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A BBP transition and phase transition of spectra initialization

In non-convex estimation problems, such as Phase Retrieval, big advantages follow from the develop-
ment of well tailored spectral methods to be used as initialization step. Recently the outcomes of one
such spectral method widely used in Phase Retrieval and based on the construction of a data matrix

Mi,j =
1

αN

αN∑
m=1

T (Ym)um,ium,j =
1

α

αN∑
m=1

T (Ym)xm,ixm,j (A.1)

from sensing vectors uuum, with elements of order one (or sensing vectors xxxm on the unitary sphere,
according to our definition) and measurements Ym has been exactly derived [1]. The method involves
a pre processing function T (Ym) that can be optimized to further improve the results. Once the data
matrix is constructed the eigenvector v1 corresponding to the largest eigenvalue λ1 can be used as an
estimator of the signal W ∗.
To obtain the performances of this kind of spectral initialization it is assumed [1] that the measure-
ments Ym are independently drawn according to a density function conditional on ym = 〈xmW ∗〉
associated to the particular acquisition process, and it is recalled that ym are themselves Gaussian
random variables, due to the definition of the problem. Finally in the large N limit the empirical
average used to construct the data matrix can be replaced by the expected value EY,y over these two
distributions.
The result [1] goes as follows. Given two functions defined as
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and
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with λ > T (Y ), and given
ξα(λ) = Ψα(max{λ, λ̄}) (A.4)

with
λ̄ = arg min Ψα(λ) , (A.5)

the two largest eigenvalues ofM, λ1 and λ2, are such that

λ1 →P ξα(λ∗α) , (A.6)
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with λ∗α the solution of ξα(λ) = Φ(λ), and

λ2 →P Ψα(λ̄). (A.7)

A phase transition occurs at the largest α such that λ1 = λ2, which can be evaluated by imposing
Ψ′α(λ∗α) = 0 or equivalently
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)
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which corresponds to Ψ′α(λ̄) = 0 as at that point λ∗α = λ̄. At larger α the largest eigenvalue pops out
from the spectrum bulk (λ1 6= λ2) and the corresponding eigenvector develops a finite correlation
with the signal, in a phenomenon called BBP transition [2], hence the definition of αBBP when this
occurs.

It is interesting to note that the structure of the data matrix is closely reminiscent of the structure of
the first term in the Hessian of our problem (see Eq. (4)). Indeed incidentally the original idea of this
spectral method for initialization can be traced back to the study of Hessian’s principal directions [3].
In particular we observe that
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provided that the pre processing function is
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Note that we consider a case for which measurements Y have a one to one correspondence with y
(i.e. Y = y2). Moreover in the problem discussed empirical averages involve not only measurements
Y but also estimated ŷ = 〈xW 〉 in correspondence of some W of interest. Therefore the expected
value, Eŷ,y, should be taken over the relative joint probability distribution function P (ŷ, y). In
conclusion, the results just mentioned tell immediately what is the largest α (i.e. αBBP ):
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before the smallest eigenvalue of the Hessian pops out from the spectrum bulk, being also associated
to an eigenvector with finite projection on the signal to be detected.

In this case we are focusing on performance of a gradient descent dynamics, which for mean-field
spin-glasses naturally gets stuck on what are called threshold states [4]. We argue that the gradient
descent dynamics applied to Phase Retrieval, when retrieval fails, will also approach threshold states
which are mainly characterized by their property of being marginal, i.e. the smallest eigenvalue
of their Hessian is null. This qualifies the relevant W as a typical configuration belonging to
threshold states and P (ŷ, y) as the joint probability distribution at threshold states. Moreover it
allows to introduce the marginal condition λ2 = λ1 = −µ, which can be re-expressed by equating
λ2 = Ψα(λ̄) to −µ:
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Finally the definition of the spherical parameter (3) in the main text must be considered to close the
system of equations

µ =
αBBP

2
Eŷ,y (∂ŷ`(ŷ, y)ŷ) (A.13)

to be used to determine αBBP, λ̄, µ in correspondence of P (ŷ, y) from threshold states.

