
Supplementary Material for
"Multi-label classification: do Hamming loss and
subset accuracy really conflict with each other?"

A Generalization analysis techniques

In this section, we review the background on Rademacher complexity [1, 2] and the contraction
inequality [3]. Then, we present the bound for the Rademacher complexity of the kernel-based
hypothesis set. Last, we provide the detailed proofs for Lemma 1 and Theorem 1.

A.1 Background on Rademacher complexity and the contraction inequality

Definition 1 (The loss function space). For the loss function L : Rc × {−1,+1}c → R+, the loss
function space associated with F is a family of functions mapping from (x,y) to R+, which is as
follows:

G = {g : (x,y) 7→ L(f(x),y) : f ∈ F}.
Definition 2 (The Rademacher complexity of the loss space). The empirical Rademacher complexity
of the loss function space is defined as follows:

R̂S(G) = E
ε

[
sup
g∈G

1

n

n∑
i=1

εig(zi)

]
,

where zi = (xi,yi), and ε = [ε1, ..., εn] in which εi is i.i.d. sampled from the Rademacher
distribution Unif({−1,+1}). Besides, its deterministic counterpart is Rn(G) = ES∼Dn [R̂S(G)].
Definition 3 (The Rademacher complexity of the hypothesis space). The empirical Rademacher
complexity of the hypothesis space is defined as follows:

R̂S(F) = E
ε

[
sup
f∈F

1

n

n∑
i=1

c∑
j=1

εijfj(xi)

]
,

where ε = [(εij)] ∈ {−1,+1}n×c in which each element εij is i.i.d. sampled from the Rademacher
distribution Unif({+1,−1}) and f(xi) = [f1(xi), ..., fc(xi)]. Besides, its deterministic counter-
part is Rn(F) = ES∼Dn [R̂S(F)].
Theorem A.1 ([2]). Assume G be a family of functions from z to [0,M ]. Then, for any δ > 0, with
probability at least 1− δ over the draw of an i.i.d. sample S of size n, the following generalization
bound holds for all g ∈ G:

E[g(z)] ≤ 1

n

n∑
i=1

g(zi) + 2R̂S(G) + 3M

√
log 2

δ

2n
. (1)

Lemma A.1 (The contraction lemma [3]). Assume the loss function L is µ-lipschitz w.r.t. the first
argument, i.e. ∀f1, f2 ∈ F , |L(f1(x),y)−L(f2(x),y)| ≤ µ‖f1(x)− f2(x)‖ always holds. Then,
the following inequality holds:

R̂S(G) ≤
√

2µR̂S(F). (2)
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Theorem A.2. Assume the loss function L : Rc × {−1,+1}c → R+ is µ-Lipschitz continuous w.r.t.
the first argument and bounded by M . Then, for any δ > 0, with probability at least 1− δ over the
draw of an i.i.d. sample S of size n, the following generalization bound holds for all f ∈ F:

R(f) ≤ R̂S(f) + 2
√

2µR̂S(F) + 3M

√
log 2

δ

2n
. (3)

Proof. It is straightforward to get this theorem by applying Theorem A.1 and Lemma A.1.

Lemma A.2 (The Rademacher complexity of the kernel-based hypothesis set). Assume that there
exists r > 0 such that κ(x,x) ≤ r2 for all x ∈ X . Then, for the kernel-based hypothesis set
F = {x 7−→W>φ(x) : W = (w1, . . . ,wc)

>, ‖W‖ ≤ Λ}, R̂S(F) can be bounded bellow:

R̂S(F) ≤
√
cΛ2r2

n
. (4)

Proof. For the kernel-based hypothesis set F = {x 7−→W>φ(x) : W = (w1, . . . ,wc)
>, ‖W‖ ≤

Λ}, the following inequalities about R̂S(F) hold:

R̂S(F) =
1

n
Eε

[
sup
‖W‖≤Λ

n∑
i=1

c∑
j=1

εij〈wj , φ(xi)〉
]

