we obtain from above with s = 2υ(

√
t+
√
d/2) that

P
(
|X −m| ≥ s

)
≤ e−

(
s
2υ−

√
d

2

)2
. (C.11)
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As a result, for any k ≥ 2,

E|X −m|k =

∫ ∞
0

P(|X −m|k ≥ s)ds

=

∫ ∞
0

P(|X −m|k ≥ sk)ksk−1ds

=

∫ 2υ
√
d

0

P(|X −m| ≥ s)ksk−1ds+

∫ ∞
2υ
√
d

P(|X −m| ≥ s)ksk−1ds

=: I1 + I2,

(C.12)

where we have used the change of variable s 7→ sk in the second line above. It is clear that the first
term

I1 ≤ k(2υ
√
d)k.

For I2, one first notices that if s ≥ 2υ
√
d, then s/(2υ) −

√
d/2 ≥ s/(4υ). Hence it follows from

(C.8) that

I2 ≤
∫ ∞

2υ
√
d

e−
(
s
4υ

)2
ksk−1ds

=
k(4υ)k

2

∫ ∞
d
4

e−tt
k−2
2 dt

≤ k(4υ)k

2
Γ(
k

2
).

The last two estimates imply that

E|X −m|k ≤ k(2υ
√
d)k−1 +

k(4υ)k

2
Γ(
k

2
)

≤ k
(
(2υ
√
d)k +

1

2
(

4υ√
2

)kkk/2
)
,

where the second inequality above follows from Γ(k2 ) ≤ (k/2)k/2 for k ≥ 2.

C.3 Proof of Proposition 3.3

Our goal is to invoke Theorem C.1 to obtain a concentration inequality for KSD. Recall that
KSD(Pn, π) is defined by

KSD2(Pn, π) =
1

n2

n∑
i,j=1

uπ(Xi, Xj)

with the kernel

uπ(x, y) = sπ(x)Tk(x, y)sπ(y) + sq(x)T∇yk(x, y) + sq(y)T∇xk(x, y) + Tr(∇x∇yk(x, y)).

Let us first verify that the new kernel uπ satisfies the assumption of Theorem C.1. In fact, since
sπ(x) = ∇ log(π(x)), one obtains from integration by part that

E[uπ(X1, X2)|X1 = x] =

∫
Rd
uπ(x, y)dπ(y)

=

∫
Rd
sπ(x)k(x, y)sπ(y) + sq(x)T∇yk(x, y)

+ sπ(y)T∇xk(x, y) + Tr(∇x∇yk(x, y))dπ(y)

=

∫
Rd
k(x, y)sπ(x)T∇yπ(y)dy −

∫
Rd
∇y · (sπ(x)π(y))dy

+

∫
Rd
∇yπ(y)T∇xk(x, y)dy −

∫
Rd
∇yπ(y)T∇xk(x, y)dy

= 0.
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Similarly, one has
E[uπ(X1, X2)|X2 = y] = 0.

This shows that uπ satisfies the condition of degeneracy (C.3).

Next, we show that uπ satisfies the bound (C.4) with a function g satisfying the moment condition
(C.5). In fact, by Assumption K3 on the kernel k and Assumption 1 on the target density π,

|uπ(x, y)| ≤ L2K1(1 + |x|) · (1 + |y|) + LK1(1 + |x|+ 1 + |y|) +K1(1 + d)

≤ K1(L+ 1)2(
√
d+ 1 + |x|) · (

√
d+ 1 + |y|)

=: g(x) · g(y),

where g(x) =
√
K1(L+ 1)(

√
d+ 1 + |x|) and the constant L is defined in (2.6). To verify g satisfies

(C.5), we write

EX∼π[g(X)k] = (
√
K1(L+ 1))kEX∼π[(

√
d+ 1 + |X|)k]

≤ (
√
K1(L+ 1))kEX∼π[(

√
d+ 1 + |m|+ |X −m|)k]

= (
√
K1(L+ 1))k

(
(
√
d+ 1 + |m|)k +

k∑
j=1

(
k
j

)
(
√
d+ 1 + |m|)k−jEX∼π|X −m|j

)
.