The resulting picture is as follows. In the small α regime, gradient descent will systematically
approach threshold states and remain stuck there. However starting from αBBP in the Hessian of
these states, that is otherwise marginal, an isolated eigenvalue pops out from the bulk immediately
becoming negative. Moreover the eigenvector associated to such negative direction, naturally followed
by gradient descent, has a finite overlap with the signal. Therefore, we argue, it is from that point on
that the signal should be easily retrieved.
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B Replica Analysis

The field of physics of disordered systems has developed numerous tools to deal with random
systems [5, 6]. At an abstract level of thinking, using those tools means that we identify the inference
problem with a physical systems that subject to a certain potential. The randomness comes from
the having a dataset made of random projections. The estimator is mapped into a spherical spin and
the loss function becomes the energy - or Hamiltonian. Finally the system the temperature in which
the system lives is sent to zero and the system tend to the lowest energy, herefore minimizing the
loss. The ground truth in the inference problem becomes equivalent to a minimum planted in the
energetic landscape [7]. For example this formulation is equivalent to a physical system that before
the experiment is liquid, but as we cool it down it can become either a crystal - an ordered solid - or a
glass - an amorphous solid. Finding the crystal means reconstructing the signal.

B.1 Partition function

Moving to the mathematical aspects of the problem. We define a Gibbs distribution associated
with the problem and evaluate its normalization constant - the partition function Z . The partition
function, and in particular its logarithm divided by the temperature - the free energy -, contains
all the information we aim to understand in the problem. By taking the proper derivatives, and
possibly add an external field, we can compute relevant macroscopic properties such as: average
overlap with the ground truth, average loss achieved. In disordered system we have to consider the
additional complication given by the randomness. Therefor, we need to consider the average free
energy that is the average of the logarithm of a high-dimensional integral, that can be done by the
simple observation:

logZ = lim
n→0

Zn − 1

n
. (B.1)

Which for arbitrary n is not simpler than computing the logarithm, but it is much simpler if n ∈ N
and we perform an analytic continuation to n ∈ R. Under this - replica trick - the average of the
logarithm is equivalent to compute the average of the nth moment of the partition function and take
the limit. Formally the nth moment correspond to the partition function of n identical - replicated -
system that do not interact but with the same realization of the disorder.

The problem is now computing the moments of the partition function which in general is prohibitive
and we have to use an ansatz on the specific form of the solution, in particular we use the so called
replica symmetry breaking ansatz [5]. This largely reduces the number of parameters. Finally the
average free energy can be evaluated by set of saddle point equations.

We can now move to the analysis. The partition function already defined in the main text is
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and consider its nth moment - the replicated partition function -
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This is formally equivalent to have n independent systems. Introduce the overlaps with the projector
r

(a)
µ = 〈xxxµ,WWW a〉 with indices a = 0, . . . , n where a = 0 is the overlap with the ground truth and

the others are the overlaps with the estimators of the n systems. Introduce those quantities in the
replicated partition function via Dirac’s deltas using their Fourier transform
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Where D contains the normalization factor of the Fourier transform. We introduce the matrix of
overlaps between estimators and ground ground truthQQQ, Qab = 1

N 〈WWW a,WWW b〉. This is done using the
same idea of introducing delta function and gives a contribution N

2 log detQQQ to the action [8, 9]. The
equation can now be factorized in µ, so we can drop the µs from r and r̂. Observing that
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, (B.5)

we can integrate over r and r̂, and write a simplified replicated partition function Zn =∫ ∏n
a≥b=0 dQabe

NS(QQQ) with action
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(B.6)
where the first term is an entropic term that accounts for the degeneracy of the matrixQQQ in the space
of symmetric matrices. And the second term is an energetic term that accounts for the potential acting
on the system.

Observe that so far we did not make any ansatz on the structure of the overlap matrixQQQ. In the next
subsections we will consider the 1-step replica symmetry breaking ansatz (1RSB).

