
Contents

1 Introduction 1

1.1 Our contributions . 2

1.2 Our approach and techniques . 3

1.3 Further Related Work . 4

2 Preliminaries: The Extension Lemma 4

3 A Rate-Optimal Estimator 4

3.1 The Model of Estimation. 4

3.2 The Optimal Sample Complexity . 5

3.3 The optimal algorithm . 5

3.4 Lower Bounds . 7

4 A poly(n)-time implementation of the optimal algorithm 8

5 The Broader Impact of Our Work 9

6 Acknowledgements 9

A Basic Definitions and the Extension Lemma 13

A.1 Basic Definitions . 13

A.2 On the Extension Lemma . 13

A.3 Proof of Proposition A.5 . 14

A.4 Omitted Proofs . 16

B Proofs for Section 3.3: The Rate-Optimal Algorithm 16

B.1 An auxiliary property . 16

B.2 Proof of Lemma 3.2 . 17

B.3 Proof of Lemma 3.3 . 17

B.4 Proof of Lemma 3.4 . 18

B.5 Proof of Lemma 3.5 . 19

B.6 Proof of Theorem 3.6 . 23

C Proof for Section 3.4: Lower Bounds 25

D Insights about Sample Complexity 27

E The Algorithm 29

E.1 Worst-case Time Complexity of PRIVATEMEDIAN(X = (X1, . . . , Xn)) 29

E.2 Average-case Time Complexity of PRIVATEMEDIAN(X = (X1, . . . , Xn)) 39

E.3 Comments about Truncated-Sampling . 41

E.3.1 UNIFORM . 41

12

E.3.2 k−nary coin . 41

E.3.3 TRUNCATEDEXPONENTIAL . 41

E.3.4 TRUNCATEDLAPLACE . 42

A Basic Definitions and the Extension Lemma

A.1 Basic Definitions

A similar notion to ε-differential privacy (Definition 1.1) is the notion of (ε, δ)-differential privacy.
Definition A.1. A randomized algorithm A is (ε, δ)-differential private if for all subsets S ∈ F of
the output measurable space (Ω,F) and n-tuples of samples X1, X2 ∈ Rn it holds

P (A(X1) ∈ S) ≤ eεdH(X1,X2)P (A(X2) ∈ S) + δ. (A.1)

It is rather straightforward that (ε, δ)-differential privacy is a weaker notion to ε-differential privacy,
in the sense that for any ε, δ > 0 any ε-differentially private algorithm is also an (ε, δ)-differentially
private algorithm.

Of importance to us in the design of the algorithm desicred in the main body of this work is the notion
of the left (empirical) median of an n-tuple of samples.
Definition A.2. For x = (x1, . . . , xn) ∈ Rn, we denote by x(1), . . . , x(n) the reordered coordinates
of x in nondecreasing order, i.e. min

1≤i≤n
xi = x(1) ≤ . . . ≤ x(n) = max

1≤i≤n
xi. We let ` = bn/2c and

m(x) = x(l) be the empirical (left) median of x.

A.2 On the Extension Lemma

In this section we provide more details on the Extension Lemma as stated in Proposition 2.1. We
repeated it for convenience.

Proposition A.3 ("The Extension Lemma" Proposition 2.1, [BCSZ18a]). Let Â be an ε-differentially
private algorithm designed for input from H ⊆ Rn with arbitrary output measure space (Ω,F).
Then there exists a randomized algorithm A defined on the whole input space Rn with the same
output space which is 2ε-differentially private and satisfies that for every X ∈ H, A(X)

d
= Â(X).

Albeit the generality of the result, as mentioned in the conclusion of [BCSZ18a], the Extension
Lemma does not provide any guarantee that the extension of the algorithm Â can be made in a
computationally efficient way. In this work, as described in the main body of the paper, we show
that the Extension Lemma is applicable in the context of median estimation, and furthermore the
extension can be implemented in polynomial time. Hence, naturally, to perform this extension in a
computationally efficient way we don’t use the Extension Lemma as a “blackbox” but rather need
to use the specific structure of the extended private algorithm, by digging into the proof of it in
[BCSZ18a, Proposition 2.1.].

