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Abstract

Various evaluation measures have been developed for multi-label classification,
including Hamming Loss (HL), Subset Accuracy (SA) and Ranking Loss (RL).
However, there is a gap between empirical results and the existing theories: 1)
an algorithm often empirically performs well on some measure(s) while poorly
on others, while a formal theoretical analysis is lacking; and 2) in small label
space cases, the algorithms optimizing HL often have comparable or even better
performance on the SA measure than those optimizing SA directly, while existing
theoretical results show that SA and HL are conflicting measures. This paper
provides an attempt to fill up this gap by analyzing the learning guarantees of the
corresponding learning algorithms on both SA and HL measures. We show that
when a learning algorithm optimizes HL with its surrogate loss, it enjoys an error
bound for the HL measure independent of c (the number of labels), while the bound
for the SA measure depends on at most O(c). On the other hand, when directly
optimizing SA with its surrogate loss, it has learning guarantees that depend on
O(
√
c) for both HL and SA measures. This explains the observation that when the

label space is not large, optimizing HL with its surrogate loss can have promising
performance for SA. We further show that our techniques are applicable to analyze
the learning guarantees of algorithms on other measures, such as RL. Finally, the
theoretical analyses are supported by experimental results.

1 Introduction

Multi-label classification (MLC) [1] is a fundamental task that deals with the learning problems where
each instance might be associated with multiple labels simultaneously. It has enjoyed applications in
a wide range of areas, such as text categorization [2], image annotation [3], etc. It is more challenging
than the multi-class classification problem where only one label is assigned to each instance. Due
to the complexity of MLC, various measures [4, 5] have been developed from diverse aspects to
evaluate its performance, e.g., Hamming Loss (HL), Subset Accuracy (SA) and Ranking Loss (RL).
To optimize one or a subset of these measures, plenty of algorithms [3, 6, 7, 8] have been proposed.
For instance, Binary Relevance (BR) [3] aims to optimize HL while Rank-SVM [6] aims to optimize
RL. For a comprehensive evaluation of different algorithms, it is a common practice to test their
performance on various measures and a better algorithm is the one which performs well on most
of the measures. However, it is commonly observed that an algorithm usually performs well on
some measure(s) while poorly on others. Thus, it is important to theoretically understand such
inconsistency to reveal the intrinsic relationships among the measures.
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Table 1: Summary of the main theoretical results in this paper.

Algorithm
Bound w.r.t. Hamming Loss Subset Loss1 Ranking Loss Proposed

Optimize Hamming Loss (Ah) R̂h
S(f) +O(

√
1
n ) cR̂h

S(f) +O(

√
c2

n ) cR̂h
S(f) +O(

√
c2

n ) [3]

Optimize Subset Loss (As) R̂s
S(f) +O(

√
c
n ) R̂s

S(f) +O(
√

c
n ) R̂s

S(f) +O(
√

c
n ) This paper

Optimize Ranking Loss (Ar) cR̂r
S(f) +O(

√
c3

n ) c2R̂r
S(f) +O(

√
c5

n ) R̂r
S(f) +O(

√
c
n ) [6]

There are a few works studying the behavior of various measures. For instance, [9] analyzed the
Bayes consistency of various approaches for HL and RL. [5] provided a unified view of different
measures. [10] devoted to study the consistency of reduction approaches for precision@k and
recall@k. Although they provide valuable insights, the generalization analysis of the algorithms on
different measures is still largely open. Furthermore, there is another counter-intuitive observation
[11] that in small label space cases, algorithms aiming to optimize HL often have better performance
on the SA measure than the algorithms that optimize SA directly. This is inconsistent with the existing
theoretical results [12] that SA and HL are conflicting measures — algorithms aiming to optimize
HL would perform poorly if evaluated on SA, and vice versa. Although it can provide some insights
for existing learning algorithms, the analysis [12] has limitations by assuming that the hypothesis
space is unconstrained and the conditional distribution P (y|x) is known. These assumptions are not
held in a realistic algorithm, where a constrained parametric hypothesis space is used and P (y|x) is
unknown.