B.2 1 step replica symmetric breaking

The 1RSB scheme consists in making an ansatz on the structure of the overlap matrixQQQ [5]. The
assumption is that not all the replicated systems will have the same overlap - which correspond to
the replica symmetric ansatz - but the systems are clustered. Systems inside the same cluster will
have a larger overlap, systems outside the cluster will have a smaller overlap. This translates into
the following parameters: q1 overlaps inside the same cluster, q0 overlaps in different clusters, x
dimension of the clusters, finally m the overlap with the signal. Schematically we have

QQQ =



1 m m

m

(
1 q1 q1

q1 1 q1

q1 q1 1

)
q0

m q0

(
1 q1 q1

q1 1 q1

q1 q1 1

)
 (B.7)

withQQQ of dimension (n+ 1)× (n+ 1), and the inner matrices of dimension x× x.

The analysis proceed as in a standard way: we derive the 1RSB free energy with the associated saddle
point equations and move to the zero temperature limit [5, 6], we impose the marginal stability -
corresponding to the threshold states - [10], finally we derive the label distribution [11].

For notational convenience we call γa(x) the probability density function of a Gaussian with zero
mean and (co-)variance a, and we use the symbol ? to indicate the convolutions, i.e. f ? g(x) =∫
R f(x− t)g(t)dt.

We can plug Eq. (B.7) into Eq. (B.6) and obtain 1RSB formulation of the action.
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(B.8)

and using Eq. (B.1) the free energy is − 1
nβS1RSB.
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We can now take derivatives to find the saddle point equations.
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m
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where we define

f(1, ŷ, y) = log
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f(x, ŷ, y) =
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and Σ is a 2× 2 covariance matrix with entries Σ11 = 1, Σ12 = m and Σ22 = q0.

Zero temperature and parameter ansatz As the zero temperature goes to zero the order parame-
ters q1 and x needs to be rescaled with the temperature as q1 ≈ 1−χT and x ≈ zT with χ, z ∼ O(1).
Instead m and q0 will not be affected by the limit. The reason why some parameters need to be
rescaled is that as long as there is a positive temperature the replicated systems exploit this thermal
energy to fluctuate in the basin of the minimum, therefor their overlap q1 is given by average overlap
in the basin of attraction. When the temperature drops to zero the thermal goes to zero and all the
system shrink to a point. χ represent the fluctuation that systems can have when they receive an
infinitesimal amount of thermal energy. With the same physical reason, also the cluster itself shrinks
to a point. The rate of convergence to the point is given by z.

Under those observation we obtain the 1RSB free energy
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and the corresponding saddle point equations from Eqs. (B.9-B.11).

However, the solution of those equation will lead to the global minimum of the loss, while we are
interested in the threshold states. We follow the idea of [10] where z is used as a Lagrange multiplier
that selects the threshold states. z is fixed by imposing the marginal stability condition, i.e. that the
spectrum of the Hessian of the minima in consideration touches zero, following [11] this is given by
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4
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2
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∣∣∣∣∣
ŷ=0

. (B.13)

At the threshold the overlap with the signal is zero, m = 0, and for symmetries of the problem also
q0 = 0. In fact m = 0 is always a solution of Eq. (B.11), and if m = 0 then q0 = 0 is also solution
of the second saddle point equation, Eq. (B.10), as in the RHS the Gaussian becomes degenerate in h
and dhf(x, h, h0)|h=0 being an odd function in h. Therefore we can restrict the equations to just the
one for χ, Eq. (B.9) that becomes

β2

z

(
1

χ
− 1

χ+ z

)
= α

∫
R
dyγ1(y)e−x f(x,0,y)

∫
R
dŷγ1(ŷ)

[
ex f(1,ŷ,y)

(
d

dŷ
f(1, ŷ, y)

)2
]
.