=
1

n
Eε

[
sup
‖W‖≤Λ

c∑
j=1

〈wj ,

n∑
i=1

εijφ(xi)〉
]

=
1

n
Eε

[
sup
‖W‖≤Λ

〈W,Xε〉
]

(Xε = [

n∑
i=1

εi1φ(xi), . . . ,

n∑
i=1

εicφ(xi)])

≤ 1

n
Eε

[
sup
‖W‖≤Λ

‖W‖ ‖Xε‖
]

(Cauchy-Schwarz Inequality)

=
Λ

n
Eε

[ c∑
j=1

‖
n∑
i=1

εijφ(xi)‖2
]1/2

=
Λ

n
Eε

[ c∑
j=1

n∑
p=1

n∑
q=1

εpjεqj〈φ(xp), φ(xq)〉
]1/2

=
Λ

n
Eε

[ c∑
j=1

n∑
i=1

〈φ(xi), φ(xi)〉
]1/2

(∀p 6= q,E[εpjεqj ] = E[εpj ]E[εqj ] = 0 and E[εijεij ] = 1)

=
Λ
√
c Tr(K)

n
(κ(xi,xi) = 〈φ(xi), φ(xi)〉,K = [κ(xi,xj)] is the kernel matrix)

≤
√
cΛ2r2

n
.

(5)

A.2 The property of the surrogate loss function

Lemma 1 (The property of the surrogate loss function). Assume that the base loss function `(u) is
ρ-Lipschitz continuous and bounded by B. Then, the surrogate Hamming Loss Eq.(2) is ρ√

c
-Lipschitz,

the surrogate Ranking Loss Eq.(6) is ρ-Lipschitz, and the surrogate Subset Loss Eq.(4) is ρ-Lipschitz.
Besides, they are all bounded by B.
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Proof. For notation clarity, we denote f(x) by f in the following. For the surrogate Hamming Loss
Eq.(2), ∀f1, f2 ∈ F , the following holds:

|Lh(f1,y)− Lh(f2,y)|

=
1

c

c∑
j=1

|`(f1
j ,yj)− `(f2

j ,yj)|

=
1

c

c∑
j=1

|`(yjf1
j )− `(yjf2

j )|

≤ 1

c

c∑
j=1

ρ|yjf1
j − yjf

2
j | (`(u) is ρ− Lipschitz)

≤ ρ
[

1

c

c∑
j=1

|f1
j − f2

j |2
]1/2

(Jense′s Inequality)

=
ρ√
c
‖f1 − f2‖.

(6)

For the surrogate Ranking Loss Eq.(6), ∀f1, f2 ∈ F , the following holds:
|Lr(f1,y)− Lr(f2,y)|

=
1

|Y +||Y −|
∑
p∈Y +

∑
q∈Y −

|`(f1
p − f1

q )− `(f2
p − f2

q )|

≤ 1

|Y +||Y −|
∑
p∈Y +

∑
q∈Y −

ρ|f1
p − f1

q − f2
p + f2

q | (`(u) is ρ− Lipschitz)

≤ ρ
[

1

|Y +||Y −|
∑
p∈Y +

∑
q∈Y −

|f1
p − f1

q − f2
p + f2

q |2
]1/2

(Jense′s Inequality)

≤ ρ
[

1

|Y +||Y −|
∑
p∈Y +

∑
q∈Y −

{
|f1
p − f2

p |2 + |f1
q − f2

q |2
}]1/2

(|a− b|2 ≤ a2 + b2)

= ρ

[
1

|Y +||Y −|

{
|Y −|

∑
p∈Y +

|f1
p − f2

p |2 + |Y +|
∑
q∈Y −

|f1
q − f2

q |2
}]1/2

≤ ρ
[

max{|Y +|, |Y −|}
|Y +||Y −|

c∑
j=1

|f1
j − f2

j |2
]1/2

=
ρ

min{|Y +|, |Y −|}
‖f1 − f2‖

≤ ρ‖f1 − f2‖ (1 ≤ min{|Y +|, |Y −|} ≤ c

2
).