(C.13)
Thanks to Proposition C.1, we have for any j ≥ 1,

EX∼π|X −m|j ≤
(
EX∼π|X −m|2j

)1/2
≤ (2j)1/2 ·

(
(2υ
√
d)2j +

1

2

( 4υ√
2

)2j · (2j)j)1/2

≤ (2j)1/2 ·
(

2 max(4υ, 1) ·
√
d ·
√
j
)j

≤
(

2e1/e max(4υ, 1) ·
√
d ·
√
j
)j
,

(C.14)

where we have used the simple fact that (2j)1/(2j) ≤ e1/e for any j ≥ 1 in the last inequality.
Plugging (C.14) into (C.13) yields that

EX∼π[g(X)k] ≤ 2(
√
K1(L+ 1))k

(√
d+ 1 + |m|+ 2e1/e max(4υ, 1)

√
d ·
√
k
)k

= 2(
√
K1(L+ 1))k exp

(
k log

(√
d+ 1 + |m|+ 2e1/e max(4υ, 1)

√
d ·
√
k
))
.

(C.15)

Using the fact that log(a+ b)− log(a) = log(1 + b/a) ≤ b/a for all a, b ≥ 1, one has

exp
(
k log

(√
d+ 1 + |m|+ 2e1/e max(4υ, 1)

√
d ·
√
k
))

≤ exp
(
k log

(
2e1/e max(4υ, 1)

√
d︸ ︷︷ ︸

=:A

·
√
k
))
· exp

(√
k ·

√
d+ 1 + |m|

2e1/e max(4υ, 1)
√
d︸ ︷︷ ︸

=:B

)
. (C.16)

Since by assumption |m| ≤ m∗
√
d and d ≥ 1, we have

B ≤ 2 +m∗

2e1/e max(4υ, 1)
=: B̃.

As a consequence of above and the fact that k! ≥
(
k
3

)k
for any k ∈ N+,

exp
(
k log

(√
d+ 1 + |m|+ 2e1/e max(4υ, 1)

√
d ·
√
k
))

≤ exp(k log k/2) · exp(k(logA+ B̃))

=
(k

3

)k/2 · (√3A exp(B̃ +
1

2
)
)k

≤ k! ·
(√

3A exp(B̃ +
1

2
)
)k
.

(C.17)
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Combining this with (C.15) implies that the moment bound assumption (C.5) holds with the constants

J =
√

3K1(L+ 1)A exp
(
B̃ +

1

2

)
and ξ = 2J.

Therefore it follows from the definition of KSD(Pn, π) in (C.1) and the concentration bound (C.7)
implied by Theorem C.1 that with at least probability 1− δ,

KSD(Pn, π) ≤ C√
n
,

with the constant

C = J
( log(C1

δ )

C2
+ 2

√
log(C1

δ )

C2

)
.

Since by definition the constant A = O(
√
d) for large d, we have that the constant C = O(

√
d).

This completes the proof.

D Summarizing Propositions 3.1 - 3.3

The theorem below summarizes the Propositions 3.1 - 3.3 above, serving as one of the ingredients for
proving Theorem 2.1.
Theorem D.1. Let π be a probability measure on Rd and let Pn = 1

n

∑n
i=1 δXi be the empirical

measure associated to the i.i.d. samples {Xi}ni=1 drawn from π. Then we have the following:

1. If π satisfies M3 = EX∼π|X|3 <∞, then there exists a realization of empirical measure
Pn such that

W1(Pn, π) ≤ C ·


n−1/2, d = 1,

n−1/2 log n, d = 2,

n−1/d, d ≥ 3,

where the constant C depends only on M3.

2. If k satisfies Assumption K2 with constant K0, then there exists a realization of empirical
measure Pn such that

MMD(Pn, π) ≤ C√
n
,

where the constant C depending only on K0.

3. If π satisfies Assumption 1 and 2 and k satisfies Assumption K3 with constant K1, then there
exists a realization of empirical measure Pn such that

KSD (Pn, π) ≤ C
√
d

n
,

where the constant C depends only on L,K1,m
∗, υ.

E Semi-discrete optimal transport with quadratic cost

E.1 Structure theorem of optimal transport map

We recall the structure theorem of optimal transport map between µ and ν under the assumption that
µ does not give mass to null sets.
Theorem E.1 ([8, Theorem 2.9 and Theorem 2.12]). Let µ and ν be two probability measures on
Rd with finite second moments. Assume that µ is absolutely continuous with respect to the Lebesgue
measure. Consider the functionals K and J defined in Monge’s problem (4.1) and dual Kantorovich
problem (4.2) with c = 1

2 |x− y|
2. Then

(i) there exists a unique solution π to Kantorovich’s problem, which is given by π(dxdy) = (Id×
T )#µ where T (x) = ∇ϕ̄(x) µ-a.e.x for some convex function ϕ̄ : Rd→R. In another word,
T (x) = ∇ϕ̄(x) is the unique solution to Monge’s problem.

