
A Novel Automated Curriculum Strategy to Solve
Hard AI Planning Instances

Anonymous Author(s)
Affiliation
Address
email

1 Automated Curriculum Framework1

Herein we provide additional details concerning the different algorithms comprising our automated2

curriculum framework. For the sake of completeness, the overview of the workflow of our automated3

curriculum framework is depicted in Figure 1 and the formal algorithm description can be found in4

Algorithm 1. The different algorithms include pointers to their sub-routine algorithms.

Figure 1: The workflow of our automated curriculum framework, which is formally described
in Algorithm 1.

5

Algorithm 1: Automated Curriculum Learning framework overview
Input: Sokoban instance I, solution length limit L, number of iterations T ;
Call TaskPool(I) (Algorithm 2) to create a pool of sub-instances;
for t = 1, ..., T do

Use uniformly sampling (baseline) or difficulty quantum momentum bandit (Algorithm 3) to
select a batch B from the task pool;

for s ∈ B do
for i = 1, ..., L do

Use MCTS(s) (Algorithm 4) to select the best move a for s;
s = next_state(s, a);
if s is a goal state then

Generate data for training the policy/value network of the RL agent (i.e., for each
MCTS node (board) along the branch from the input state (root) to the goal state,
estimated distance to goal and distribution of visits to child nodes);

Send "success" feedback to the sampler/bandit;
Break;

end
end
if Solution not found then

Send "failure" feedback to the sampler/bandit;
end

end
Train the policy deep neural network of the RL agent;

end

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.



The master algorithm (Algorithm 1), starts by creating a task pool of sub-instances from the target6

instance (Algorithm 2) that we need to solve, and potentially from other unsolved instances to further7

boost performance (option MIX). Typically the task pool contains 100, 000 tasks or sub-instances.8

In each iteration, the sampler/bandit picks a batch of task sub-instances from the pool and passes9

it to the RL agent. A batch has typically 500 tasks or sub-instances (Algorithm 3). The RL agent,10

which is based on Monte-Carlo tree search (Algorithm 4), augmented with neural networks (CNN or11

GNN), attempts to solve these instances. For each instance in the batch, MCTS will seek a solution12

with a given resource budget, and for each successful solution generated, MCTS will also generate a13

chain of new training data for the policy/value deep network (trainer) to further update its network14

parameters. The MCTS success/failure status of each instance is sent back to the sampler/bandit to15

adjust its weights. Each successful attempt not only generates a valid solution but also improves16

policy/value data for the trainer to train the deep network of the agent. The trainer keeps a pool of17

size 100000 to store the most recent training data generated by MCTS, and train the network. Each18

training batch is uniformly randomly sampled. All experiments are done on a machine with 2x1819

core Xeon Skylake 6154 CPUs and 5 Nvidia Tesla V100 16GB GPUs, and all training component20

use Adam with learning rate 0.002 as the default optimizer. The number of MCTS simulation R is21

set to 1600 and the batch size M that Exp3 samples in each iteration is set to 500.22

Algorithm 2: function TaskPool(s)
Input: Sokoban instance I;
Parameters: The pool size P ;
p = {};
boxes = all initial box locations in I;
goals = all initial goal locations in I;
N = size_of(boxes);
for i = 1, ..., P do

n = UniformRand([1, N ]);
rand_boxes = A random subset of boxes with size n;
rand_goals = A random subset of goals with size n;
p = p

⋃
SokobanInstance(rand_boxes, rand_goals) (i.e., first build a empty Sokoban

instance with wall and player location of I unchanged, and then add rand_boxes and
rand_goals to the board);

end
return p;

Algorithm 3: Exp3 to sample batches of instances using difficulty quantum momentum heuristic
Input: a task pool P;
Parameters: batch size M , exploration ratio γ ∈ [0, 1], momentum α ∈ [0, 1], total iteration T ;
Initialization: N = size_of(P ), ωi(1) = 1, hi(1) = 0 for i = 1, ..., N ;
for t = 1, ..., T do

pi(t) = (1− γ) ωi(t)∑N
k=1 ωk(t)

+ γ
N for i = 1, ..., N ;

Sample a non-repeated batch B1(t), ..., BM (t) from P according to the probability p(t);
Run the RL agent on the batch B(t) and train on the collected data;
rj(t) = (hBj(t)(t)− 1succeed on Bj(t))

2 for j = 1, ...,M ;

for j = 1, ..,M do
θj(t) = rj(t)/pBj(t)(t);
ωBj(t)(t+ 1) = ωBj(t)(t) · exp(γ · θj(t)/N);
hBj(t)(t+ 1) = α · hBj(t)(t) + (1− α) · rj(t);

end
end

2



Figure 2: A whole simulation of MCTS. White and red circles correspond to the Monte Carlo tree
before simulation. A simulation starts from the root node and goes down until it reaches a leaf node
(the lowest red circle). Then an Expand procedure follows and adds new child nodes (blue) beneath
the expanded node.