This paper provides an attempt to fill up this gap by analyzing the generalization bounds for the
learning algorithms on various measures, including HL, SA, and RL. These bounds provide insights to
explain the aforementioned observations. By avoiding the unwarranted assumptions of previous work,
our analysis provides more insights and guidance for learning algorithms in practice. Specifically, here
we focus on kernel-based learning algorithms which have been widely-used for MLC [6, 3, 13, 14, 15].
For analysis convenience and fair comparison, we also propose a new algorithm aiming to directly
optimize SA with its (convex) surrogate loss function. The main techniques are based on Rademacher
complexity [16, 17] and the recent vector-contraction inequality [18]. Note that, different from
that for traditional binary or multi-classification problems which are usually analyzed for only one
measure (e.g. stand zero-one loss [19]), our generalization analysis for MLC needs to be for both
HL and SA. Besides, our analysis can also be extended to analyze other measures, such as RL. To
the best of our knowledge, this is the first to provide the generalization error bounds for the learning
algorithms between these measures for MLC, including two typical methods Binary Relevance [3]
and Rank-SVM [6].

Our main results are summarized in Table 1. We can see that the number of labels (i.e., c) plays an
important role in the generalization error bounds, which is often ignored in previous work. Besides,
we can observe that the algorithm (i.e., Algorithm Ah) aiming for optimize HL has a learning
guarantee for HL which is independent with c. Furthermore, it also has a learning guarantee for
the SA measure which depends on at most O(c). In contrast, when directly optimizing SA with its
surrogate loss (i.e., AlgorithmAs) , it can have learning guarantees depending on O(

√
c) for both HL

and SA. This explains the phenomenon that when the label space is not large, optimizing HL with
its surrogate loss can have promising performance for SA. Besides, when the label space is large,
optimizing SA directly would enjoy its superiority on SA. Our experimental results also support
this theoretical analysis. Interestingly, we also find that optimizing RL with its surrogate loss (i.e.
Algorithm Ar) has a learning guarantee on RL which depends on O(

√
c) (See Appendix D for the

guarantees of corresponding algorithms for SA and RL).

Overall, our contributions are: (1) We provide the generalization bounds for the corresponding
algorithms on various measures, i.e. HL, SA, and RL. Besides, the inequalities between these (actual
and surrogate) losses are introduced, which can be used for the learning guarantees between these
measures and can also help the analysis extend to other forms of hypothesis classes; (2) based on the
theoretical analysis, we explain the phenomenon when in small label space case, optimizing HL with
its surrogate loss can have better performance on the SA measure than directly optimizing SA with
its surrogate loss; and (3) the experimental results support our theoretical analysis.

1Subset Loss is equal to 1− Subset Accuracy
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The rest of paper is organized as follows. Section 2 introduces the MLC setting and its evaluation
measures. Section 3 introduces the main assumptions, theorem, and learning algorithms used in
the subsequent analysis. Section 4 presents the learning guarantees of corresponding algorithms for
HL and SA. Section 5 presents the learning guarantees of corresponding algorithms for HL and RL.
Section 6 reports the experimental results. Section 7 introduces more discussions, and Section 8
concludes this paper.

2 Preliminaries

In this section, we introduce the problem setting of MLC and its evaluation measures that we focus
on here.

Notations. Let the bold-face letters denote for vectors or matrices. For a matrix A, ai, aj and aij
denote its i-th row, j-th column, and (i, j)-th element respectively. For a function g : R → R and
a matrix A ∈ Rm×n, define g(A) : Rm×n → Rm×n, where g(A)ij = g(aij). Tr(·) denotes the
trace operator for a square matrix. [[π]] denotes the indicator function, i.e., it returns 1 when the
proposition π holds and 0 otherwise. sgn(x) returns 1 when x > 0 and −1 otherwise. [n] denotes
the set {1, ..., n}.

2.1 Problem setting

Given a training set S = {(xi,yi)}ni=1 which is sampled i.i.d. from the distribution D over X ×
{−1,+1}c, where xi ∈ X ⊂ Rd is the input, d is the feature dimension, yi ∈ {−1,+1}c is the
corresponding label vector, c is the number of potential labels, and n is the number of data points.
Besides, yij = 1 (or −1) indicates that the j-th label is relevant (or irrelevant) with xi. The goal of
MLC is to learn a multi-label classifier H : Rd −→ {−1,+1}c.

