
A MLLS Algorithm

Algorithm 1 Maximum Likelihood Label Shift estimation
input : Labeled validation samples from source and unlabeled test samples from target. Trained

blackbox model f̂ , model class G and loss function l for calibration (for instance, MSE or
negative log-likelihood).

1: On validation data minimize the loss l over class G to obtain f = g ◦ f̂ .
2: Solve the optimization problem (5) using f to get ŵ.

output : MLLS estimate ŵ

Step 1. description. Let the model class used for post-hoc calibration be represented by G. Given a
validation dataset {(xv1, yv1), . . . , (xvn, yvn)} sampled from the source distribution Ps we compute,
{(f̂(xv1), yv1), (f̂(xv2), yv2), . . . , (f̂(xvn), yvn)}, applying our classifier f̂ to the data. Using this
we estimate a function,

ĝ = arg min
g∈G

n∑
i=1

`(g ◦ f̂(xvi), yvi) , (9)

where the loss function ` can be the negative log-likelihood or squared error. Experimentally we
observe same performance with both the loss functions. Subsequently, we can apply the calibrated
predictor ĝ ◦ f̂ .

Our experiments follow Alexandari et al. [1], who leverage BCTS 7 to calibrate their models.
BCTS extends temperature scaling [10] by incorporating per-class bias terms. Formally, a function
g : ∆k−1 7→ ∆k−1 in the BCTS class G, is given by

gj(x) =
exp [log(xj)/T + bj ]∑
i exp [log(xi)/T + bi]

∀j ∈ Y

where {T, b1, . . . , b|Y|} are the |Y|+ 1 parameters to be learned.

B Prior Work on Label Shift Estimation

Dataset shifts are predominantly studied under two scenarios: covariate shift and label shift [22].
Schölkopf et al. [19] articulates connections between label shift and covariate shift with anti-causal
and causal models respectively. Covariate shift is well explored in past [28, 27, 7, 6, 9].

Approaches for estimating label shift (or prior shift) can be categorized into three classes:

1. Methods that leverage Mixture Proportion Estimation (MPE) [4, 17] techniques to estimate
the target label distribution. MPE estimate in general (e.g. Blanchard et al. [4]) needs explicit
calculations of ps(x|y)(= pt(x|y)) which is infeasible for high dimensional data. More
recent methods for MPE estimation, i.e. Ramaswamy et al. [17], uses Kernel embeddings,
which like many kernel methods, require the inversion of an n× n Gram matrix. The O(n3)
complexity makes them infeasible for large datasets, practically used in deep learning these
days;

2. Methods that directly operate in RKHS for distribution matching [28, 8]. Zhang et al.
[28] extend the kernel mean matching approach due to Gretton et al. [9] to the label shift
problem. Instead of minimizing maximum mean discrepancy, Du Plessis and Sugiyama [8]
explored minimizing PE divergence between the kernel embeddings to estimate the target
label distribution. Again, both the methods involve inversion of an n × n kernel matrix,
rendering them infeasible for large datasets; and

3. Methods that work in low dimensional setting [16, 2, 18] by directly estimating pt(y)/ps(y)
to avoid the curse of dimensionality. These methods leverage an off-the-shelf predictor to
estimate the label shift ratio.

In this paper, we primarily focus on unifying methods that fall into the third category.
7Motivated by the strong empirical results in Alexandari et al. [1], we use BCTS in our experiments as a

surrogate for canonical calibration.
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C Marginal calibration is insufficient to achieve consistency

In this section, we will illustrate insufficiency of marginal calibration to achieve consistency. For
completeness, we first define margin calibration:

Definition 3 (Marginal calibration). A prediction model f : X 7→ ∆k−1 is marginally calibrated on
the source domain if for all x ∈ X and j ∈ Y ,

Ps(y = j|fj(x)) = fj(x) .

Intuitively, this definition captures per-label calibration of the classifier which is strictly less restrictive
than requiring canonical calibration. In the example, we construct a classifier on discrete X which is
marginally calibrated, but not canonically calibrated. With the constructed example, we show that the
population objective (4) yields inconsistent estimates.

