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1 Existing MPNNs as Special Cases of G-MPNN

We rewrite the formulation of G-MPNN for improved readability.

mt+1
v = g

({
Mt

(
htv,
{

(w, htw)
}
w∈e−v, R(e, Pe), Pe

)}
e∈Iv

)
(1)

1.1 MPNNs on Multi-relational graphs

To the best of our knowledge, there are no published works on MPNNs for knowledge hypergraphs.
Hence, MPNN on multi-relational graphs takes the following form:

mt+1
v = g

({
Mt

(
htv, h

t
w, R(e, Pe), Pe

)}
e∈Nv

)
(2)
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where Nv is the multi-relational neighbourhood of v. A standard practice in embedding multi-
relational graphs has been to introduce an inverse relation for each existing relation. In other words,
for each (s, r, o) triple in the multi-relational graph, we add (o, r−1, s) to the set of existing triples.
Under this setting, it is redundant and not necessary to assume positional information given be Pe.
Hence, MPNN on multi-relational graphs takes the following simpler form:

mt+1
v = g

({
Mt

(
htv, h

t
w, Re

)}
e∈Nv

)
(3)

whereRe is the relation of the edge (triple) connecting v andw. We assume, without loss of generality,
that v is the object of the triple (w,Re, v).

Relational GCN [17, 12] R-GCN uses relation-specific filters/weight matrices for aggregation i.e.
Mt

(
htv, h

t
w, Re

)
= WRe

htw.

Structure-Aware Convolutional Network [18] SACN uses relation-specific scalar-valued i.e.
Mt

(
htv, h

t
w, Re

)
= αReh

t
w

Composition-based Multi-Relational Graph Convolutional Networks [23] CompGCN uses
relation-specific embeddings in a composition operator Φ i.e. Mt

(
htv, h

t
w, Re

)
= Φ(Re, h

t
w)

1.2 MPNNs on Hypergraphs

Existing hypergraph MPNNs are mono relational i.e. fall under the following formulation:

mt+1
v = g

({
Mt

(
htv,
{

(w, htw)
}
w∈e−v

}
e∈Iv

)
(4)

Hypergraph Neural Networks [10, 14] use the clique reduction of the hypergraph [29] to graph.
Hence Mt

(
htv,
{

(w, htw)
}
w∈e−v

)
=
∑

w∈e−v h
t
w.

Hypergraph Convolutional Network [26] uses the mediator expansion [5] to approximate the
hypergraph to graph. Each hyperedge is approximated by a tripartite subgraph as follows. Consider
the maximally disparate vertices of the hyperedge e i.e. the supremum se, and the infimum ie given
by se, ie = arg max

j,k∈e
|hj − hk|2. Let the vertices Me = {m ∈ e : m 6= se,m 6= ie} represent the

set of mediators. Then the tripartite graph is the graph with {se}, {ie}, and Me as the three partitions.
The message function is thus

Mt

(
htv,
{

(w, htw)
}
w∈e−v

)
=

{∑
w∈e−v h

t
w if w ∈ {se, ie}

htse + htie if w ∈Me

PowerSet Convolutional Network [25] Powerset convolution is defined on hyperedges. However,
we can go to the dual hypergraph (where vertices become hyperedges and hyperedges become
vertices) and pose PCN as a special instance of our framework. In particular, the first-order PCN can
be seen as Mt

(
htv,
{

(w, htw)
}
w∈e−v

)
=
∑

w∈N (v) h
t
w where N (v) is defined as the set of those

vertices such that |I(v) \ I(w)| = 1

1.3 MPNNs on Heterogeneous networks

The proofs are trivial and follow in a straightforward way from the following proposition (restated
for completeness):
Proposition 1. Let G = (V,E, S) be a heterogeneous graph with V as a set of vertices, E as a set
of directed edges, and a function S : V → {1, · · · , s} that maps each v ∈ V to a type Sv to one of s
pre-defined types. Any heterogeneous graph G = (V,E, S) is a specialH = (V, E ,R,P) with
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• V = V , and E = {{u, v} : (u, v) ∈ E}

• Pe(u) = 1, and Pe(v) = 2 for each (u, v) ∈ E (and e ∈ E).

• R(e, Pe) = (s− 1) ∗ Su + Sv for each e ∈ E

Similarly, it is also trivial to instantiate MPNNs on multiplex networks in our framework.

2 Appendix for MPNN-R

2.1 Algorithm

In this section, we describe the generation of vertex embeddings through with the help of an
algorithm MPNN-R. Let H = (V,E) be a recursive hypergraph, where V is a set of n vertices, and
E ⊆

(
2V,k −∅

)
is a set of recursive hyperedges.