2.2 Evaluation measures

To solve the MLC task, one common approach is to first learn a real-valued mapping function
f = [f1, ..., fc] : Rd −→ Rc and then get the classifier H(x) = sgn([[f(x) ≥ T (x)]]) by use of a
thresholding value function T . For simplicity, we denote the classifier H(x) = t ◦ f(x) = t(f(x)),
where t is the thresholding function induced by T . Besides, note that many algorithms, such as Binary
Relevance, just set the thresholding function T (x) = 0 and the classifier becomesH(x) = sgn◦f(x).

To evaluate algorithms for MLC, there are many measures. Here we focus on three widely-used
measures, i.e., Hamming Loss, Subset Accuracy and Ranking Loss, as defined below2.

Hamming Loss : L
0/1
h (t ◦ f(x),y) =

1

c

c∑
j=1

[[t(fj(xi)) 6= yj ]]. (1)

For the classifier H(x) = sgn ◦ f(x), its surrogate loss can be defined as:

Lh(f(x),y) =
1

c

c∑
j=1

`(yjfj(x)), (2)

where the base (convex surrogate) loss function `(u) can be many popular point-wise loss functions,
such as the hinge loss `(u) = max(0, 1− u) or the logistic loss `(u) = ln(1 + exp(−u)). Besides,
we assume the base loss function upper bounds the original 0/1 loss, i.e., [[t(fj(xi)) 6= yj ]] ≤
`(yjfj(x))3.

Subset Loss : L0/1
s (t ◦ f(x),y) = max

j∈[c]
{[[t(fj(xi)) 6= yj ]]}. (3)

The measure Subset Accuracy is equal to 1 − L
0/1
s , where maximizing the Subset Accuracy is

equivalent to minimize the Subset Loss. For the classifier H(x) = sgn ◦ f(x), its (convex) surrogate
loss can be defined as:

Ls(f(x),y) = max
j∈[c]

{`(yjfj(x))}. (4)

2Our definition is over a sample and can be averaged over many samples.
3The original logistic loss can be simply changed to `(u) = log2(1 + exp(−u)) to satisfy this condition.
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Ranking Loss : L0/1
r (f(x),y) =

1

|Y +||Y −|
∑
p∈Y +

∑
q∈Y −

[[fp(x) ≤ fq(x)]], (5)

where Y + (or Y −) denotes the relevant (or irrelevant) label index set associated with x, and | · |
denotes the set cardinality. Besides, its surrogate loss can be defined as:

Lr(f(x),y) =
1

|Y +||Y −|
∑
p∈Y +

∑
q∈Y −

`(fp(x)− fq(x)). (6)

There are some relationships between these loss functions. For clarity, we discuss it in the following
sections, which is used for the proof of learning guarantees between them.

3 Generalization analysis techniques

In this section, we introduce the main assumptions, theorem, and learning algorithms used in the
subsequent analysis.

Define a surrogate loss function L : Rc × {−1,+1}c → R+, and a vector-valued function class
F = {f : X 7→ Rc}. Then, for a score function f ∈ F and its induced classifier H(x) = t ◦ f(x),
the true (0/1) expected risk, surrogate expected risk and empirical risk are defined as follows:

R0/1(H) = E
(x,y)∼D

[L0/1(H(x),y)] R(f) = E
(x,y)∼D

[L(f(x),y)] R̂S(f) =
1

n

n∑
i=1

L(f(xi),y).

Besides, we use a superscript to distinguish different loss functions. For instance, R̂hS(f), R̂sS(f),
and R̂rS(f) denote the empirical Hamming, Subset, and Ranking risk respectively.

In this paper, we focus on kernel-based learning algorithms and utilize Rademacher complexity
[16, 17] and the recent vector-contraction inequality [18] to analyze the generalization error bounds
for the algorithms. Note that, the local Rademacher complexity [20] can be used to get tighter bounds
to improve the learning algorithms, but that is not our main focus. Here we concentrate on the
learning guarantees between different measures and analyze them in the same framework for fair
comparisons. Due to the space limit, we defer the background about Rademacher complexity and the
contraction inequality to Appendix A.1.