6



(ii) there exists an optimal pair (ϕ(x), ϕc(y)) or (ψc(x), ψ(y)) solving the dual Kantorovich’s
problem, i.e. sup(ϕ,ψ)∈Φc J (ϕ,ψ) = J (ϕ,ϕc) = J (ψc, ψ);

(iii) the function ϕ̄(x) can be chosen as ϕ̄(x) = 1
2 |x|

2 − ϕ(x) (or ϕ̄(x) = 1
2 |x|

2 − ψc(x)) where
(ϕ(x), ϕc(y)) (or (ψc(x), ψ(y))) is an optimal pair which maximizes J within the set Φc.

E.2 Proof of Theorem 4.2

Recall that the dual Kantorovich problem in the semi-discrete case reduces to maximizing the
following functional

F(ψ) =

∫
inf
j

(
1

2
|x− yj |2 − ψj

)
ρ(x)dx+

n∑
j=1

ψjνj . (E.1)

Proof of Theorem 4.2 relies on two useful lemmas on the functional F . The first lemma below shows
that the functional F is concave, whose proof adapts that of [5, Theorem 2] for semi-discrete optimal
transport with the quadratic cost.
Lemma E.1. Let ρ be a probability density on Rd. Let {yj}nj=1 ⊂ Rd and let {νj}nj=1 ⊂ [0, 1] be
such that

∑n
j=1 νj = 1. Then the functional F be defined by (E.1) is concave.

Proof. Let A : Rd→{1, 2, · · · , n} be an assignment function which assigns a point x ∈ Rd to the
index j of some point yj . Let us also define the function

F̃(A, ψ) =

∫ (1

2
|x− yA(x)|2 − ψA(x)

)
ρ(x)dx+

n∑
j=1

ψjνj .

Then by definition F(ψ) = infA F̃(A, ψ). Denote A−1(j) = {x ∈ Rd|A(x) = j}. Then

F̃(A, ψ) =

n∑
j=1

[∫
A−1(j)

(1

2
|x− yj |2 − ψj

)
ρ(x)dx+ ψjνj

]

=

n∑
j=1

∫
A−1(j)

1

2
|x− yj |2ρ(x)dx+

n∑
j=1

ψj

(
νj −

∫
A−1(j)

ρ(x)dx
)
.

Since the function F̃(A, ψ) is affine in ψ for every A, it follows that F(ψ) = infA F̃(A, ψ) is
concave.

The next lemma computes the gradient of the concave function F ; see [5, Section 7.4] for the
corresponding result with general transportation cost.
Lemma E.2. Let ρ be a probability density on Rd. Let {yj}nj=1 ⊂ Rd and let {νj}nj=1 ⊂ [0, 1] be
such that

∑n
j=1 νj = 1. Denote by Pj(ψ) the power diagram associated to ψ and yj . Then

∂ψiF(ψ) = νi − µ(Pi(ψ)) = νi −
∫
Pi(ψ)

ρ(x)dx. (E.2)

Proof. By the definition of F in (E.1), we rewrite F as

F(ψ) =

∫
1

2
|x|2ρ(dx) +

∫
inf
j

{
− x · yj +

1

2
|yj |2 − ψj

}
ρ(x)dx+

n∑
j=1

ψjνj

=

∫
1

2
|x|2ρ(dx)−

∫
sup
j

{
x · yj + ψj −

1

2
|yj |2

}
ρ(x)dx+

n∑
j=1

ψjνj

To prove (E.2), it suffices to prove that

∂ψi

(∫
sup
j

{
x · yj + ψj −

1

2
|yj |2

}
ρ(x)dx

)
=

∫
Pi(ψ)

ρ(x)dx. (E.3)
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Note that the partial derivative on the left side of above makes sense since g(x, ψ) := supj{x ·
yj + ψj − 1

2 |yj |
2} is convex with respect to (x, ψ) on Rd × Rd so that the resulting integral against

the measure ρ is also convex (and hence Lipschitz) in ψ. To see (E.3), since g(x, ψ) is convex and
piecewise linear in ψ for any fixed x, it is easy to observe that

∂ψig(x, ψ) = δij if x ∈
{
x ∈ Rd

∣∣∣x · yj + ψj −
1

2
|yj |2 = g(x, ψ)

}
.