The density of the extended algorithm - general For simplicity, we present the density of the
extended algorithm under certain assumptions that will be correct in the context of our work. As
everywhere in this paper, let us first focus on the case the input space isM = Rn equipped with
the Hamming distance and the output space is the real line equipped with the Lebesgue measure.
Furthermore let us assume also that for any X ∈ H the randomised restricted algorithm Â(X)
follows a real-valued continuous distribution with a density fÂ(X) with respect to the Lebesque
measure, given by Equation (3.4). We repeat here the definitions for convenience;

fÂ(X)(ω) =
1

Ẑ
exp

(
−ε

4
min

{
Ln

3C
|m(X)− ω| , Lrn

})
, ω ∈ I := [−R− 4Cr,R+ 4Cr]

(A.2)
where the normalizing constant is

Ẑ =

∫
I

exp

(
−ε

4
min

{
Ln

3C
|m(X)− ω| , Lrn

})
dω. (A.3)

13

As claimed in Section 3.3 the normalizing constant Ẑ does not have an index X because the right
hand side of (A.3) takes the same value for any X ∈ H. This follows by the following Lemma.

Lemma A.4. Suppose C > 1/2. Then for any X ∈ H,∫
I

exp

(
−ε

4
min

{
Ln

3C
|m(X)− ω| , Lrn

})
dω =

∫
I

exp

(
−ε

4
min

{
Ln

3C
|ω| , Lrn

})
dω.

Then from the proof of the Extension Lemma [Section 4, [BCSZ18a]] we have that the “extended”
ε-differentially private algorithm A on input X ∈ Rn admits also a density given by

fA(X)(ω) =
1

ZX
inf
X′∈H

[
exp

(ε
4
dH(X,X ′)

)
fÂ(X′)(ω)

]
, ω ∈ R (A.4)

where

ZX :=

∫
R

inf
X′∈H

[(ε
4
dH(X,X ′)

)
fÂ(X)′(ω)

]
dω.

For reasons of completeness we state the corollary of the Extension Lemma that establishes that in
our setting the algorithm A satisfies the desired properties of the Extension Lemma.

Proposition A.5. Under the above assumptions, the algorithm A is ε-differentially private and for
every X ′ ∈ H, A(X ′)

d
= Â(X ′).

We also include the proof of the Proposition in the following section, which essentially follows the
proof of the Extension Lemma [BCSZ18a, Proposition 2.1.] adapted to our case.

As a technical remark note that for the density in equation (A.4) to be well-defined we require that
for every X ∈ Rn the “unnormalized” density function

GX(ω) := inf
X′∈H

[
exp

(ε
2
dH(X,X ′)

)
fÂ(X′)(ω)

]
, ω ∈ R (A.5)

is integrable and has a finite integral as well. Both conditions follows by the following Lemma, which
establishes - among other properties - that GX is a continuous function almost everywhere and has a
finite integral.

Lemma A.6. Suppose the above assumptions hold and fix X ∈ Rn. Then,

• GX(ω) = 0 for all ω 6∈ I = [−R− 4Cr,R+ 4Cr]

• GX isR-Lipschitz on I with Lipschitz constantR = e
εn
2

εLn
12CẐ

, where Ẑ is given in (A.3).

Furthermore, it holds 0 ≤
∫
ω∈RGX(ω)dω ≤ 1.

Plugging in now the densities of the restricted algorithm (Equations (A.2)) to the general extended
algorithm (Equations (A.6)) and finally using also that according to Lemma A.4 the normalizing
constant for the restricted algoriths is independent of X ′ ∈ H, we have

fA(X)(ω) =
1

ZX
exp

(
inf
X′∈H

[
ε

2
dH(X,X ′)− ε

4
min

{
Ln

3C
|m(X ′)− ω| , Lrn

}])
, (A.6)

where ω ∈ [−R− 4Cr,R+ 4Cr] and ZX is the appropriate normalizing constant.

A.3 Proof of Proposition A.5

We start with using the [BCSZ18a, Lemma 4.1.] applied in our setting, which gives the following
Lemma.

Lemma A.7. Let A′ be a real-valued randomized algorithm designed for input from H′ ⊆ Rn.
Suppose that for any X ∈ H′, A′(X) admits a density function with respect to the Lebesque measure
fA′(X). Then the following are equivalent

(1) A′ is ε-differentially private onH;

14

(2) For any X,X ′ ∈ H
fA′(X)(ω) ≤ eεdH(X,X′)fA′(X′)(ω), (A.7)

almost surely with respect to the Lebesque measure.