We first introduce the common assumptions as follows.

Assumption 1 (The common assumptions).

(1) Let κ : X × X → R be a Positive Definite Symmetric (PSD) kernel and φ : x→ H be a feature
mapping associated with κ, where H is its associated reproducing kernel Hilbert space (RKHS).
Here, we consider the following kernel-based hypothesis set:

F = {x 7−→W>φ(x) : W = (w1, . . . ,wc)
>, ‖W‖H,2 ≤ Λ}, (7)

where ‖W‖H,2 = (
∑c
j=1 ‖wj‖2H)1/2. For notational clarity, we denote ‖W‖H,2 by ‖W‖ in the

following.

(2) The training dataset S is an i.i.d. sample of size n drawn from the distribution D, where ∃ r > 0,
it satisfies κ(x,x) ≤ r2 for all x ∈ X .

(3) The base loss function `(u) is ρ-Lipschitz continuous and bounded by B.

Note that, although our subsequent analysis is based on the kernel-based hypothesis set, it can also
be extended to other forms of hypothesis set, such as neural networks [16, 21]. Besides, the linear
hypothesis can be viewed as a special case of the kernel-based one where the kernel function is
linear. Furthermore, for the base loss function `(u), the assumption can be satisfied for many popular
point-wise loss functions. For instance, the widely-used hinge loss `(u) = max(0, 1− u) and the
logistic loss `(u) = ln(1 + exp(−u)) are both 1−Lipschitz.

Besides, we give an extra assumption for the following discussion about ranking-based learning
algorithms.
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Assumption 2 (For the ranking-based algorithms). For the ranking-based classifierH(x) = t◦f(x),
assume the thresholding function t(f) splits the label list into two parts based on the score function
in the non-ascending order. Besides, let the oracle optimal thresholding function be t∗(f), which gets
the best Hamming Loss for a given score function.

Next, we analyze the Lipschitz constant and upper bound of the surrogate loss function in the
following lemma, which is used for the subsequent analysis.

Lemma 1 (The property of the surrogate loss function; full proof in Appendix A.2.). Assume that the
base loss function `(u) is ρ-Lipschitz continuous and bounded by B. Then, the surrogate Hamming
Loss (2) is ρ√

c
-Lipschitz, the surrogate Ranking Loss (6) is ρ-Lipschitz, and the surrogate Subset Loss

(4) is ρ-Lipschitz w.r.t. the first argument. Besides, they are all bounded by B.

Furthermore, we give the base theorem used in the subsequent generalization analysis, as follows.

Theorem 1 (The base theorem for generalization analysis; full proof in Appendix A.3). Assume
the loss function L : Rc × {−1,+1}c → R+ is µ-Lipschitz continuous w.r.t. the first argument
and bounded by M . Besides, (1) and (2) in Assumption 1 are satisfied. Then, for any δ > 0, with
probability at least 1− δ over the draw of an i.i.d. sample S of size n, the following generalization
bound holds for all f ∈ F:

R(f) ≤ R̂S(f) + 2
√

2µ

√
cΛ2r2

n
+ 3M

√
log 2

δ

2n
. (8)

Last, for the clarity of subsequent discussions, we introduce the learning algorithms which directly
optimize the measures of Hamming Loss, Subset Loss, and Ranking Loss with their corresponding
surrogate loss functions, denoted by Ah, As, and Ar respectively as follows:

Ah : min
W

1

n

n∑
i=1

Lh(f(xi),yi) + λ‖W‖2, (9)

As : min
W

1

n

n∑
i=1

Ls(f(xi),yi) + λ‖W‖2, (10)

Ar : min
W

1

n

n∑
i=1

Lr(f(xi),yi) + λ‖W‖2. (11)

4 Learning guarantees between Hamming and Subset Loss

In this section, we first analyze the relationships between Hamming and Subset Loss. Then, we
analyze the leaning guarantees of algorithm Ah w.r.t. the measures of Hamming and Subset Loss.
Last, we analyze the learning guarantees of algorithm As w.r.t. these two measures.