Algorithm 4: function MCTS(s0)
Parameters: maximum solution length L, action set A, number of MCTS simulations R, visit
count N(s, a);
Input: board state s0 to seek a solution;
for l = 1, ..., L do

while
∑
a∈AN(sl−1, a) < R do

Simulate(sl−1) (Algorithm 5, see Figure 2 for the demonstration of a single simulation);
end
best_action = argmaxaN(sl−1, a);
sl = NextState(sl−1, best_action);
if sl is a goal state then

for i = 0, ..., l − 1 do
Add 〈si,Normalized(N(si)), l − i〉 to the trainer;

end
Break;

end
end

2 Network Architecture23

We use convolution neural network (CNN) as the baseline and compare its performance with graph24

network (GN) to show how different architecture setting affects the final result. The input to the CNN25

network is a 7×H ×W image stack consisting of 7 features planes with height H and width W .26

Each feature plan corresponds to walls, empty squares, empty goal squares, boxes, boxes on goal27

square, player-reachable squares, player-reachable squares on goal square, respectively. We use the28

standard ResNet-18 to extract the feature of the input Sokoban instance. For graph network, we build29

the graph by assigning a node to each cell of the board input and adding edges to each pair of adjacent30

cells. Horizontal and vertical edges have two different labels to further enhance spatial information31

to GN. Each input board cell lies in seven different categories as the same in the CNN architecture.32

We learn a embedding from these seven categories to a feature vector of length 128 as the starting of33

the GraphNet (Algorithm 7). We set the number of iterations D of graph network to 10. The output34

feature of graph network is further sent to two different multiple perceptions (MLP) to predict action35

probability (p) and remaining distance v of the input state s.36

The output of CNN and GN consists of two predictions: action probability p and estimated remaining37

step v. We use Softmax activation for the probability p. Since we set a maximum solution length L38

throughout the experiment and v ∈ [0, L], we normalize the step prediction to [0, 1] and use Tanh39

activation for the value v.40

3



Algorithm 5: function Simulate(s) (See also see Figure 2).
Parameters: visit count N(s, a), mean action value Q(s, a);
while s not a goal state do

if s is a leaf node then
Expand(s) (Algorithm 3);

end
else

best_action = argmaxaQ(s, a) + cput ·
√

1+
∑

bN(s,b)

1+N(s,a) · pa;
s = NextState(s, best_action);

end
end

Algorithm 6: function Expand(s)
Parameters: visit count N(s, a), mean action value Q(s, a);
p, v = fθ(s);
for a ∈ A do

N(s, a) = 0;
Q(s, a) = CuriosityReward(NextState(s, a));

end
while v not root do

r = Parent(v);
a = PreviousAction(v);
Q(r, a) = (Q(r, a) ·N(r, a) + v)/(N(r, a) + 1);
N(r, a) = N(r, a) + 1;
v = r;

end

3 Curiosity Reward41

We use random network distillation (RND) as our curiosity reward generator. Specifically, we build a42

graph network fδ with randomized parameters and fix the parameters throughout the whole procedure.43

We then try to learn another graph network fτ with different randomized initialization and try to make44

the prediction of fτ as similar as the one of fδ . For each state s that is requested for a curiosity reward,45

we set CuriosityReward(s) = l2 distance between fτ (s) and fδ(s). After each reward prediction, the46

input state s is sent to a training pool of size 100000. At the end of each iteration, we train f_τ for47

100 epochs of batch size 64 to make its output closer to that of fδ using squared error loss between48

the outputs of the two networks.49

4



Algorithm 7: Graph Neural Network extracting feature from a Sokoban board
Input: graph G(V, E), input features {xv,∀v ∈ V}, depth D, neighborhood function
N : v → 2V ;
Output: A global feature of the graph h0v = xv∀, v ∈ V;
for d = 1, ..., D do

gdv = Aggregatek(h
d−1
v ,∀u ∈ N (v));

hdv = Normalized(ReLU(W d · {hd−1v , gdv}));
end
return Average(hDv ) for v ∈ V;

5


	Automated Curriculum Framework
	Network Architecture
	Curiosity Reward