(7)

For the surrogate Subset Loss Eq.(4), ∀f1, f2 ∈ F , the following holds:
|Ls(f1,y)− Ls(f2,y)|

= |max
j∈[c]
{`(yjf1

j )} −max
j∈[c]
{`(yjf2

j )}|

= |`(yqf1
q )− `(ypf2

p )| (w.l.o.g. assume q = arg max
j∈[c]

{`(yjf1
j )}, p = arg max

j∈[c]

{`(yjf2
j )})

≤ |`(yqf1
q )− `(yqf2

q )| (w.l.o.g. assume `(yqf
1
q ) ≥ `(ypf2

p ). `(ypf
2
p ) ≥ `(yqf2

q ).)

≤ ρ|yqf1
q − yqf

2
q | (`(u) is ρ− Lipschitz)

= ρ|f1
q − f2

q |
≤ ρ‖f1 − f2‖max

≤ ρ‖f1 − f2‖ (‖a‖max ≤ ‖a‖2).
(8)
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Furthermore, since the base loss function `(u) is bounded by B, it’s easy to verify these three
surrogate loss functions are all bounded by B.

A.3 The base theorem for generalization analysis

Here, we give the base theorem used in the subsequent analysis, as follows.
Theorem 1 (The base theorem for generalization analysis). Assume the loss function L : Rc ×
{−1,+1}c → R+ is µ-Lipschitz continuous w.r.t. the first argument and bounded by M . Besides, (1)
and (2) in Assumption 1 are satisfied. Then, for any δ > 0, with probability at least 1− δ over the
draw of an i.i.d. sample S of size n, the following generalization bound holds for all f ∈ F:

R(f) ≤ R̂S(f) + 2
√

2µ

√
cΛ2r2

n
+ 3M

√
log 2

δ

2n
. (9)

Proof. It is straightforward to get this theorem by applying Theorem A.2 and Lemma A.2.

B Learning guarantees between Hamming and Subset Loss

B.1 The relationship between Hamming and Subset Loss

Lemma 2 (The relationship between Hamming and Subset Loss). For the classifier1 H(x) =
sgn ◦ f(x), the following inequalities hold:

L
0/1
h (H(x),y) ≤ L0/1

s (H(x),y) ≤ Ls(f(x),y), (10)

L0/1
s (H(x),y) ≤ cL0/1

h (H(x),y) ≤ cLh(f(x),y). (11)

Proof. For simplicity, we set aj = [[sgn(fj(xi)) 6= yj ]] ∈ {0, 1}, j ∈ [n]. Then,

L
0/1
h (H(x),y) =

1

c
{a1 + . . .+ ac} = mean{a1, . . . , ac}

L0/1
s (H(x),y) = max{a1, . . . , ac}

(12)

Thus, it can be easily verified that

L
0/1
h (H(x),y) ≤ L0/1

s (H(x),y), L0/1
s (H(x),y) ≤ cL0/1

h (H(x),y). (13)

Besides, the following inequalities hold:

L0/1
s (H(x),y) ≤ Ls(f(x),y), L

0/1
h (H(x),y) ≤ Lh(f(x),y). (14)

B.2 Learning guarantee of Algorithm Ah for Hamming Loss

Theorem 2 (Optimize Hamming Loss, Hamming Loss bound). Assume the loss function L = Lh,
where Lh is defined in Eq.(2). Besides, Assumption 1 is satisfied. Then, for any δ > 0, with
probability at least 1 − δ over S, the following generalization bound in terms of Hamming Loss
holds for all f ∈ F:

Rh0/1(sgn ◦ f) ≤ R̂hS(f) + 2
√

2ρ

√
Λ2r2

n
+ 3B

√
log 2

δ

2n
. (15)

Proof. Since L = Lh, we can get its Lipschitz constant (i.e. ρ√
c
) and bounded value (i.e. B) from

Lemma 1. Then, applying Theorem 1 and the inequality Rh0/1(sgn ◦ f) ≤ Rh(f), we can get this
theorem.