We now proceed with the proof of Proposition A.5.

Proof of Proposition A.5. We first prove that A is ε-differentially private over all pairs of input from
Rn. Using Lemma A.7 it suffices to prove that for any X1, X2 ∈ H,

fA(X1)(ω) ≤ exp (εdH(X1, X2)) fA(X2)(ω),

almost surely with respect to the Lebesque measure. We establish it in particular for every ω ∈ R.
Notice that if ω 6∈ I, both sides are zero from Lemma A.6. Hence let us assume ω ∈ I. Let
X1, X2 ∈ Rn. Using triangle inequality we obtain for every ω ∈ I,

inf
X′∈H

[
exp

(ε
2
dH(X1, X

′)
)
fÂ(X′)(ω)

]
≤ inf
X′∈H

[
exp

(ε
2

[dH(X1, X2) + dH(X2, X
′)]
)
fÂ(X′)(ω)

]
= exp

(ε
2
dH(X1, X2)

)
inf
X′∈H

[
exp

(ε
2
dH(X,X ′)

)
fÂ(X′)(ω)

]
,

which implies that for any X1, X2 ∈M,

ZX1 =

∫
Ω

inf
X′∈H

[
exp

(ε
2
d(X1, X

′)
)
fÂ(X′)(ω)

]
dω

≤ exp
(ε

2
d(X1, X2)

)∫
Ω

inf
X′∈H

[
exp

(ε
2
d(X2, X

′)
)
fÂ(X′)(ω)

]
dω

= exp
(ε

2
d(X1, X2)

)
ZX2 .

Therefore using the above two inequalities we obtain that for any X1, X2 ∈ Rn and ω ∈ I,

fA(X1)(ω) =
1

ZX1

inf
X′∈H

[
exp

(ε
2
dH(X1, X

′)
)
fÂ(X′)(ω)

]
≤ 1

exp
(
− ε2dH(X2, X1)

)
ZX2

exp
(ε

2
dH(X1, X2)

)
inf
X′∈H

[
exp

(ε
2
d(X2, X

′)
)
fÂ(X′)(ω)

]
= exp

(ε
2
d(X1, X2)

) 1

ZX2

inf
X′∈H

[
exp

(ε
2
dH(X2, X

′)
)
fÂ(X′)(ω)

]
= exp (εdH(X1, X2)) fA(X2)(ω),

as we wanted.

Now we prove that for every X ∈ H, A(X)
d
= Â(X). Consider an arbitrary X ∈ H. We know that

Â is ε/2-differentially private which based on Lemma A.7 implies that for any X,X ′ ∈ H

fÂ(X)(ω) ≤ exp
(ε

2
dH(X,X ′)

)
fÂ(X′)(ω), (A.8)

almost surely with respect to the Lebesque measure. Observing that the above inequality holds almost
surely as equality if X ′ = X we obtain that for any X ∈ H it holds

fÂ(X)(ω) = inf
X′∈H

[
exp

(ε
2
dH(X,X ′)

)
fÂ(X′)(ω)

]
,

almost surely with respect to the Lebesque measure. Using that fÂ(X) is a probability density
function we conclude that in this case

ZX =

∫
fÂ(X)(ω)dω = 1.

Therefore
fÂ(X)(ω) =

1

ZX
inf
X′∈H

[
exp (εdH(X,X ′)) fÂ(X′)(ω)

]
,

almost surely with respect to the Lebesque measure and hence
fÂ(X)(ω) = fA(X)(ω),

almost surely with respect to the Lebesque measure. This suffices to conclude that Â(X)
d
= A(X)

as needed.

The proof of Proposition A.5 is complete.

15

A.4 Omitted Proofs

Proof of Lemma A.4. Since X = 0 ∈ H and the left hand side for X = 0 evaluates to the right hand
side, it suffices to show that the left hand side does not depend on the value of m(X).

By denoting I −m(X) := [−R− 4Cr −m(X), R+ 4Cr −m(X)] we have∫
I

exp

(
−ε

4
min

{
Ln

3C
|m(X)− ω| , Lrn

})
dω =

∫
I−m(X)

exp

(
−ε

4
min

{
Ln

3C
|ω| , Lrn

})
dω

=

∫
(I−m(X))∩{|ω|≤3Cr}

exp

(
−ε

4

Ln

3C
|ω|
)

dω +

∫
(I−m(X))∩{|ω|>3Cr}

exp
(
−ε

4
Lrn

)
dω.