Incidence Matrix of Recursive Hypergraph. Recall that in a recursive hypergraph H = (V,E),
hyperedges can act as vertices in other hyperedges. Hence, we define the new vertex set U = V ∪E
with the same hyperedge set E. The incidence matrix I is hence a |U | × |E| matrix where each entry
Iue indicates the "strength" of the membership of u ∈ U in the hyepredge e ∈ E. Note that for two
different hyperedges e1 ∈ E and e2 ∈ E, the strengths might be different i.e. Iue1 6= Iue2 . This can
be seen as a generalisation of hyperedge-dependent vertex weights [6, 16] to recursive hypergraphs.
Hyperedge-dependent vertex weights are known to utilise higher-order relationships in hypergraphs.

Algorithm 1: Algorithm for MPNN-R vertex embedding generation
Input : Recursive Hypergraph H = (V,E); input features {xv,∀v ∈ V }; depth L; weight

matrices Wl,∀l ∈ {1, ..., L}; non-linearity η; differentiable aggregator functions
AGGl,∀l ∈ {1, ..., L};

Output : Vector representations zv for all v ∈ V
1 h0

v ← xv,∀v ∈ V ;
2 Include hyperedges in the set of vertices V = V ∪ E ;
3 Obtain incidence matrix I from H and V as described ;
4 Compute the neighbourhood function N : v → 2V from the Laplacian matrix ;
5 for k = 1...L do
6 for v ∈ V do
7 hl

v ← η
(
Wl · AGGl({hl−1

u ,∀u ∈ N (v)})
)

8 end
9 hl

v ← hl
v/‖hl

v‖2,∀v ∈ V
10 end
11 zv ← hL

v ,∀v ∈ V

2.2 Comparison with Sum and Max Aggregators

We compare other aggregators with the mean aggregator used for MPNN-R in the main contents of
oure work. The other aggregators perform very similar to the mean as shown in Table 1.

Table 1: Comparison with Sum and Max Aggregators.
Method Cora DBLP ACM arXiv
MPNN-R-sum 25.30± 1.6 21.54± 1.5 20.25± 1.7 22.40± 1.4
MPNN-R-max 25.41± 1.6 21.44± 1.3 20.35± 2.0 22.36± 1.6
MPNN-R-mean 25.34± 1.5 21.45± 1.7 20.32± 2.1 22.34± 1.7
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2.3 Hyperedge-dependent Vertex Weights

Recall that the incidence matrix of the input recursive hypergraph is I, a |U | × |E| matrix where
each entry Iue indicates the "strength" of the membership of u ∈ U in the hyepredge e ∈ E. We use
prior heuristic knowledge in academic networks e.g. first authors are likely to be very focused, etc.
We set the strength of author-dependent vertex weight to a hyperparameter η if the author is the first
author (else one). Table 2 shows improvements for the mean aggregator on all datasets.

Table 2: η is the author-dependent vertex weight if the author is the first author. .
Method Cora DBLP ACM arXiv
MPNN-R 25.34± 1.5 21.45± 1.7 20.32± 2.1 22.34± 1.7
MPNN-R (η = 2) 25.30± 1.4 21.33± 1.5 20.28± 1.8 22.35± 1.5
MPNN-R (η = 4) 25.26± 1.5 21.38± 1.6 20.19± 1.8 22.27± 1.6
MPNN-R (η = 8) 25.37± 1.8 21.47± 1.3 20.33± 2.5 22.29± 1.8

2.4 Dataset Construction

We briefly provide details of how we construct recursive hypergraph datasets.

Cora: We used the author data1to get the co-authorship relationships for cora. We use cocitation
relationships from 2.

DBLP, ACM, arXiv: We obtained the full dblp 3and ACM 4 datasets from a published work
[20]. We obtained arXiv 5 from another work [7]. We used conference categories from Wikipedia
6 as a guide to curate our data. Speicfically, we defined a set of conference categories (classes)
as “algorithms", “database", “datamining", “intelligence", “vision", etc.. We extracted authors and
publications from these conferences to get the recursive hypergraph.

2.5 Dataset Statistics

Table 3: Dataset statistics in the experiments for MPNN-R.

Dataset # vertices # features # depth 0-hyperedges # depth 1-hyperedges # classes Label rate
Cora 2, 708 1, 433 1, 579 1, 072 7 0.052
DBLP 52, 040 869 20, 988 21, 777 5 0.050
ACM 100, 376 4, 684 39, 266 42, 656 3 0.100
ArXiv 63, 660 410 32, 856 46, 618 3 0.001

2.6 Varying Labelled Data

We conduct experiments by varying labelled data on the arXiv dataset. We use the mean aggregator.
Table 4 shows superior performance on 1%, 3%, 5%, 10%, 20% labelled datasets.

2.7 Computational Complexity and Hyperparameters

Let n0 be the number of depth 0 hyperedges, n1 be the number of depth 1 hyperedges, and n be the
number of vertices. Let N = n0 + n1 + n and d be the number of hidden units in the hidden layer.
Assuming that real-world hypergraphs are sparse, the complexity of MPNN-R (for depth 1-recursive
hypergraphs) is O(Nd).