1Note that, for other classifiers, e.g. H(x) = t ◦ f(x), the first inequalities (i.e. L
0/1
h (H(x),y) ≤

L
0/1
s (H(x),y) and L

0/1
s (H(x),y) ≤ cL

0/1
h (H(x),y)) in the following also hold.

4



B.3 Generalization bound for the classical Binary Relevance

Corollary 1 (Binary Relevance [4], Hamming Loss bound). Assume the loss function L = Lh, where
Lh is defined in Eq.(2) and the base loss function is the hinge loss `(u) = max(0, 1− u). Besides,
Assumption 1 is satisfied. Then, for any δ > 0, with probability at least 1− δ over S, the following
generalization bound in terms of Hamming Loss holds for all f ∈ F .

Rh0/1(sgn ◦ f) ≤ R̂hS(f) + 2
√

2

√
Λ2r2

n
+ 3B

√
log 2

δ

2n
(16)

Proof. Since the hinge loss `(u) = max(0, 1− u) is 1-Lipschitz, we can straightforwardly get this
corollary by applying Theorem 2.

B.4 Learning guarantee of Algorithm Ah for Subset Loss

Theorem 3 (Optimize Hamming Loss, Subset Loss bound). Assume the loss function L = cLh,
where Lh is defined in Eq.(2). Besides, Assumption 1 is satisfied. Then, for any δ > 0, with
probability at least 1− δ over S, the following generalization bound in terms of Subset Loss holds
for all f ∈ F:

Rs0/1(sgn ◦ f) ≤ cRh0/1(sgn ◦ f) ≤ cR̂hS(f) + 2
√

2ρc

√
Λ2r2

n
+ 3Bc

√
log 2

δ

2n
. (17)

Proof. Since L = cLh, we can get its Lipschitz constant (i.e. ρ
√
c) and bounded value (i.e. Bc) from

Lemma 1. Then, applying Theorem 1, we can get that, for any δ > 0, with probability at least 1− δ
over S, the following generalization bound holds for all f ∈ F :

cRh(f) ≤ cR̂hS(f) + 2
√

2ρc

√
Λ2r2

n
+ 3Bc

√
log 2

δ

2n
. (18)

Besides, from Lemma 2 (i.e. InEq.(11)), we can get the inequalityRs0/1(sgn◦f) ≤ cRh0/1(sgn◦f) ≤
cRh(f). Thus, we can get this theorem.

B.5 Learning guarantees of Algorithm As for Subset and Hamming Loss

Theorem 4 (Optimize Subset Loss, Subset and Hamming Loss bounds). Assume the loss function
L = Ls, where Ls is defined in Eq.(4). Besides, Assumption 1 is satisfied. Then, for any δ > 0,
with probability at least 1− δ over S, the following generalization bounds in terms of Subset and
Hamming Loss hold for all f ∈ F:

Rh0/1(sgn ◦ f) ≤ Rs0/1(sgn ◦ f) ≤ R̂sS(f) + 2
√

2ρ

√
cΛ2r2

n
+ 3B

√
log 2

δ

2n
. (19)

Proof. Since L = Ls, we can get its Lipschitz constant (i.e. ρ) and bounded value (i.e. B) from
Lemma 1. Then, applying Theorem 1, and the inequality Rh0/1(sgn ◦ f) ≤ Rs0/1(sgn ◦ f) ≤ Rs(f)

induced from Lemma 2 (i.e. InEq.(10)), we can get this theorem.