Now since X ∈ H we have m(X) ∈ [−R − r/2, R + r/2]. Hence, using C > 1/2 we have
[−3Cr, 3Cr] ⊆ I −m(X). Therefore the last summation of integrals simplifies to∫

|ω|≤3Cr

exp

(
−ε

4

Ln

3C
|ω|
)

dω + (|I| − 6Cr) exp
(
−ε

4
Lrn

)
dω,

which does not depends on X as we wanted.

Proof of Lemma A.6. First notice that if ω 6∈ I, from (3.4) for any X ′ ∈ H, fÂ(X′)(ω) = 0.
Therefore indeed

0 ≤ fA(X)(ω) ≤ exp
(ε

2
dH(X,X ′)

)
fÂ(X′)(ω) = 0.

We prove now that for all X ′ ∈ H, the function exp
(
ε
2dH(X,X ′)

)
fÂ(X′)(ω) is R-Lipschitz on

I. The claim then follows by the elementary real analysis fact that the pointwise infimum over an
arbitrary family ofR-Lipschitz functions is anR-Lipschitz function.

Now recall that for all a, b > 0 by elementary calculus, |e−a − e−b| ≤ |a − b|. Hence, for fixed
X ′ ∈ H, using the definition of the density in equation (A.2), we have for any ω, ω′ ∈ I,

|fÂ(X′)(ω)− fÂ(X′)(ω
′)| ≤ ε

4Ẑ
|min

{
Ln

3C
|m(X)− ω| , Lrn

}
−min

{
Ln

3C
|m(X)− ω′| , Lrn

}
|

Now combining with Property B.0.1 we conclude

|fÂ(X′)(ω)− fÂ(X′)(ω
′)| ≤ ε

4Ẑ
|min

{
Ln

3C
|ω − ω′| , Lrn

}
| ≤ εLn

12CẐ
|ω − ω′|.

In particular, exp
(
ε
2dH(X,X ′)

)
fÂ(X′)(ω) is R = e

εn
2

εLn
12CẐ

-Lipschitz since exp
(
ε
2dH(X,X ′)

)
is a constant independent of ω with exp

(
ε
2dH(X,X ′)

)
≤ exp(εn2). The proof of the Lipschitz

continuity is complete. The final part follows from the fact that G is non-negative by definition and
again by definition for arbitrary fixed X ′ ∈ H, fÂ(X′) integrates to one and upper bounds pointwise
the function GX .

B Proofs for Section 3.3: The Rate-Optimal Algorithm

B.1 An auxiliary property

The following elementary property is important in what follows, which appeared as Lemma 9.2. in
[BCSZ18b].

Property B.0.1. For any a, b > 0 the function f : R→ R, with f(x) = min{a|x|, b}, for all x ∈ R,
satisfies the triangle inequality, f(x+ y) ≤ f(x) + f(y) for all x, y ∈ R.

16

B.2 Proof of Lemma 3.2

Proof. We assume κ := dH(X,Y) ≥ 1 as if it equals zero the Lemma follows.

Consider two data-sets
{
X := {x1, x2, . . . , xκ, C1, . . . , Cn−κ}
Y := {y1, y2, . . . , yκ, C1, . . . , Cn−κ}

∈ H. Without loss of generality

we assume that the common part is sorted in an increasing order, i.e. it holds C1 ≤ . . . ≤ Cn−κ.
Notice that the left median of data-set can be altered by the addition of M ′ new points only to
some point among the bM ′/2c+ 1 points on the right and the bM ′/2c+ 1 points on the left of it.
Hence the interval [Cbn−κ2 c

,m(X)] ∪ [m(X), Cbn−κ2 c
] (respectively the interval [Cbn−κ2 c

,m(Y)] ∪
[m(Y), Cbn−κ2 c

]) there can be at most bκ2 c+ 1 points of the data-set X (respectively of the data-set
Y).

Therefore, leveraging the definition of sensitivity set, we have that

|m(X)− Cbn−κ2 c
| ≤ (bκ

2
c+ 1)

C

Ln
and

|m(Y)− Cbn−κ2 c
| ≤ (bκ

2
c+ 1)

C

Ln
,

which implies by the triangle inequality

|m(X)−m(Y)| ≤ (2bκ
2
c+ 2)

C

Ln
≤ 3κ

C

Ln
.