Example. Assume X = {x1, x2, x3, x4, x5, x6} and Y = {1, 2, 3}. Suppose the predictor f(x) and
Ps(y|f(x)) are given as,

f(x) y=1 y=2 y=3
x1 0.1 0.2 0.7
x2 0.1 0.7 0.2
x3 0.2 0.1 0.7
x4 0.2 0.7 0.1
x5 0.7 0.1 0.2
x6 0.7 0.2 0.1

Ps(y|f(x)) y=1 y=2 y=3
x1 0.2 0.1 0.7
x2 0.0 0.8 0.2
x3 0.1 0.2 0.7
x4 0.3 0.6 0.1
x5 0.8 0.0 0.2
x6 0.6 0.3 0.1

Clearly, the prediction f(x) is marginally calibrated. We have one more degree to freedom to choose,
which is the source marginal distribution on X . For simplicity let’s assume ps(xi) = 1/6 for all
i = {1, . . . , 6}. Thus, we have ps(y = j) = 1/3 for all j = {1, 2, 3}. Note, with our assumption of
the source marginal on x, we get Pt(xi|y = j) = Ps(xi|y = j) = Ps(y = j|f(xi))/2. This follows
as x 7→ f(x) is an one-to-one mapping.

Now, assume a shift i.e. prior on Y for the target distribution of the form [α, β, 1− α− β]. With the
label shift assumption, we get

∀i pt(xi) =
1

2
(αPs(y = 1|f(xi)) + βPs(y = 2|f(xi)) + (1− β − α)Ps(y = 3|f(xi))) .

Assume the importance weight vector as w. Clearly, we have w1 + w2 + w3 = 3. Re-writing the
population MLLS objective (4), we get the maximisation problem as

arg max
w

6∑
i=1

pt(xi) log(f(xi)
Tw) . (10)

Differentiating (10) with respect to w1 and w2, we get two high order equations, solving which
give us the MLLS estimate wf . To show inconsistency, it is enough to consider one instantiation
of α and β such that |3α− w1|+ |3β − w2|+ |w1 + w2 − 3α− 3β| 6= 0. Assuming α = 0.8 and
β = 0.1 and solving (10) using numerical methods, we get wf = [2.505893, 0.240644, 0.253463].
As w = [2.4, 0.3, 0.3], we have wf 6= w concluding the proof.

D Proofs from Section 4

Lemma 1 (Identifiability). If the set of distributions {p(z|y) : y = 1, ..., k} are linearly independent,
then for any w that satisfies (2), we must have w = w∗. This condition is also necessary in general: if
the linear independence does not hold then there exists a problem instance where we have w,w∗ ∈ W
satisfying (2) while w 6= w∗.

Proof. First we prove sufficiency. If there exists w 6= w∗ such that (2) holds, then we have∑k
y=1 ps(z, y)(wy−w∗y) = 0 for all z ∈ Z . Asw−w∗ is not the zero vector, {ps(z, y), y = 1, ..., k}

are linearly dependent. Since ps(z, y) = ps(y)p(z|y) and ps(y) > 0 for all y (by assumption), we
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also have that {p(z|y), y = 1, ..., k} are linearly dependent. By contradiction, we show that the linear
independence is necessary.

To show necessity, assume w∗y = 1
kps(y)

for y = 1, ..., k. We know that w∗ satisfies (2) by definition.
If linear independence does not hold, then there exists a vector v ∈ Rk such that v 6= 0 and∑k
y=1 ps(z, y)vy = 0 for all z ∈ Z . Since the w∗ we construct is not on the boundary ofW , we can

scale v such that w∗ + αv ∈ W where α ≥ 0 and v 6= 0. Therefore, setting w = w∗ + αv gives
another solution for (2), which concludes the proof.

Lemma 2. If f is calibrated, then the two objectives (3) and (4) are identical when Z is chosen as
∆k−1 and p(z|x) is defined to be δf(x).

Proof. The proof follows a sequence of straightforward manipulations. In more detail,

Et
[
log f(x)Tw

]
=

∫
pt(x) log[f(x)Tw]dx

=

∫ ∫
pt(x)p(z|x) log[f(x)Tw]dxdz

=

∫ ∫
pt(x)p(z|x)1 {f(x) = z} log[f(x)Tw]dxdz

=

∫ ∫
pt(x)p(z|x) log[zTw]dxdz

=

∫
pt(z) log[zTw]dz

=

∫
pt(z) log

[ k∑
y=1

ps(y|z)w
]
dz ,

where the final step uses the fact that f is calibrated.