First, we analyze the relationship between them, which is shown as follows.

Lemma 2 (The relationship between Hamming and Subset Loss). For the classifier H(x) = sgn ◦
f(x), the following inequalities hold:

L
0/1
h (H(x),y) ≤ L0/1

s (H(x),y) ≤ Ls(f(x),y), (12)

L0/1
s (H(x),y) ≤ cL0/1

h (H(x),y) ≤ cLh(f(x),y). (13)

The proof is similar to [12]. For completeness, we add it to Appendix B.1. From this lemma, we can
observe that when optimizing Subset Loss with its surrogate loss, it actually also optimizes an upper
bound of Hamming Loss. Besides, when optimizing Hamming Loss with its surrogate loss, it also
optimizes an upper bound for Subset Loss which depends on O(c). This can be used to provide the
learning guarantees between them.
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4.1 Learning guarantees of Algorithm Ah

The learning guarantee of Ah w.r.t. Hamming Loss is shown in the following theorem.
Theorem 2 (Optimize Hamming Loss, Hamming Loss bound). Assume the loss function L = Lh,
where Lh is defined in Eq.(2). Besides, Assumption 1 is satisfied. Then, for any δ > 0, with
probability at least 1 − δ over S, the following generalization bound in terms of Hamming Loss
holds for all f ∈ F:

Rh0/1(sgn ◦ f) ≤ R̂hS(f) + 2
√

2ρ

√
Λ2r2

n
+ 3B

√
log 2

δ

2n
. (14)

Proof. (sketch; full proof in Appendix B.2) The key step is to apply Theorem 1 and Lemma 1.
Besides, the inequality Rh0/1(sgn ◦ f) ≤ Rh(f) holds.

Then, we can get the generalization bound for the classical Binary Relevance [3] on Hamming Loss,
which we defer it in Appendix B.3. From the above theorem, we can observe that Ah has a good
learning guarantee for Hamming Loss independent of c. Besides, [9] has shown it is Bayes consistent
for Hamming Loss, which confirms its superiority for Hamming Loss. Moreover, Ah also has a
learning guarantee for Subset Loss by the following theorem.
Theorem 3 (Optimize Hamming Loss, Subset Loss bound). Assume the loss function L = cLh,
where Lh is defined in Eq.(2). Besides, Assumption 1 is satisfied. Then, for any δ > 0, with
probability at least 1− δ over S, the following generalization bound in terms of Subset Loss holds
for all f ∈ F:

Rs0/1(sgn ◦ f) ≤ cRh0/1(sgn ◦ f) ≤ cR̂hS(f) + 2
√

2ρc

√
Λ2r2

n
+ 3Bc

√
log 2

δ

2n
. (15)

Proof. (sketch; full proof in Appendix B.4) The main idea is to apply the Theorem 1, Lemma 1 and
2. Besides, Rh0/1(sgn ◦ f) ≤ Rh(f).

From the above theorem, we can observe thatAh has a bound on Subset Loss which depends on O(c).
When c is small, its performance for Subset Loss would probably enjoy its good leaning guarantee
for Hamming Loss.

4.2 Learning guarantees of Algorithm As

The following theorem provides the learning guarantees of As w.r.t. the measures of Subset and
Hamming Loss. The proof is similar to those for Theorem 2 & 3 in Section 4.1.
Theorem 4 (Optimize Subset Loss, Subset and Hamming Loss bounds). Assume the loss function
L = Ls, where Ls is defined by (4). Besides, Assumption 1 is satisfied. Then, for any δ > 0,
with probability at least 1− δ over S, the following generalization bounds in terms of Subset and
Hamming Loss hold for all f ∈ F:

Rh0/1(sgn ◦ f) ≤ Rs0/1(sgn ◦ f) ≤ R̂sS(f) + 2
√

2ρ

√
cΛ2r2

n
+ 3B

√
log 2

δ

2n
. (16)

The full proof is in Appendix B.5. From this theorem, we can observe As has the same bounds for
Subset and Hamming Loss both depending on O(

√
c). Intuitively, the learning guarantee of As for

Hamming Loss comes from its learning guarantee for Subset Loss.