C Learning guarantees between Hamming and Ranking Loss

C.1 The relationship between Hamming and Ranking Loss

Lemma 3 (The relationship between Hamming and Ranking Loss). For the Hamming and Ranking
Loss, the following inequality holds:

L0/1
r (f(x),y) ≤ cL0/1

h (sgn ◦ f(x),y) ≤ cLh(f(x),y). (20)

Further, if Assumption 2 is satisfied, the following inequality holds:

L
0/1
h (t∗ ◦ f(x),y) ≤ cL0/1

r (f(x),y) ≤ cLr(f(x),y). (21)
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Proof. (1). For the first inequality, the following holds:

L0/1
r (f(x),y) ≤ L0/1

r (sgn ◦ f(x),y)

=
1

|Y +||Y −|
∑
p∈Y +

∑
q∈Y −

[[sgn(fp(x)) ≤ sgn(fq(x))]]

=
1

|Y +||Y −|

[
|Y −|

∑
p∈Y +

[[sgn(fp(xi)) 6= 1]] + |Y +|
∑
q∈Y −

[[sgn(fq(xi)) 6= −1]]−

{ ∑
p∈Y +

[[sgn(fp(xi)) 6= 1]]

}{ ∑
q∈Y −

[[sgn(fq(xi)) 6= −1]]

}]

≤ 1

|Y +||Y −|

[
|Y −|

∑
p∈Y +

[[sgn(fp(xi)) 6= 1]] + |Y +|
∑
q∈Y −

[[sgn(fq(xi)) 6= −1]]

]

=

∑
p∈Y + [[sgn(fp(xi)) 6= 1]]

|Y +|
+

∑
q∈Y − [[sgn(fq(xi)) 6= −1]]

|Y −|

≤ |Y +|+ |Y −|
min{|Y +|, |Y −|}

∑
p∈Y + [[sgn(fp(xi)) 6= 1]] +

∑
q∈Y − [[sgn(fq(xi)) 6= −1]]

|Y +|+ |Y −|

=
c

min{|Y +|, |Y −|}
L

0/1
h (sgn ◦ f(x),y) (|Y +|+ |Y −| = c)

≤ c

min{|Y +|, |Y −|}
Lh(f(x),y)

≤ cLh(f(x),y) (1 ≤ min{|Y +|, |Y −|} ≤ c

2
).

(22)

In summary, the following holds:

L0/1
r (f(x),y) ≤ c

min{|Y +|, |Y −|}
L

0/1
h (sgn ◦ f(x),y) ≤ cL0/1

h (sgn ◦ f(x),y) ≤ cLh(f(x),y).

(23)
(2). For the second inequality, since the oracle optimal thresholding function t∗(f) exists, the
following holds:

L
0/1
h (t∗ ◦ f(x),y) =

∑
p∈Y + [[t∗(fp(xi)) 6= 1]] +

∑
q∈Y − [[t∗(fq(xi)) 6= −1]]

|Y +|+ |Y −|

≤
∑
p∈Y + [[t∗(fp(xi)) 6= 1]]

|Y +|
+

∑
q∈Y − [[t∗(fq(xi)) 6= −1]]

|Y −|

=
1

|Y +||Y −|

[
|Y −|

∑
p∈Y +

[[t∗(fp(xi)) 6= 1]] + |Y +|
∑
q∈Y −

[[t∗(fq(xi)) 6= −1]]

]

≤ 1

|Y +||Y −|

[
|Y −|

∑
p∈Y +

[[t∗(fp(xi)) 6= 1]] + |Y +|
∑
q∈Y −

[[t∗(fq(xi)) 6= −1]]

+

{ ∑
p∈Y +

[[t∗(fp(xi)) 6= 1]]

}{ ∑
q∈Y −

[[t∗(fq(xi)) 6= −1]]

}]
= 4.

(24)

In the following, we need to go on the proof by three cases.
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Case (a). When
∑
p∈Y + [[t∗(fp(xi)) 6= 1]] = 0, the following holds:

4 =
1

|Y +||Y −|

[
|Y +|

∑
q∈Y −

[[t∗(fq(xi)) 6= −1]]

]
1©
≤ |Y +|L0/1

r (f(x),y)

≤ cL0/1
r (f(x),y)

≤ cLr(f(x),y).

