
We thank the reviewers for their valuable insights and comments, and for pointing out corrections in the manuscript.1

We will implement their advice and address all of their remarks in the final version of the manuscript.2

One of the referees raised a concern about Assumption 1 (random uniform distribution of the arms). Random design is3

a classical modelling in many different topics (matrix completion, random design regression, supervised classification).4

In the bandit literature, the problem of contextual bandits, similar in some respects to the Finite Continuum-Armed5

Bandit (FCAB) problem, has been studied in Perchet and Rigolet (2013) under the assumption that contexts be randomly6

distributed in [0, 1]d. We underline that the FCAB problem was originally motivated by a pair matching problem,7

where one aims at discovering unobserved edges on a graph. A typical modelling in this setting is that each node is8

characterised by a random feature ξi, and that given those features the probability that two nodes i and j are linked by9

an edge is given by a function of ξi and ξj . This is the case in the well known graphon model; other models of graphs10

with random covariates have also been considered in Deshpande et al. (2018).11

More restrictive, is the assumption of uniform distribution of the arms. Yet, our proofs can readily be extended to cover12

any distribution with a positive density on [0, 1]. We chose to focus on the uniform distribution to avoid burdening our13

proofs with additional technical details. As stated, our aim is to consider the problem of resource allocation with limited14

budget, which is of practical importance and has not been addressed in the literature, and to expose as simply as possible15

the differences and similarities between this problem and related problems (among which is the Continuum-Armed16

Bandits (CAB)).17

We thank the referees for raising a very interesting question regarding the dependency of our regret bound on p. We18

can already address this question without modifying our proofs. In our paper, we show that in the FCAB, when the19

budget T is a fixed proportion p of the number of arms N , the regret scales as T 1/3 log(T )4/3. On the other hand, as p20

decreases, we expect the problem to reduce to a CAB. In the limit where p is sufficiently small, we therefore expect21

the regret to scale as
√
T log(T ). Our answer indicates that this is indeed the case, and that a smooth transition occurs22

between those two settings as p = T/N goes to 0. We present our results before providing a sketch of proof.23

To highlight the dependency ofRT on T , we consider regimes where T = cNα for some α ∈ [0, 1] and c ∈ (0, 1/2] (the24

choice c ≤ 1/2 reflects the fact that we are interested in settings where T may be small compared to N , and is arbitrary).25

Defining εN = (2 log log(N)/3− log(c))/ log(N), we obtain that for α ∈ (2/3 + εN , 1], RT ≤ CT 1/(3α) log(T )4/326

with large probability for some constant C depending on Q, L and c. This bound is obtained for the optimal27

choice of the parameters K = N1/3 log(N)−2/3 and δ = N−4/3. Our lower bound on the regret matches this28

rate up to poly-logarithmic factors. The setting considered in our paper corresponds to the case where α = 1, and29

RT = O(T 1/3 log(T )4/3). As expected, as α decreases, the regret increases. When α→ 2/3 + εN , the regret is of the30

order
√
T log(T ), and K =

√
T/ log(T ). We underline that these values correspond respectively to the regret and the31

optimal value for K in the CAB. This should come as no surprise, as α = 2/3 + εN corresponds to a transition from a32

setting where the finiteness is predominant, to a setting where the difficulty of the problem is that of a CAB.33

To understand this transition, note that when α = 2/3 + εN , we have T = N/K. We recall that all intervals contain34

approximately N/K arms. Thus, when α > 2/3 + εN , T > N/K, the oracle strategy exhausts all arms in the35

best interval, and it must select arms in other intervals, so the finiteness is a constraining issue. On the contrary, if36

α ≤ 2/3 + εN , no interval is ever exhausted by any strategy, and our problem becomes very close to the CAB. The37

oracle strategy only selects arms from the interval with highest mean reward. The analysis of the problem becomes38

much simpler, as results can be directly inferred from Auer et al. (2007) by noticing that Algorithm UCBF never39

exhausts any intervals, and is therefore a variant of Algorithm UCBC. In this case, the optimal choice for the number40

of intervals remains K =
√
T/ log(T ), and yields a regret bound RT = O(

√
T log(T )) (choosing as previously41

K = N1/3 log(N)−2/3 would produce too many intervals, which we would not have time to explore). The following42

table summarises these results for T = cNα.

α 0 ≤ α ≤ 2/3 + εN 2/3 + εN < α ≤ 1

Optimal K K =
√
T/ log(T ) K = N1/3 log(N)−2/3

Regret RT = O(
√
T log(T )) RT = O(T 1/(3α) log(T )4/3)

43

Sketch of proof: Along the proof of Theorem 1 (at line 486 in the Appendix), we show that for δ = N−4/3 and the44

optimal choice K = N1/3 log(N)−2/3, with large probability RT ≤ CN1/3 log(N)4/3 for some C depending only on45

L and Q when K > p−1∧ (1−p)−1. This bound can be rephrased as RT ≤ CT 1/(3α) log(T )4/3, where C depends on46

L, Q and c. We assumed that T ≤ N/2, so p ≤ 1− p, and the condition K > p−1 ∧ (1− p)−1 is met if α > 2/3+ εN .47

On the other hand, Theorem 2 shows that with positive probability, RT ≥ 0.01T 1/3p−1/3 = 0.01T 1/(3α)c−1/(3α)48

when N ≥ NL,p, where NL,p is defined at line 504 in the Appendix. This condition is met when N is larger than some49

absolute constant, and α ≥ 2/3 + C/ log(N) for some constant C depending on L.50