Theorem 1 (Population consistency of MLLS). If a predictor f : X 7→ ∆k−1 is calibrated and the
distributions {p(f(x)|y) : y = 1, . . . , k} are strictly linearly independent, then w∗ is the unique
maximizer of the MLLS objective (4).

Proof. According to Lemma 2 we know that maximizing (4) is the same as maximizing (3) with
p(z|x) = δf(x), thus also the same as minimizing the KL divergence between pt(z) and pw(z). Since
pt(z) ≡ pw∗(z) we know that w∗ is a minimizer of the KL divergence such that the KL divergence
is 0. We also have that KL(pt(z), pw(z)) = 0 if and only if pt(z) ≡ pw(z), so all maximizers of
(4) should satisfy (2). According to Lemma 1, if the strict linear independence holds, then w∗ is the
unique solution of (2). Thus w∗ is the unique maximizer of (4).

Proposition 1. For a calibrated predictor f , the following statements are equivalent:

(1) {p(f(x)|y) : y = 1, . . . , k} are strictly linearly independent.

(2) Es
[
f(x)f(x)T

]
is invertible.

(3) The soft confusion matrix of f is invertible.

Proof. We first show the equivalence of (1) and (2). If f is calibrated, we have ps(f(x))fy(x) =
ps(y)p(f(x)|y) for any x, y. Then for any vector v ∈ Rk we have

k∑
y=1

vyp(f(x)|y) =

k∑
y=1

vy
ps(y)

ps(y)p(f(x)|y) =

k∑
y=1

vy
ps(y)

ps(f(x))fy(x) = ps(f(x))

k∑
y=1

vy
ps(y)

fy(x) .

(11)
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On the other hand, we can have

Es
[
f(x)f(x)T

]
=

∫
f(x)f(x)T ps(f(x))d(f(x)) . (12)

If {p(f(x)|y) : y = 1, . . . , k} are linearly dependent, then there exist v 6= 0 such that (11) is
zero for any x. Consequently, there exists a non-zero vector u with uy = vy/ps(y) such that
uT f(x) = 0 for any x satisfying ps(f(x)) > 0, which means uTEs

[
f(x)f(x)T

]
u = 0 and thus

Es
[
f(x)f(x)T

]
is not invertible. On the other hand, if Es

[
f(x)f(x)T

]
is non-invertible, then

there exist some u 6= 0 such that uTEs
[
f(x)f(x)T

]
u = 0. Further as uTEs

[
f(x)f(x)T

]
u =∫

uT f(x)f(x)Tu ps(x)dx =
∫ ∣∣f(x)Tu

∣∣ ps(x)dx. As a result, the vector v with vy = ps(y)uy
satisfies that (11) is zero for any x, which means {p(f(x)|y) : y = 1, . . . , k} are not strictly linearly
independent.

Let C be the soft confusion matrix of f , then

Cij = ps(ŷ = i, y = j) =

∫
d(f(x)) fi(x)p(f(x)|y = j)ps(y = j)

=

∫
fi(x)fj(x)ps(f(x))d(f(x)) .

Therefore, we have C = Es
[
f(x)f(x)T

]
, which means (2) and (3) are equivalent.

We introduce some notation before proving consistency. Let P = {〈f, w〉|w ∈ W} be the class
of densities8 for a given calibrated predictor f . Suppose p̂n, p0 ∈ P are densities corresponding
to MLE estimate and true weights, respectively. We use h(p1, p2) to denote the Hellinger distance
and TV(p1, p2) to denote the total variation distance between two densities p1, p2. Hr(δ,P, P )
denotes δ-entropy for class P with respect to metric Lr(P ). Similarly, Hr,B(δ,P, P ) denotes the
corresponding bracketing entropy. Moreover, Pn denotes the empirical random distribution that puts
uniform mass on observed samples x1, x2, . . . xn. Before proving consistency we need to re-state
two results:
Lemma 6 (Lemma 2.1 [25]). If P is a probability measure, for all 1 ≤ r <∞, we have

Hr,B(δ,G , P ) ≤ H∞(δ/2,G ) for all δ > 0 .

Lemma 7 (Corollary 2.7.10 [26]). Let F be the class of convex functions f : C 7→ [0, 1] defined on
a compact, convex set C ⊂ Rd such that |f(x)− f(y)| ≤ L ‖x− y‖ for every x,y. Then

H∞(δ,F) ≤ K
(
L

δ

)d/2
,

for a constant K that depends on the dimension d and C.