1https://people.cs.umass.edu/ mccallum/data.html
2https://linqs.soe.ucsc.edu/data
3https://aminer.org/lab-datasets/citation/DBLP-citation-Jan8.tar.bz
4https://lfs.aminer.org/lab-datasets/citation/acm.v9.zip
5https://github.com/mattbierbaum/arxiv-public-datasets/releases/tag/v0.2.0
6https://en.wikipedia.org/wiki/List_of_computer_science_conferences
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Table 4: Results on arXiv dataset. 100∗Mean squared error ± standard deviation (lower is better)
over 10 different train-test splits.

Model 1% 3% 5% 10% 20%

HGNN 34.78± 1.6 32.12± 1.8 31.32± 1.7 31.75± 1.6 30.65± 1.7
HyperGCN 34.80± 1.5 32.15± 1.6 31.25± 1.8 31.76± 1.5 30.60± 1.6
HetGNN 28.89± 1.9 25.02± 1.8 25.55± 2.0 26.06± 1.8 25.23± 1.9

MPNN-R (Ours) 25.06± 1.8 22.01± 1.4 22.34± 1.7 22.87± 1.6 21.96± 2.2

Experiments were run for 200 epochs on a GTX 1080 Ti with 12 GB RAM. The Adam optimiser
was used with a learning rate of 0.01, L2 penalty of 5e−4. Following standard practice, the size of d
was set to 32. The model was evaluated on the validation set and saved three epochs with the best
performing checkpoint used for testing.

3 Appendix for G-MPNN

3.1 Algorithm

Mt

(
hlv,
{

(w, hlw)
}
w∈e−v, R(e, Pe), Pe

)
= rle,Pe

∗ pl
e,v ∗ hl

v ∗
∏

w∈e−v

(
pl
e,w ∗ hl

w

)
(5)

Algorithm 2: Algorithm for G-MPNN vertex embedding generation
Input : Multi-Relational Ordered HypergraphH = (V, E ,P,R); input features {xv,∀v ∈ V };

depth L; weight matrices Wl,∀l ∈ {1, ..., L}; non-linearity η; differentiable aggregator
functions AGGl,∀l ∈ {1, ..., L};

Output : Vector representations zv for all v ∈ V
1 h0

v ← xv,∀v ∈ V ;
2 Include hyperedges in the set of vertices V = V ∪ E ;
3 Obtain incidence matrix I from H and V as described ;
4 Compute the neighbourhood function N : v → 2V from the Laplacian matrix ;
5 for k = 1...L do
6 for v ∈ V do
7 hl

v ← η
(
Wl · AGGl({Mt

(
hlv,
{

(w, hlw)
}
w∈e−v, R(e, Pe), Pe

)
})
)

8 end
9 hl

v ← hl
v/‖hl

v‖2,∀v ∈ V
10 end
11 zv ← hL

v ,∀v ∈ V

3.2 Ablation Study

We perform ablation studies on WikiPeople dataset to verify that all the information used by our
method is necessary to achieve the best performance. One set of ablated baselines neither uses the
relational information nor the positional information (poisition/relation) embeddings are set to vectors
of all ones). Another set of ablated baselines uses only the relational information while a third set
uses only the positional information. Table 5 shows the results.
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Table 5: Ablation Study on the MFB-IND dataset.
Method Relation Position MFB-IND

MRR Hits@1 Hits@3
G-MPNN-mean × × 0.158 0.126 0.191
G-MPNN-max × × 0.163 0.125 0.185
G-MPNN-mean × X 0.196 0.142 0.211
G-MPNN-max × X 0.199 0.143 0.204
G-MPNN-mean X × 0.209 0.152 0.220
G-MPNN-max X × 0.203 0.162 0.213
G-MPNN-mean X X 0.241 0.162 0.257

G-MPNN-max X X 0.268 0.191 0.283

3.3 Dataset Construction

We constructed inductive datasets from existing transductive datasets (Wikipeople [11], JF17K, and
M-FB15K [9]) We need test sets containing unseen entities (i.e. not seen during training). The steps
taken are similar to the binary case [12, 24] and are as follows:

• Sample a fraction of the original test hyperedges to form a new test set T .

• Add all entities in T to an auxiliary unseen set U ′

• Remove entities in U ′ which do not appear in any fact hyperedges in the training set to yield
the final unseen entity set U

• Remove a fact hyperedge in T if all entities in the hyperedge are seen in training

• Split the original training set into new training set and auxiliary set

• Add a fact hyperedge to the new training set if all entities in the hyperedge are seen in
training

• Add the remaining facts in the original train set (i.e. hyperedges in which at least one entity
is unseen) to the auxiliary set

• Filter out a fact hyperedge from validation if it contains at least one unseen entity We train
all our methods and baselines on the new training set, optimise hyperparameters using the
filtered validation set, and test on the methods on the new test set with the auxiliary set used
as the signals for G-MPNN.