(B.14)

Rewriting these equation expliciting the convolutions we obtain the equations presented in the main
text. With those element we can obtain the label distribution presented in the main text.
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C Additional details on the numerical experiments

C.1 Dynamics with shuffled labels

In the main text we showed that the dynamics is always attracted by the threshold states before
(possibly) finding the good direction that leads to the optimal solution. To visually complement the
explanation, in Fig. 1 we consider the dynamics in the same setting of Fig. 2, same dataset and same
initialization, but using shuffled labels. The upper figure shows the density of eigenvalues during the
evolution while the lower figure considers the histogram for five cuts at iteration 1, 453, 906, 1208
and 1510. We remark that in the initial stages of their evolution the two simulations follow the same
dynamics (iteration 1, 453, and 906). Only after a transient the simulation with the correct labels
shows the presence of the BBP transition (iteration 1208) and converge to the solution (iteration
1510). Instead, the simulation with the shuffled labels keeps approaching the threshold states for the
rest of the simulation time tending to the marginal condition. We remark that in the upper figure the
smallest (dashed orange line) and second smallest eigenvalues (solid green line) that are always very
close, as it is expect since in this case the distribution of the eigenvalues always forms a bulk.
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Figure 1: Comparison of the properties of the Hessian for phase retrieval between the problem with
the correct labels and the problem with shuffled labels. The system simulated has size N = 2048
and α = 10. The database considered in the simulation in the upper figure is the one used for Fig. 2
with the shuffled labels. The figures represent the same quantities plotted in Fig. 2 and are intended
to make the comparison between the evolution in the two settings. The figure below represents the
distribution of the eigenvalues during the dynamics for the problem with correct and shuffled labels,
respectively in blue and orange.

C.2 Numerical threshold

On the choice of the learning rate. The dynamics considered in the main text is gradient flow, while
numerically we rely on the discretized version of the algorithm, namely gradient descent. In order to
have agreement between the theoretical analysis and the simulations we must consider a learning rate
sufficiently small to reduce the discrepancy between the two algorithms. We consider different input
dimensions and tested different learning rates, in Fig. 2 we report this process for N = 1024. In the
figure on the left we can observe that the dynamics of 10 simulations at α = 7 testing the learning
rates : η = 2× 10−4 (solid lines), η = 1× 10−4 (dashed lines), η = 5× 10−5 (dotted lines). We can
notice that the lines are nicely overlapping, this give us the learning rate η = 2× 10−4 that we use in
our simulations. In the right figure we show the fraction of successful simulations, where success is
defined as the fact that the overlapWWW ·WWW ∗/N > 0.99. Notice that the line is shifting until we reach
the learning rate η = 2× 10−4.
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Figure 2: Choice of the learning rate for the phase retrieval problem with input dimension N = 1024.
On the left we show the overlap WWW ·WWW ∗/N in time for 10 different simulations at α = 7. The
different line styles refer to different learning rates. On the right we show the fraction of success,
as reported in Fig. 5, as we change the learning rate. In the simulations we adapted the stopping
criterion to the learning rate so that the curve get to the same simulation time, more specifically for
the left panel the stopping times are : 1000 log2N for η = 2× 10−4, 2000 log2N for η = 1× 10−4,
and 4000 log2N for η = 5× 10−5.

On the nature of the transition. Our analysis assumes a first order transition between: the easy
phase, where gradient flow with high probability solves the problem; and the hard phase, where
gradient flow with high probability does not find the optimal solution and this solution is information
theoretically achievable. According to this hypothesis threshold identifies a jump in the overlap
between estimator and ground truth, which defines the first order transition. We bring as additional
support on the matter Fig. 3, where we show the final overlaps reached by the simulations for different
size of the dataset α. As α increases, the figures show that densities become bimodal and finally
concentrate on 1 meaning that the problem is easy. This is an indicator of a first order transition.
Contrary to the second order (continuous) transition, where the distribution of the overlaps should be
unimodal.

Figure 3: The five figures show the final overlaps between estimator and teacher for a large number
of simulations at different values of α. The figure refer to different input dimensions, from left to
right : 256, 512, 1024, 2048, and 4096.
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