We can now present our proof of consistency, which is based on Theorem 4.6 from van de Geer [25]:

Lemma 8 (Theorem 4.6 [25]). Let P be convex and define class G =
{

2p
p+p0
|p ∈P

}
. If

1

n
H1(δ,G , Pn)→P 0 , (13)

then h(p̂n, p0)→ 0 almost surely.
Theorem 2 (Consistency of MLLS). If f satisfies the conditions in Theorem 1, then ŵf in (5)
converges to w∗ almost surely.

Proof. Assume the maximizer of (5) is ŵf and p0 = 〈f, w∗〉. Define class G =
{

2p
p+p0
|p ∈P

}
. To

prove consistency, we first bound the bracketing entropy for class G using Lemma 6 and Lemma 7.
8Note that we use the term density loosely here for convenience. The actual density is 〈f(x), w〉 · ps(x) but

we can ignore ps(x) because it does not depend on our parameters.
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Clearly P is linear in parameters and hence, convex. Gradient of function g ∈ G is given by 2p0
(p+p0)2

which in turn is bounded by 2
p0

. Under assumptions of Condition 1, the functions in G are Lipschitz
with constant 2/τ . We can bound the bracketing entropyH2,B(δ,G , P ) using Lemma 7 and Lemma 6
as

H2,B(δ,G , P ) ≤ H∞(δ,G ) ≤ K1

(
1

δτ

)k/2
,

for some constant K1 that depends on k.

On the other hand, for cases where p0 can be arbitrarily close to zero, i.e., Condition 1 doesn’t hold
true, we define τ(δ) and Gτ as

τ(δ) = sup

{
τ ≥ 0 |

∫
p0≤τ

p0dx ≤ δ2
}
, (14)

Gτ =

{
2p

p+ p0
1 {p0 ≥ τ} | p ∈P

}
.

Using triangle inequality, for any g1, g2 ∈ G , we have∫
‖g1 − g2‖2 dx ≤

∫
‖g1 − g2‖2 1 {p0 ≤ τ} dx+

∫
‖g1 − g2‖2 1 {p0 ≥ τ} dx

≤ 2

∫
1 {p0 ≤ τ} dx+

∫
‖g1 − g2‖2 1 {p0 ≥ τ} dx . (15)

Assume τ(δ) such that (14) is satisfied. Using (15), we have

H2,B(δ,G , P ) ≤ H2,B(
√

3δ,Gτ(δ), P ) .

Thus, for the cases where p0 can be arbitrarily close to zero, instead of bounding H2,B(δ,G , P ),
we we bound HB(δ,Gτ(δ), P ). For any δ > 0, there is a compact subset Kδ ∈ X , such that
ps(X \Kδ) < δ. Using arguments similar to above, function g ∈ Gτ(δ) is Lipschitz with constant
2/τ(δ) > 0. Again using Lemma 7 and Lemma 6, we conclude

H2,B(2δ,Gτ(δ), P ) ≤ H∞(δ,Gτ(δ)) ≤ K2

(
1

δτ(δ)

)k
,

for some constant K2 that depends on k. Finally, we use Lemma 8 to conclude h(p̂n, p0) →a.s. 0.
Further, as TV(p̂n, p0) ≤ h(p̂n, p0), we have h(p̂n, p0)→a.s. 0 implies TV(p̂n, p0)→a.s. 0. Further

‖ŵf − w∗‖2 ≤
1

λmin

∫ ∣∣f(x)T (ŵf − w∗)
∣∣2 ps(x)dx

≤
supx

{∣∣f(x)T (ŵf − w∗)
∣∣}

λmin

∫ ∣∣f(x)T (ŵf − w∗)
∣∣ ps(x)dx︸ ︷︷ ︸

TV(p̂n,p0)

, (16)

where λmin is the minimum eigenvalue of covariance matrix
[∫
f(x)f(x)T ps(x)dx

]
. Note using

Proposition 1, we have λmin > 0. Thus, we conclude ‖ŵf − w∗‖ →a.s. 0.

Example 1. Consider a mixture of two Gaussians with ps(x|y = 0) := N (µ, 1) and ps(x|y =
1) := N (−µ, 1). We suppose that the source mixing coefficients are both 1

2 , while the target mixing
coefficients are α(6= 1

2 ), 1−α. Assume a class of probabilistic threshold classifiers: f(x) = [1−c, c]
for x ≥ 0, otherwise f(x) = [c, 1− c] with c ∈ [0, 1].