4.3 Comparisons

For the same hypothesis set, R̂sS(f) is usually harder to train than R̂hS(f), which makes R̂hS(f)
smaller4. For Hamming Loss, comparing the bounds for Ah (i.e. InEq.(14) in Theorem 2) and As
(i.e. InEq.(16) in Theorem 4), we can conclude that Ah has tighter bound than As, thus Ah would
perform better than As. For Subset Loss, comparing the bounds5 for Ah (i.e. InEq.(15) in Theorem
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3) and As (i.e. InEq.(16) in Theorem 4), we can conclude that, in the large label space case, As
would probably perform better than Ah; however, in the small label space case, Ah can enjoy its
good learning guarantee for Hamming Loss while As cannot, thus Ah would probably have better
performance than As. Experimental results also support our theoretical analysis.

5 Learning guarantees between Hamming and Ranking Loss

In this section, we first analyze the relationships between Hamming and Ranking Loss. Then, we
analyze the learning guarantee of Ah on the Ranking Loss measure. Last, we analyze the learning
guarantee of Ar on these two measures.

First, we analyze the relationship between Hamming and Ranking Loss, which is shown as follows.
Lemma 3 (The relationship between Hamming and Ranking Loss). For the Hamming and Ranking
Loss, the following inequality holds:

L0/1
r (f(x),y) ≤ cL0/1

h (sgn ◦ f(x),y) ≤ cLh(f(x),y). (17)

Further, if Assumption 2 is satisfied, the following inequality holds:

L
0/1
h (t∗ ◦ f(x),y) ≤ cL0/1

r (f(x),y) ≤ cLr(f(x),y). (18)

The full proof is in Appendix C.16. From this lemma, we can observe that Ranking Loss is upper
bounded by Hamming Loss times the label size7. Similarly, Hamming Loss is upper bounded by
Ranking Loss times the label size. Thus, when optimizing one measure with its surrogate, it also
optimizes an upper bound for another measure and provides its learning guarantee.

5.1 Learning guarantee of Algorithm Ah

The learning algorithm Ah has a learning guarantee w.r.t. Ranking Loss, as shown by the following
theorem.
Theorem 5 (Optimize Hamming Loss, Ranking Loss bound). Assume the loss function L = cLh,
where Lh is defined in Eq.(2). Besides, Assumption 1 is satisfied. Then, for any δ > 0, with
probability at least 1− δ over S, the following generalization bound in terms of Ranking Loss holds
for all f ∈ F:

Rr0/1(f) ≤ cRh0/1(sgn ◦ f) ≤ cR̂hS(f) + 2
√

2ρc

√
Λ2r2

n
+ 3Bc

√
log 2

δ

2n
. (19)

The full proof is in Appendix C.2. From this theorem, we can observe thatAh has a learning guarantee
for Ranking Loss depending on O(c). When c is small, Ah can have promising performance for
Ranking Loss.

5.2 Learning guarantee of Algorithm Ar

The learning algorithm Ar has a learning guarantee w.r.t. Ranking Loss as follows.
Theorem 6 (Optimize Ranking Loss, Ranking Loss bound). Assume the loss function L = Lr, where
Lr is defined in Eq.(6). Besides, Assumption 1 is satisfied. Then, for any δ > 0, with probability at
least 1− δ over S, the following generalization bound in terms of Ranking Loss holds for all f ∈ F :

Rr0/1(f) ≤ R̂rS(f) + 2
√

2ρ

√
cΛ2r2

n
+ 3B

√
log 2

δ

2n
. (20)

4Although we cannot formally express this, experimental results support it.
5Note that, in practice, it probably makes no sense to directly compare the absolute values for the bounds

of Ah and As on Subset Loss because the first items of bounds would probably be close to or bigger than 1.
However, we can still take insights from them to get the dependent variables.