(25)

For the inequality 1©, the last element in the predicted relevant label list (according to the non-
ascending order) should be a real relevant label due to the optimality of t∗(f). Thus, the minimum

value of L0/1
r (f(x),y) should be

∑
q∈Y− [[t∗(fq(xi)) 6=−1]]

|Y +||Y −| . Hence, the inequality 1© holds.

Case (b). When
∑
q∈Y + [[t∗(fq(xi)) 6= −1]] = 0, the following holds:

4 =
1

|Y +||Y −|

[
|Y −|

∑
p∈Y +

[[t∗(fp(xi)) 6= 1]]

]
2©
≤ |Y −|L0/1

r (f(x),y)

≤ cL0/1
r (f(x),y)

≤ cLr(f(x),y).

(26)

For the inequality 2©, the first element in the predicted irrelevant label list (according to the non-
ascending order) should be a real irrelevant label due to the optimality of t∗(f). Thus, the minimum

value of L0/1
r (f(x),y) should be

∑
p∈Y + [[t∗(fp(xi))6=1]]

|Y +||Y −| . Hence, the inequality 2© holds.

Case (c). When
∑
p∈Y + [[t∗(fp(xi)) 6= 1]] 6= 0 and

∑
q∈Y + [[t∗(fq(xi)) 6= −1]] = 0, the following

holds. Besides, for notation clarity, we first set

♣ =
1

|Y +||Y −|

[ ∑
p∈Y +

[[t∗(fp(xi)) 6= 1]] +
∑
q∈Y −

[[t∗(fq(xi)) 6= −1]]

+

{ ∑
p∈Y +

[[t∗(fp(xi)) 6= 1]]

}{ ∑
q∈Y −

[[t∗(fq(xi)) 6= −1]]

}]
.

(27)

Then, we have

4 ≤ max{|Y +|, |Y −|} × ♣
3©
≤ cL0/1

r (f(x),y)

≤ cLr(f(x),y).

(28)

In this case, due to the optimality of t∗(f), the last element in the predicted relevant label list
(according to the non-ascending order) should be a real relevant label and the first element in the
predicted irrelevant label list should be a real irrelevant label. Then, for the inequality 3©, the
minimum value of L0/1

r (f(x),y) is ♣, where in the predicted relevant list, all the real relevant labels
(except the last element) have bigger score than other real irrelevant labels, and in the predicted
irrelevant set, all the real relevant labels have bigger score than other real irrelevant labels (except the
first element). Thus the inequality holds.

In summary, the following always holds:

L
0/1
h (t∗ ◦ f(x),y) ≤ max{|Y +|, |Y −|}L0/1

r (f(x),y) ≤ cL0/1
r (f(x),y) ≤ cLr(f(x),y). (29)
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C.2 Learning guarantee of Algorithm Ah for Ranking Loss

Theorem 5 (Optimize Hamming Loss, Ranking Loss bound). Assume the loss function L = cLh,
where Lh is defined in Eq.(2). Besides, Assumption 1 is satisfied. Then, for any δ > 0, with
probability at least 1− δ over S, the following generalization bound in terms of Ranking Loss holds
for all f ∈ F:

Rr0/1(f) ≤ cRh0/1(sgn ◦ f) ≤ cR̂hS(f) + 2
√

2ρc

√
Λ2r2

n
+ 3Bc

√
log 2

δ

2n
. (30)

Proof. Since L = cLh, we can get its Lipschitz constant (i.e. ρ
√
c) and bounded value (i.e. Bc) from

Lemma 1. Then, applying Theorem 1, and the inequality Rr0/1(f) ≤ cRh0/1(sgn ◦ f) ≤ cRh(f)

induced from Lemma 3 (i.e. InEq.(20)), we can get this theorem.