Then the population error of MLLS is given by

4

∣∣∣∣ (1− 2α)(ps(x ≥ 0|y = 0)− c)
1− 2c

∣∣∣∣ ,
which is zero only if c = ps(x ≥ 0|y = 0) for a non-degenerate classifier.
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Proof. The intuition behind the construction is, for such an Example, we can get a closed form
solution for the population MLLS and hence allows a careful analysis of the estimation error. The
classifier f(x) predicts class 0 with probability c and class 1 with probability 1− c for x ≥ 0, and
vice-versa for x < 0. Using such a classifier, the weight estimator is given by:

ŵ = arg min
w

E [log〈f(x), w〉]

(i)
= arg min

w0

[∫ 0

−∞
log((1− c)w0 + c(2− w0))pt(x)dx+

∫ ∞
0

log(cw0 + (1− c)(2− w0))pt(x)dx

]
(ii)
= arg min

w0

[log((1− c)w0 + c(2− w0))pt(x ≤ 0) + log(cw0 + (1− c)(2− w0))pt(x ≥ 0)] ,

where equality (i) follows from w1 = 2−w0 and the predictor function and (ii) follows from the fact
that within each integral, the term inside the log is independent of x. Differentiating w.r.t. to w0, we
have:

1− 2c

2c+ w0 − 2cw0
pt(x ≤ 0) +

2c− 1

2cw0 + 2− 2c− w0
pt(x ≥ 0) = 0

1

2c+ w0 − 2cw0
pt(x ≤ 0) +

−1

2cw0 + 2− 2c− w0
(1− pt(x ≤ 0)) = 0

(2cw0 + 2− 2c− w0)pt(x ≤ 0)− (2c+ w0 − 2cw0)(1− pt(x ≤ 0)) = 0

2pt(x ≤ 0)− 2c− w0 + 2cw0 = 0 ,

which gives w0 = 2pt(x≤0)−2c
1−2c . Thus for the population MLLS estimate, the estimation error is given

by

‖ŵ − w∗‖ = 2|w0 − 2α| = 4

∣∣∣∣ (1− 2α)(ps(x ≥ 0|y = 0)− c)
1− 2c

∣∣∣∣ .

E Proofs from Section 5

The gradient of the MLLS objective can be written as

∇wL(w, f) = Et
[

f(x)

f(x)Tw

]
, (17)

and the Hessian is

∇2
wL(w, f) = −Et

[
f(x)f(x)T

(f(x)Tw)
2

]
. (18)

We use λmin(X) to denote the minimum eigenvalue of the matrix X .

Lemma 9 (Theorem 5.1.1 [23]). Let X1, X2, . . . , Xn be a finite sequence of identically distributed
independent, random, symmetric matrices with common dimension k. Assume 0 � X � R · I and
µminI � E [X] � µmaxI . With probability at least 1− δ,

λmin

(
1

n

n∑
i=1

Xi

)
≥ µmin −

√
2Rµmin log(kδ )

n
. (19)

Lemma 3. For any predictor f that satisfies Condition 1, we have ‖wf − ŵf‖ ≤ σ−1f,wf
Op
(
m−1/2

)
.

Proof. We present our proof in two steps. Step-1 is the non-probabilistic part, i.e., bounding the error
‖ŵf − wf‖ in terms of the gradient difference ‖∇wL(wf , f)−∇wLm(wf , f)‖. This step uses
Taylor’s expansion upto second order terms for empirical log-likelihood around the true w∗. Step-2
involves deriving a concentration on the gradient difference using the Lipschitz property implied by
Condition 1. Combining these two steps along with Lemma 22 concludes the proof. Now we detail
each of these steps.
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Step-1. We represent the empirical Negative Log-Likelihood (NLL) function with Lm by absorbing
the negative sign to simplify notation. Using a Taylor expansion, we have

Lm(ŵf , f) = Lm(wf , f) + 〈∇wLm(wf , f), ŵf −wf 〉+
1

2
(ŵf −wf )T∇2

wLm(w̃, fc)(ŵf −wf ) ,

where w̃ ∈ [ŵf , wf ]. With the assumption fTwf ≥ τ , we have ∇2
wLm(w̃, f) ≥

τ2

min ps(y)2
∇2
wLm(wf , f). Let κ = τ2

min ps(y)2
. Using this we get,

Lm(ŵf , f) ≥ Lm(wf , f) + 〈∇wLm(wf , f), ŵf −wf 〉+
κ

2
(ŵf −wf )T∇2

wLm(wf , f)(ŵf −wf )