B.3 Proof of Lemma 3.3

Proof. Using Lemma 3.2 we have for any X,Y ∈ H,

min

{
Ln

3C
|m(X)−m(Y)| , Lrn

}
≤ dH(X,Y). (B.1)

We will firstly analyze the non-normalized ratio corresponding to two data-sets X,Y :

ZXfÂ(X)(q)

ZY fÂ(Y)(q)
=

exp
(
ε
4 min

{
Ln
3C |m(X)− q| , Lrn

})
exp

(
− ε4 min

{
Ln
3C |m(Y)− q| , Lrn

})
≤ exp

(
ε

4
min

{
Ln

3C
|m(X)−m(Y)| , Lrn

})
Property B.0.1

≤ exp
(ε

4
dH(X,Y)

)
Equation (B.1)

Furthermore for the ratio of the two normalizing constants we have

ZY
ZX

=

∫
I

exp

(
−ε

4
min

{
Ln

3C
|m(Y)− q| , Lrn

})
dq∫

I
exp

(
−ε

4
min

{
Ln

3C
|m(X)− q| , Lrn

})
dq

≤

∫
I

exp

(
−ε

4
min

{
Ln

3C
|m(Y)− q| , Lrn

})
dq

∫
I

exp

−ε
4


min

{
Ln
3C |m(X)−m(Y)| , Lrn

}
+

min
{
Ln
3C |m(Y)− q| , Lrn

}
 dq

Property B.0.1

= exp

(
ε

4
min

{
Ln

3C
|m(X)−m(Y)| , Lrn

})
≤ exp

(ε
4
dH(X,Y)

)
Equation (B.1)

17

Combining the two final inequalities above we conclude

fÂ(X)(q) ≤ exp
(ε

2
dH(X,Y)

)
fÂ(Y)(q), ∀q ∈ I

The proof is complete.

B.4 Proof of Lemma 3.4

Lemma 3.4 follows from the following more general lemma where C > 1 is allowed to grow with n
while in the context of Lemma 3.4 is considered in the asymptotic analysis as a constant.
Lemma B.1. Suppose C > 1, possibly scaling with n, and α ∈ (0, r), β ∈ (0, 1). For some

n = O

C log
(

1
β

)
εLα

+
log
(
R
α + 1

)
εLr


it holds

max
X∈H

P[|Â(X)−m(X)| ≥ α] ≤ β,

where the probability is with respect to the randomness of the algorithm Â(X).

Proof.

• Step 1: Observe: Since C > 1/4 it holds R+ 4Cr > R+ r. Hence, by change of variables
q = q −m(X),

ZX =

∫
[−R−4Cr,R+4Cr]

exp

(
−ε

4
min

{
Ln

3C
|m(X)− q| , Lrn

})
dq

≥
∫ R+r

0

exp(−ε
4

min{Ln
3C

q, Lrn})dq

=

∫ min{3rC,R+r}

0

exp(−ε
4
· Ln

3C
q)dq +

∫ R+r

min{3rC,R+r}
exp(−ε

4
Lrn)dq

≥
∫ min{3rC,R+r}

0

exp(−ε
4
· Ln

3C
q)dq

=
1

ε
4 ·

Ln
3C

(
1− exp(−ε

4
· Ln

3C
min{3Cr,R+ r})

)
=

12C

nεL

(
1− exp(−nεL

12C
·min{3Cr,R+ r}))

)
≥ 12C

nεL

(
1− exp(−Θ

(
nεLr

C

)
)

)

• Step 2:Now using that m(X) ∈ [−R − r/2, R + r/2] and by change of variables q =
q −m(X) we have:

P[|Â(X)−m(X)| ≥ α] ≤ 2

ZX

∫ 2R+3Cr+r

α

q exp(−ε
4

min{Ln
3C

q, Lrn})dq

≤ 2

ZX

(∫ +∞

α

exp(−ε
4

Ln

3C
q)dq +

∫ 2R+3Cr+r

3Cr

exp(−ε
4
Lrn)dq

)

≤ 2

ZX

(
12C

nεL
exp(−ε

4

Ln

3C
α) + (2R+ r) exp(−Lrεn

2
)

)

18

Hence we conclude for all X ∈ H

P[|Â(X)−m(X)| ≥ α] ≤ 2

(
1− exp(−Θ

(
nεLr

C

)
)

)−1(
exp(−ε

4

Ln

3C
α) + (2R+ r)

nεL

12C
exp(−εLrn

2
)

)
From this and elementary asymptotics we conclude that for C > 1 with

n = O

C log
(

1
β

)
εLα

+
C + log

(
R
r + 1

)
εLr


it holds for all X ∈ H, P[|Â(X)−m(X)| ≥ α] ≤ β. Using that α ≤ r the above sample
complexity bound simplifies to

n = O

C log
(

1
β

)
εLα

+
log
(
R
α + 1

)
εLr

 .