However, by subtracting 1
2 |x|

2 on both sides of the equation inside the big parenthesis and then
flipping the sign one sees that{

x ∈ Rd
∣∣∣x · yj + ψj −

1

2
|yj |2 = g(x, ψ)

}
= Pj(ψ).

Namely we have obtained that

∂ψig(x, ψ) = δi,j if x ∈ Pj(ψ).

In particular, this implies that ψ→g(x, ψ) is 1-Lipschitz in ψ uniformly with respect to x. Finally
since ρ(x) is a probability measure, the desired identity (E.2) follows from the equation above and
the dominated convergence theorem. This completes the proof of the lemma.

With the lemmas above, we are ready to prove Theorem 4.2. In fact, according to Lemma E.1 and
Lemma E.2, ψ = (ψ1, · · · , ψn) is a maximizer of the functional F if and only if

∂ψiF(ψ) = νi − µ(Pi(ψ)) = νi −
∫
Pi(ψ)

ρ(x)dx = 0.

Since the dual Kantorovich problem in the semi-discrete setting reduces to the problem of maximizing
F , it follows from Theorem E.1 that the optimal transport map T solving the semi-discrete Monge’s
problem (4.4) is given by T (x) = ∇ϕ̄(x) where ϕ̄(x) = 1

2 |x|
2 − ϕ(x) and ϕ(x) = minj

1
2 |x −

yj |2 − ψj . Consequently,

ϕ̄(x) =
1

2
|x|2 − ϕ(x)

=
1

2
|x|2 −

(
min
j
{1

2
|x− yj |2 − ψj}

)
= max

j
{x · yj +mj}

with mj = ψj − 1
2 |yj |

2. Moreover, noticing that ϕ(x) can be rewritten as

ϕ(x) =
1

2
|x− yj |2 − ψj if x ∈ Pj(ψ),

one obtains that T (x) = ∇ϕ̄(x) = yj if x ∈ Pj(ψ).

E.3 Proof of Proposition 4.1

Let us first consider the case that n = 2k for some k ∈ N. Then
ϕ̄(x) = max

j=1,··· ,2k
{x · yj +mj} = max

j=1,··· ,2k−1
max

i∈{2j−1,2j}
{x · yi +mi}.

Let us define maps ϕn : Rn→Rn/2 and ψ : Rd→Rn by setting

[ϕn(z)]i = max{z2i−1, z2i}, i = 1, · · · , n/2 and [ψ(x)]j = x · yj +mj , j = 1, · · · , n.
Then by definition it is straightforward that

ϕ̄(x) = (ϕ2 ◦ ϕ4 ◦ · · · ◦ ϕn/2 ◦ ϕn ◦ ψ)(x). (E.4)

By defining

Y =


yT

1
yT

2
...
yT
n

 ,m =


m1

m2

...
mn

 ,
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we can write the map ψ as
ψ(x) = Y · x+m. (E.5)

Moreover, thanks to the following simple equivalent formulation of the maximum function:

max(a, b) = ReLU(a− b) + ReLU(b)− ReLU(−b)

= hT · ReLU
(
A

(
a
b

))
,

where

A =

(
1 −1
0 1
0 −1

)
, h =

(
1
1
−1

)
,

we can express the map ϕn in terms of a two-layer neural network as follows

ϕn(z) = Hn/2 · ReLU(An · z), (E.6)

where An = ⊕nA and Hn = ⊕nh. Finally, by combining (E.4), (E.5) and (E.6), one sees that ϕ̄ can
be expressed in terms of a DNN of width n and depth log n with parameters (W `, b`)L+1

`=1 defined by

W 0 = An · Y, b0 = An ·m,
W 1 = An/2 ·Hn/2, b1 = 0,

W 2 = An/4 ·Hn/4, b2 = 0,

· · · ,
WL−1 = A2 ·H2, bL−1 = 0,

WL = H1, bL = 0.

In the general case where log2 n /∈ N, we set k = dlog2 ne so that k is smallest integer such
that 2k > n. By redefining yj = 0 and mj = 0 for j = n + 1, · · · , 2k, we may still write
ϕ̄(x) = maxj=1,··· ,2k{x · yj +mj} so that the analysis above directly applies.

F Proof of Main Theorem 2.1

The proof follows directly from Theorem D.1 and Theorem 4.1. Indeed, on the one hand, the
quantitative estimate for the convergence of the empirical measure Pn directly translates to the
sample complexity bounds in Theorem 2.1 with a given error ε. On the other hand, Theorem 4.1
provides a push-forward from px to the empirical measure Pn based on the gradient of a DNN.
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