C.3 Learning guarantee of Algorithm Ar for Ranking Loss

Theorem 6 (Optimize Ranking Loss, Ranking Loss bound). Assume the loss function L = Lr, where
Lr is defined in Eq.(6). Besides, Assumption 1 is satisfied. Then, for any δ > 0, with probability at
least 1− δ over S, the following generalization bound in terms of Ranking Loss holds for all f ∈ F :

Rr0/1(f) ≤ R̂rS(f) + 2
√

2ρ

√
cΛ2r2

n
+ 3B

√
log 2

δ

2n
. (31)

Proof. Since L = Lr, we can get its Lipschitz constant (i.e. ρ) and bounded value (i.e. B) from
Lemma 1. Then, applying Theorem 1 and the inequality Rr0/1(f) ≤ Rr(f), we can get this
theorem.

C.4 Generalization bound for the classical Rank-SVM

Corollary 2 (Rank-SVM [5], Ranking Loss bound). Assume the loss function L = Lr, where Lr
is defined in Eq.(6) and the base loss function is the hinge loss `(u) = max(0, 1 − u). Besides,
Assumption 1 is satisfied. Then, for any δ > 0, with probability at least 1− δ over S, the following
generalization bound in terms of Ranking Loss holds for all f ∈ F:

Rr0/1(f) ≤ R̂rS(f) + 2
√

2

√
cΛ2r2

n
+ 3B

√
log 2

δ

2n
. (32)

Proof. Since the hinge loss `(u) = max(0, 1− u) is 1-Lipschitz, we can straightforwardly get this
corollary by applying Theorem 6.

C.5 Learning guarantee of Algorithm Ar for Hamming Loss

Theorem 7 (Optimize Ranking Loss, Hamming Loss bound). Assume the loss function L = cLr,
where Lr is defined in Eq.(6). Besides, Assumption 1 and 2 are satisfied. Then, for any δ > 0, with
probability at least 1 − δ over S, the following generalization bound in terms of Hamming Loss
holds for all f ∈ F:

Rh0/1(t∗ ◦ f) ≤ cRr0/1(f) ≤ cR̂rS(f) + 2
√

2ρ

√
c3Λ2r2

n
+ 3Bc

√
log 2

δ

2n
. (33)

Proof. Since L = cLr, we can get its Lipschitz constant (i.e. ρc) and bounded value (i.e. Bc)
from Lemma 1. Then, applying Theorem 1, and the inequality Rh0/1(t∗ ◦ f) ≤ cRr0/1(f) ≤ cRr(f)

induced from Lemma 3 (i.e. InEq.(21)), we can get this theorem.

8



D Learning guarantees between Subset and Ranking Loss

D.1 The relationship between Subset and Ranking Loss

In this section, we first analyze the relationships between Subset and Ranking Loss. Then, we analyze
the learning guarantee of As on the Ranking Loss measure. Last, we analyze the learning guarantee
of Ar on the Subset Loss measure.

Lemma 4 (The relationship between Subset and Ranking Loss). For the Subset and Ranking Loss,
the following inequality holds:

L0/1
r (f(x),y) ≤ L0/1

s (sgn ◦ f(x),y) ≤ Ls(f(x),y). (34)

Further, if Assumption 2 is satisfied, the following inequality holds1:

L0/1
s (t∗ ◦ f(x),y) ≤ c2L0/1

r (f(x),y) ≤ c2Lr(f(x),y). (35)

Proof. For the first inequality, the following holds:

L0/1
r (f(x),y) ≤ L0/1

r (sgn ◦ f(x),y)

≤ L0/1
s (sgn ◦ f(x),y) (the property of subset and ranking loss)

≤ Ls(f(x),y) (surrogate loss upper bounds 0/1 loss).
(36)

For the second inequality, we can get it from Lemma 2 and 3, i.e.

L0/1
s (t∗ ◦ f(x),y) ≤ cL0/1

h (t∗ ◦ f(x),y) (Lemma 2)

≤ c2L0/1
r (f(x),y) (Lemma 3)

≤ c2Lr(f(x),y) (surrogate loss upper bounds 0/1 loss).
(37)

From this lemma, we can observe that when optimizing Subset Loss with its surrogate loss function,
it also optimizes an upper bound for Ranking Loss. Similarly, when optimizing Ranking Loss with
its surrogate, it also optimizes an upper bound for Subset Loss which depends on O(c2).