Lm(ŵf , f)− Lm(wf , f)︸ ︷︷ ︸
I

−〈∇wLm(wf , f), ŵf −wf 〉 ≥
κ

2
(ŵf −wf )T∇2

wLm(wf , f)(ŵf −wf ) ,

where term-I is less than zero as ŵf is the minimizer of empirical NLL Lm(ŵf , f). Ignoring term-I
and re-arranging a few terms we get:

−〈∇wLm(wf , f), ŵf − wf 〉 ≥
κ

2
(ŵf − wf )T∇2

wLm(wf , f)(ŵf − wf ) ,

With first order optimality on wf , 〈∇wL(wf , f), ŵf − wf 〉 ≥ 0. Plugging in this, we have,

〈∇wL(wf , f)−∇wLm(wf , f), ŵf − wf 〉 ≥
κ

2
(ŵf − wf )T∇2

wLm(wf , f)(ŵf − wf ) ,

Using Holder’s inequality on the LHS we have,

‖∇wL(wf , f)−∇wLm(wf , f)‖ ‖ŵf − wf‖ ≥
κ

2
(ŵf − wf )T∇2

wLm(wf , f)(ŵf − wf ) .

Let σ̂f,wf
be the minimum eigenvalue of ∇2

wLm(w∗, fc). Using the fact that (ŵf −
wf )T∇2

wLm(wf , f)(ŵf − wf ) ≥ σ̂min ‖ŵf − wf‖2, we get,

‖∇wL(wf , f)−∇wLm(wf , f)‖ ≥
κσ̂f,wf

2
‖ŵf − wf‖ . (20)

Step-2. The empirical gradient is∇wLm(wf , f) =
∑m
i=1

∇wL1(xi,wf ,f)
m where ∇L1(xi, wf , f) =[

f1(xi)
〈f(xi),wf 〉 . . .

fl(xi)
〈f(xi),wf 〉 . . .

fk(xi)
〈f(xi),wf 〉

]
(k)

. With the lower bound τ on fTwf , we can upper bound

the gradient terms as

‖∇wL1(x,wf , f)‖ ≤ ‖f‖
τ
≤
‖f‖1
τ
≤ 1

τ
.

As the gradient terms decompose and are independent, using Hoeffding’s inequality we have with
probability at least 1− δ

2 ,

‖∇wL(wf , f)−∇wLm(wf , f)‖ ≤ 1

2τ

√
log(4/δ)

m
. (21)

Let σf,wf
be the minimum eigenvalue of ∇2

wL(wf , f). Using lemma 9, with probability at least
1− δ

2 ,
σ̂f,wf

σf,wf

≥ 1− τ
√

log(2k/δ)

m
. (22)

Plugging (21) and (22) in (20), and applying a union bound, we conclude that with probability at
least 1− δ,

‖ŵf − wf‖2 ≤
1

κτ

(
σf,wf

− σf,wf
τ

√
log(2k/δ)

m

)−1(√ log(4/δ)

m

)
≤ 1

κτ

1

σf,wf

(
1 + τ

√
log(2k/δ)

m

)√ log(4/δ)

m
.

Neglecting the order m term and letting c = 1
κτ , we have

‖ŵf − wf‖ ≤
c

σf,wf

√
log(4/δ)

m
.
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Lemma 4. For any predictor f and any calibrated predictor fc that satisfies Condition 1, we have
‖wf − w∗‖ ≤ σ−1f,w∗ · C · Et [‖f − fc‖] , for some constant C.

If we set fc(x) = ps(y|f(x)), which is a calibrated predictor (Proposition 2), we can bound the error
in terms of the calibration error of f on the source data 9: ‖wf − w∗‖ ≤ σ−1f,w∗ · C · E(f) .

Proof. We present our proof in two steps. Note, all calculations are non-probabilistic. Step-1 involves
bounding the error ‖wf − w∗‖ in terms of the gradient difference ‖∇wL(w∗, fc)−∇wL(w∗, f)‖.
This step uses Taylor’s expansion on L(wf , f) upto the second orderth term for population log-
likelihood around the true w∗. Step-2 involves deriving a bound on the gradient difference in terms
of the difference ‖f − fc‖ using the Lipschitz property implied by Condition 1. Further, for a crude
calibration choice of fc(x) = ps(·|x), the gradient difference can be bounded by miscalibration error.
We now detail both of these steps.