6Note that, the proof is nontrivial, especially for the second inequality.
7Precisely, it also depends on the ratio of relevant and irrelevant labels (See Appendix C.1). Note that the

following analyses are based on the label size and we believe they can be improved by involving the ratio of
relevant and irrelevant labels.
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The full proof is in Appendix C.3. Then, we can get the learning guarantee of the classical Rank-SVM
[6] (See Appendix C.4). To the best of our knowledge, this is the first to provide its generalization
bound on Ranking Loss. From the above theorem, we can observe thatAr has a learning guarantee for
Ranking Loss depending on O(

√
c), which illustrates its superiority for large label space compared

withAh. Besides, similar to the analysis betweenAh andAr, we can also conclude thatAr performs
better than As w.r.t. Ranking Loss. Ar also has a learning guarantee w.r.t. Hamming Loss (See
Appendix C.5).

6 Experiments

The purpose of this paper is to provide a generalization analysis of learning algorithms for different
measures and take insights to explain the aforementioned observations. Thus, for the experiments,
the goal is to validate our theoretical results rather than illustrating the performance superiority of our
proposed algorithm. Therefore, we focus on two algorithms, i.e. optimizing Hamming Loss (Ah)
and optimizing Subset Loss (As), and evaluate them in terms of Subset Accuracy1 and Hamming
Loss on datasets with different label sizes.

Specifically, six commonly used benchmark datasets from various domains and different label sizes
are used: image (image, 5), emotions (music, 6), scene (image, 6), enron (text, 53), rcv1-subset1 (text,
101), and bibtex (text, 159), which are downloaded from the open websites2. Besides, for the first
three datasets, we normalize the input to mean = 0 and deviation = 1. For Ah and As, we take the
linear models with the hinge base loss function for simplicity, and utilize SVRG-BB [22] to efficiently
train the models3. We conduct 3-fold cross-validation on each dataset, where the hyper-parameter λ
is searched in {10−4, 10−3, · · · , 10}.

Table 2 reports the results in terms of Hamming Loss. We can observe Ah performs better than As.
This validates our theoretical analysis that Ah has tighter generalization bound than As on Hamming
Loss.

Table 2: The results of various datasets in terms of Hamming Loss (mean ± std). The smaller the
value, the better. Best results are in bold. The numbers in brackets represent the label size.

Dataset emotions(6) image(5) scene(6) enron(53) rcv1-subset1(101) bibtex(159)
Ah 0.202± 0.019 0.180± 0.002 0.103± 0.011 0.047± 0.001 0.027± 0.000 0.013± 0.000
As 0.224± 0.015 0.214± 0.013 0.142± 0.009 0.055± 0.001 0.032± 0.000 0.015± 0.000

Besides, Table 3 reports the results in terms of Subset Accuracy. We can observe that for small label
space datasets, Ah performs better than As. In contrast, for relatively large label space datasets, As
performs better than Ah. This also validates our theoretical analysis results.

Table 3: The results of various datasets in terms of Subset Accuracy (mean ± std). The larger the
value, the better. Best results are in bold.

Dataset emotions(6) image(5) scene(6) enron(53) rcv1-subset1(101) bibtex(159)
Ah 0.288± 0.026 0.471± 0.004 0.628± 0.035 0.143± 0.005 0.079± 0.008 0.190± 0.001
As 0.240± 0.021 0.396± 0.031 0.515± 0.032 0.133± 0.013 0.111± 0.004 0.198± 0.001

7 Discussions

There are two competing approach frameworks [23, 24] w.r.t. a loss L0/1 for MLC: 1) the decision-
theoretic approach (DTA) fits a probabilistic model to estimate P (y|x) during training, followed
by an inference phase for every test instance via the optimal strategy w.r.t. L0/1; 2) the empirical
utility maximization (EUM) approach optimizes L0/1 with its surrogate loss to find a classifier in a
constrained parametric hypothesis space during training. The analysis in [12] is mainly under the
DTA framework, while ours is under the EUM framework and complementary to [12]. Below, we
discuss the pros and cons of each one in detail.