D.2 Learning guarantee of Algorithm As for Ranking Loss

As has a learning guarantee w.r.t Ranking Loss as follows.

Theorem 8 (Optimize Subset Loss, Ranking Loss bound). Assume the loss function L = Ls, where
Ls is defined in Eq.(4). Besides, Assumption 1 is satisfied. Then, for any δ > 0, with probability at
least 1− δ over S, the following generalization bound in terms of Ranking Loss holds for all f ∈ F .

Rr0/1(f) ≤ Rs0/1(sgn ◦ f) ≤ R̂sS(f) + 2
√

2ρ

√
cΛ2r2

n
+ 3B

√
log 2

δ

2n
(38)

Proof. Since L = Ls, we can get its Lipschitz constant (i.e. ρ) and bounded value (i.e. B) from
Lemma 1. Then, applying Theorem 1, and the inequality Rr0/1(f) ≤ Rs0/1(sgn ◦ f) ≤ Rs(f)

induced from Lemma 4 (i.e. InEq.(34)), we can get this theorem.

From this theorem, we can observe thatAs has a generalization bound w.r.t. Ranking Loss depending
on O(

√
c). Intuitively, the learning guarantee of As for Ranking Loss comes from its learning

guarantee for Subset Loss.

1Note that, this inequality depends on O(c2) and we believe it can be improved.
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D.3 Learning guarantee of Algorithm Ar for Subset Loss

Ar has a learning guarantee w.r.t Subset Loss as follows.
Theorem 9 (Optimize Ranking Loss, Subset Loss bound). Assume the loss function L = c2Lr,
where Lr is defined in Eq.(4). Besides, Assumption 1 and 2 are satisfied. Then, for any δ > 0, with
probability at least 1− δ over S, the following generalization bound in terms of Subset Loss holds
for all f ∈ F .

Rs0/1(t∗ ◦ f) ≤ c2Rr0/1(f) ≤ c2R̂rS(f) + 2
√

2ρ

√
c5Λ2r2

n
+ 3Bc2

√
log 2

δ

2n
(39)

Proof. Since L = c2Lr, we can get its Lipschitz constant (i.e. ρc2) and bounded value (i.e. Bc2)
from Lemma 1. Then, applying Theorem 1, and the inequality Rs0/1(t∗ ◦f) ≤ c2Rr0/1(f) ≤ c2Rr(f)

induced from Lemma 4 (i.e. InEq.(35)), we can get this theorem.

From this theorem, we can observe thatAr has a generalization bound for Subset Loss which depends
on O(c2). When the label space is large, Ar would perform poorly for Subset Loss.

E Experiments

E.1 Optimization

For Ah and As, they are both convex optimization problems, which lots of off-the-shelf opti-
mization algorithms can be employed to solve. Here we utilize the recent stochastic algorithm
SVRG-BB [6] to efficiently train the linear models. For clarity, Ah and As can both be denoted by
minW

1
n

∑n
i gi(W), where gi(W) = L(W>xi,yi) + λ‖W‖2 and L denotes Lh or Ls. Further-

more, the detailed optimization algorithm is summarized in Algorithm 1.

Algorithm 1 SVRG-BB to solve Ah (or As)
Input: initial step size η0, update frequency m
Output: W∗ ∈ Rd×c

1: Initialize W̃0 as zero matrix
2: for s = 0, 1, ... do
3: Gs = 1

n

∑n
i=1∇gi(W̃s)

4: if s > 0 then
5: ηs = 1

d‖W̃s − W̃s−1‖2F /Tr((W̃s − W̃s−1)>(Gs −Gs−1))
6: end if
7: W0 = W̃s

8: for t = 0, 1, ...,m− 1 do
9: Randomly pick it ∈ {1, 2, ..., n}

10: Wt+1 = Wt − ηs(∇git(Wt)−∇git(W̃s) + Gs)
11: end for
12: W̃s+1 = Wm

13: end for
14: return W∗ = W̃s+1
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