Step-1. Similar to Lemma 3, we represent with L by absorbing the negative sign to simplify notation.
Using the Taylor expansion, we have

L(wf , f) ≥ L(w∗, f) + 〈∇wL(w∗, f), wf − w∗〉+
1

2
(wf − w∗)T∇2

wL(w̃, f)(wf − w∗) ,

where w̃ ∈ [wf , w
∗]. With the assumption fTw∗ ≥ τ , we have ∇2

wL(w̃, f) ≥
τ2

min ps(y)2
∇2
wL(w∗, f) . Let κ = τ2

min ps(y)2
. Using this we get,

L(wf , f) ≥ L(w∗, f) + 〈∇wL(w∗, f), wf − w∗〉+
κ

2
(wf − w∗)T∇2

wL(w∗, f)(wf − w∗)

L(wf , f)− L(w∗, f)︸ ︷︷ ︸
I

≥ 〈∇wL(wf , f), wf − w∗〉+
κ

2
(wf − w∗)T∇2

wL(w∗, f)(wf − w∗) ,

where term-I is less than zero as wf is the minimizer of NLL L(w, f). Ignoring that term and
re-arranging a few terms we get

−〈∇wL(w∗, f), wf − w∗〉 ≥
κ

2
(wf − w∗)T∇2

wL(w∗, f)(wf − w∗) .

With first order optimality on w∗, 〈∇wL(w∗, fc), wf − w∗〉 ≥ 0. Using this we have:

〈∇wL(w∗, fc), wf − w∗〉 − 〈∇wL(w∗, f), wf − w∗〉 ≥
κ

2
(wf − w∗)T∇2

wL(w∗, f)(wf − w∗) ,

〈∇wL(w∗, fc)−∇wL(w∗, f), wf − w∗〉 ≥
κ

2
(wf − w∗)T∇2

wL(w∗, f)(wf − w∗) .

As before, let σf,w be the minimum eigenvalue of ∇2
wL(w∗, f). Using the fact that (wf −

w∗)T∇2
wL(w∗, f)(wf − w∗) ≥ σf,w ‖wf − w∗‖2, we get

〈∇wL(w∗, fc)−∇wL(w∗, f), wf − w∗〉 ≥
κσf,w

2
‖wf − w∗‖2 .

Using Holder’s inequality on the LHS and re-arranging terms gives

‖∇wL(w∗, fc)−∇wL(w∗, f)‖ ≥ κσf,w
2
‖wf − w∗‖ . (23)

Step-2. By lower bound assumptions fTc w
∗ ≥ τ and fTw∗ ≥ τ , we have

‖∇wL(w∗, fc)−∇L(w∗, f)‖ ≤ Et [‖∇L1(x,w∗, fc)−∇L1(x,w∗, f)‖] ≤ 1

τ2
Et [‖fc(x)− f(x)‖] ,

(24)
where the first inequality is implied by Jensen’s inequality and the second is implied by the Lipschitz
property of the gradient. Further, we have

Et [‖fc(x)− f(x)‖] = Es
[
pt(x)

ps(x)
‖fc(x)− f(x)‖

]
9We present two upper bounds because the second is more interpretable while the first is tighter.

19



≤ Es
[
max
y

pt(y)

ps(y)
‖fc(x)− f(x)‖

]
≤ max

y

pt(y)

ps(y)
Es [‖fc(x)− f(x)‖] . (25)

Combining equations (23), (24), and (25), we have

‖wf − w∗‖ ≤
2

κσf,wτ2
max
y

pt(y)

ps(y)
Es [‖fc(x)− f(x)‖] . (26)

Further, if we set fc(x) = ps(·|f(x)), which is a calibrated predictor according to Proposition 2,
we can bound the error on the RHS in terms of the calibration error of f . Moreover, in the label
shift estimation problem, we have the assumption that ps(y) ≥ c > 0 for all y. Hence, we have
maxy pt(y)/ps(y) ≤ 1/c. Using Jensen’s inequality, we get

Es‖fc(x)− f(x)‖ ≤
(
Es‖fc(x)− f(x)‖2

) 1
2

= E(f) . (27)

Plugging (27) back in (26),we get the required upper bound.