1For usual practice, we don’t utilize Subset Loss although they are equivalent.
2http://mulan.sourceforge.net/datasets-mlc.html and http://palm.seu.edu.cn/zhangml/
3Note that the models are both convex optimization problems.
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Pros and cons of the analysis in [12]: [12] can provide much insight for the DTA framework
although there is still a gap between the actual P (y|x) and its estimated one through many parametric
methods (e.g., probabilistic classifier chains [25]). In contrast, it may offer little insight for the EUM
framework (e.g., Binary Relevance which directly optimizes HL with its surrogate loss). Specifically,
[12] assumes that the hypothesis space is unconstrained to allow P (y|x) known, and gets the Bayes-
optimal classifiers w.r.t. HL (i.e. h∗H ) and SA (i.e. h∗s) by their corresponding optimal strategy. Then,
it analyzes the regret (a.k.a excess risk) upper bounds of h∗H and h∗s in terms of SA (i.e., Proposition
4) and HL (i.e., Proposition 5) respectively, and finds the bounds are large, which concludes that HL
and SA conflict with each other.

Pros and cons of our analysis: Our analysis can provide much insight for the EUM framework, while
it may offer little insight for the DTA framework. Specifically, we directly analyze the generalization
bounds for the learning algorithms w.r.t. many measures. Although here we consider the kernel-based
hypothesis class, which includes the linear and non-linear model by specifying different kernel
functions, our analysis can be extended to other forms of hypothesis classes. Meanwhile, our analysis
misses the aspect of consistency which is a central point of [12]. Besides, our analysis is for a specific
model that may be constrained for optimizing the SA measure.

There are many methods that aim to optimize the SA measure. Since the Bayes decision for SA
is based on the joint mode of the conditional distribution instead of the marginal modes as for HL
[12], the methods optimizing SA need to model conditional label dependencies to estimate (at least
implicitly) the joint distribution of labels. One typical method is the structured SVM [26, 27]1, which
enables incorporating label dependencies to the joint feature space defined on y and x. The struct
hinge loss for each sample (xi,yi) is maxy∈{−1,+1}c{0, L

0/1
s (y,yi)+〈Ψ(x,y), θ〉−〈Ψ(x,yi), θ〉},

which is defined over all 2c label vectors and a convex upper bound for L0/1
s (y,yi). In comparison,

our proposed (convex) surrogate hinge loss Ls for SA is maxj∈[c] {max{0, 1− yij〈φ(xi),w
j〉}},

which is defined over the label size c and thus has better computational efficiency than the struct
hinge loss. Although Ls also incorporates label dependencies, it is interesting to test whether Ls is
sufficient to find the joint mode of the distribution. We will study its performance by comparing with
other state-of-the-art methods for SA including the structured SVM in the future.

Besides, Label Powerset (LP) is another representative method for optimizing SA. It transforms
MLC into a multi-label classification problem where each subset can be viewed as a new class and
eventually constructs an exponential number of classes (i.e. 2c) in total. Based on the theoretical
results [18, 28] for multi-class classification, LP has a generalization error bound w.r.t. SA which
depends on O(

√
2c).2 This explains that it would perform poorly when the label size is large,

and inspires Random k-Labelsets (RAKEL) [7] to boost the performance by combining ensemble
techniques and LP with a small label space. Finally, some work [29] claims that algorithms designed
for SA perform well for HL, which needs more exploration to explain it.

8 Conclusions

This paper attempts to theoretically analyze the effects of learning algorithms on the measures of
Hamming, Subset, and Ranking Loss by providing the generalization bounds for algorithms on these
measures. Through the analysis, we find that the label size has an important effect on the learning
guarantees of an algorithm for different measures. Besides, we take insights from the theoretical
results to explain the phenomenon that in small label space case, optimizing Hamming Loss with
its surrogate loss can perform well for Subset Loss. Experimental results also support our theory
findings. In the future, our analysis techniques can be extended for the generalization analysis of other
measures. Besides, how to make these bounds tighter will inspire more effective learning algorithms.

1Note that, although F-score is optimized in [27], we can easily adapt it to optimize SA by replacing the
4(y, yn) with subset zero-one loss.

2Note that, this bound is provided for fair comparison by using the same techniques [18] in this paper and it
can be improved to be dependent on O(c

3
2 ) by the techniques in [28].
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Broader Impact

As a theoretical research, this work will potentially provide insights for developing better algorithms
for multi-label classification, while without explicit negative consequences to our society.
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