3.4 Dataset Statistics

Table 6: Dataset statistics in the experiments for G-MPNN.

Dataset # seen vertices # train hyperedges # unseen vertices # relations # features
WP-IND 4, 363 4, 139 100 32 37
JF-IND 4, 685 6, 167 100 31 46
MFB-IND 3, 283 336, 733 500 12 25

3.5 Binary Transductive Experiments

We perform experiments on the two most commonly used benchmark knowledge graph completion
datasets. One of them is WN18RR [8], which is a wordnet subset containing 40, 943 entities, 11
relations, and 86, 835 training triples. The other is FB15k-237 [21], which is a Freebase subset
containing 14, 541 entities, 237 relations, and 272, 115 training triples. We use filtered setting for
evaluation and report Mean Reciprocal Rank (MRR), Mean Rank (MR), and Hits@N N = 10, 3, 1.
We find that the max aggregator with ConvE [8] scoring function gives the best results. Table 7 shows
competitive performance on these two datasets.
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FB15k-237 WN18RR

MRR MR H@10 H@3 H@1 MRR MR H@10 H@3 H@1

TransE [2] .294 357 .465 - - .226 3384 .501 - -
DistMult [27] .241 254 .419 .263 .155 .43 5110 .49 .44 .39
ComplEx [22] .247 339 .428 .275 .158 .44 5261 .51 .46 .41
R-GCN [17] .248 - .417 .151 - - - -
KBGAN [3] .278 - .458 - .214 - .472 - -
ConvE [8] .325 244 .501 .356 .237 .43 4187 .52 .44 .40
ConvKB .243 311 .421 .371 .155 .249 3324 .524 .417 .057
SACN [18] .35 - .540 .390 .26 .47 - .54 .48 .43
HypER [1] .341 250 .520 .376 .252 .465 5798 .522 .477 .436
RotatE [19] .338 177 .533 .375 .241 .476 3340 .571 .492 .428
ConvR [15] .350 - .528 .385 .261 .475 - .537 .489 .443
VR-GCN [28] .248 - .432 .272 .159 - - - - -
RotH [4] .314 - .497 .346 .223 .472 - .553 .490 .428
AttH [4] .324 - .501 .354 .236 .466 - .551 .484 .419

G-MPNN (Ours) .359 191 .543 .392 .267 .482 3412 .546 .498 .446

Table 7: Performance of G-MPNN on binary Link prediction and several recent models on FB15k-237 and
WN18RR datasets. We take the results of existing methods from their papers (’-’ indicates missing). We find
that G-MPNN performs comparably on FB15k-237 and WN18RR.

3.6 Binary Inductive Experiments

We perform experiments on the two benchmark inductive knowledge graph completion subsets
released by a prior work [24]. The dataset is constructed from FB15k [2] We use filtered setting for
evaluation and report Mean Reciprocal Rank (MRR), Mean Rank (MR), and Hits@N N = 10, 3, 1.
We find that the max aggregator with TransE [2] scoring function gives the best results. Table 8 shows
competitive performance on the two data subsets.

Subject-10 Object-10

MRR MR H@10 H@3 H@1 MRR MR H@10 H@3 H@1

MEAN [12] 0.310 293 0.480 0.348 0.222 0.251 353 0.410 0.280 0.171
LSTM [13] 0.254 353 0.429 0.296 0.162 0.219 504 0.373 0.246 0.143
LAN [24] 0.394 263 0.566 0.446 0.302 0.314 461 0.482 0.357 0.227

G-MPNN (Ours) 0.391 258 0.569 0.442 0.309 0.317 465 0.476 0.364 0.228

Table 8: Performance of G-MPNN on inductive binary Link prediction and two recent models on FB15k
dataset. We take the results of existing methods from their papers. We achieve competitive results on this task.

3.7 Computational Complexity and Hyperparameters

let s be the size of the largest hyperedge of the hypergraph. Let d be the embedding dimension of
hidden representation. Let m be the size of the largest “neighbourhood" of a vertex (i.e. the largest
number of incident hyperedges of a vertex). Then, the computational complexity of computing the
hidden representation of a vertex through G-MPNN update is O(sdm).

Experiments were run for 200 epochs on a GTX 1080 Ti with 12 GB RAM. The Adam optimiser
was used with a learning rate of 0.01, L2 penalty of 5e−4. Following standard practice, the size of d
was set to 200. The model was evaluated on the validation set and saved three epochs with the best
performing checkpoint used for testing.
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3.8 Additional Diagram for Multi-Relational Ordered Hypergraph
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