Proposition 3. For any w ∈ W , we have σf,w ≥ ps,minσf where σf is the minimum eigenvalue
of Et

[
f(x)f(x)T

]
and ps,min = miny∈Y ps(y). Furthermore, if f satisfies Condition 1, we have

p2s,min · σf ≤ σf,w ≤ τ−2 · σf , for w ∈ {wf , w∗}.

Proof. For any v ∈ Rk, we have

vT
(
−∇2

wL(w, f)
)
v = Et

[ (
vT f(x)

)2
(f(x)Tw)

2

]
∈
[

1

a2
,

1

b2

]
· vTEt

[
f(x)f(x)T

]
v ,

where

a = max
x:ps(x)>0

f(x)Tw ≤ 1

ps,min

and

b = min
x:ps(x)>0

f(x)Tw ≥ τ

if f satisfies Condition 1 and w ∈ {wf , w∗}. Therefore, we have

p2s,min · σf ≤ σf,w ≤ τ−2 · σf
for w ∈ {wf , w∗}.

Lemma 5. Let f = g◦ f̂ be the predictor after post-hoc calibration with squared loss l and g belongs
to a function class G that satisfies the standard regularity conditions, we have

E(f) ≤ min
g∈G
E(g ◦ f̂) +Op

(
n−1/2

)
. (8)

Proof. Assume regularity conditions on the model class Gθ (injectivity, Lipschitz-continuity, twice
differentiability, non-singular Hessian, and consistency) as in Theorem 5.23 of Stein [21] hold true.
Using the injectivity property of the model class as in Kumar et al. [14], we have for all g1, g2 ∈ G,

MSE(g1)−MSE(g2) = E(g1)2 − E(g2)2 . (28)

Let ĝ, g∗ ∈ G be models parameterized by θ̂ and θ∗, respectively. Using the strong convexity of the
empirical mean squared error we have,

MSEn(ĝ) ≥ MSEn(g∗) + 〈∇θMSEn(g∗), θ̂ − θ∗〉+
µ2

2

∥∥∥θ̂ − θ∗∥∥∥2
2
,
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where µ is the parameter constant for strong convexity. Re-arranging a few terms, we have

MSEn(ĝ)−MSEn(g∗)︸ ︷︷ ︸
I

−〈∇θMSEn(g∗), θ̂ − θ∗〉 ≥ µ2

2
‖θ̂ − θ∗‖22 ,

where term-I is less than zero because ĝ is the empirical minimizer of the mean-squared error.
Ignoring term-I, we get:

µ2

2
‖θ̂ − θ∗‖22 ≤ −〈∇θMSEn(g∗), θ̂ − θ∗〉 ≤ ‖∇θMSEn(g∗)‖

∥∥∥θ̂ − θ∗∥∥∥ .
As the assumed model class is Lipschitz w.r.t. θ, the gradient is bounded by Lipschitz constant
L = c1. E [∇θMSEn(g∗)] = 0 as g∗ is the population minimizer. Using Hoeffding’s bound for
bounded functions, we have with probability at least 1− δ,

‖θ̂ − θ∗‖2 ≤
c1
µ2

√
log(2/δ)

n
. (29)

Using the smoothness of the MSE(g), we have

MSE(ĝ)−MSE(g∗) ≤ c2‖θ̂ − θ∗‖22 , (30)

where c2 is the operator norm of the∇2MSE(g∗). Combining (28), (29), and (30), we have for some
universal constant c = c1c2

µ2 with probability at least 1− δ,

E(ĝ)2 − E(g∗)2 ≤ c log(2/δ)

n
.

Moreover, with Lemma 4, depending on the degree of the miscalibration and the method involved to
calibrate, we can bound the E(f). For example, if using vector scaling on a held out training data for
calibration, we can use Lemma 5 to bound the calibration error E(f), i.e., with probability at least
1− δ, we have

E(f) ≤

√
min
g∈G
E(g ◦ f)2 + c

log(2/δ)

n
≤ min

g∈G
E(g ◦ f) +

√
c
log(2/δ)

n
. (31)

Plugging (27) and (31) into (26), we have with probability at least 1− δ that

‖wf − w∗‖ ≤
1

κσf,wτ2

(
‖w∗‖2

(√
c
log(2/δ)

n
+ min

g∈G
E(g ◦ f)

))
.
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