The proof of the Lemma is complete.

B.5 Proof of Lemma 3.5

The following Lemma holds.
Lemma B.2. LetD be an admissible distribution andX = (X1, . . . , Xn) consisting of i.i.d. samples
from D. Suppose C > 5, possibly scaling with n, which satisfies 4Ce exp

(
− 2C

27

)
< 1/2. Then for

any T ∈ [0, Lr4Cn] it holds

P

 ⋂
κ∈[T,Lr2C n]∩Z

∑
i∈[n]

1{Xi −m(X) ∈ [0,
Cκ

Ln
]} ≥ κ+ 1

 ≥ 1−O
(

(8Ce exp

(
−C

8

)
)dTe + e−Θ(L2r2n)

)
,

and

P

 ⋂
κ∈[T,Lr2C n]∩Z

∑
i∈[n]

1{Xi −m(X) ∈ [−Cκ
Ln

, 0]} ≥ κ+ 1

 ≥ 1−O
(

(8Ce exp

(
−C

8

)
))dTe + e−Θ(L2r2n)

)
,

We now use Lemma B.2 to prove the following more general version of Lemma 3.5 where C > 0 is
allowed to potentially scale with n.
Lemma B.3. Let D be an admissible distribution, β ∈ (0, 1), n ≥ 3 and X = (X1, . . . , Xn)
consisting of i.i.d. samples from D. Suppose C > 5, possibly scaling with n, which satisfies
4Ce exp

(
− 2C

27

)
< 1/2. Then for some E > 0, C ′ = C ′(C) > 0 with C ′(C) = Θ(1

C) as C grows,

if n ≥ E log 1
β

L2r2 then it holds

P
(
∃X ′ ∈ H s.t. dH (X,X ′) ≤ C ′ log

1

β
,m(X ′) = m(X)

)
≥ 1− β.

Proof of Lemma B.3. We begin by applying Lemma B.2. First, notice that since Lr ≤ 1/2 we can

take E > 0 sufficiently large, so that if n ≥ E log 1
β

L2r2 then n = Ω
(

log 1
β

Lr

)
. Hence we can choose T =

C′(C)
2 log 1

β for appropriate C ′(C) > 0 with C ′(C) = Θ(1/C) as C grows, so that using Lemma

B.2 both the two probabilistic guarantees hold with probability at least 1− β
2 −O

(
e−Θ(L2r2n)

)
.

19

Taking now sufficiently large E > 0 with n ≥ E log 1
β

L2r2 we can make sure the probabilistic guarantees
hold with probability at least 1−β. Combining the above, with probability at least 1−β the following
event holds: for all κ ∈ [T, Lr2Cn] ∩ Z,∑

i∈[n]

1{Xi −m(X) ∈ [−Cκ
Ln

, 0]} ≥ κ+ 1 (B.2)

and ∑
i∈[n]

1{Xi −m(X) ∈ [−Cκ
Ln

, 0]} ≥ κ+ 1. (B.3)

In words, all but, the closest to m(X), T = C′(C)
2 log 1

β intervals on the left of m(X), and all but,

the closest to m(X), T = C′(C)
2 log 1

β interval on the right of m(X), satisfy their corresponding
constraints described in the typical setH.

Now let us consider a data-set X for which (B.2) and (B.3) hold. We show that given these events one
can construct an X ′ ∈ H satisfying the conditions described in the event considered in Lemma B.3.
First recall that as T ≤ Lr

4Cn since Lr ≤ 1/2 and C > 5, it necessarily holds T ≤ n/40. Since we
assume n ≥ 3 it holds T < n/2−2. Now, as there are at least n/2−2 points on the left ofm(X) and
n/2− 2 points on the right of m(X) we can modify X by choosing arbitrary T points on the right of
m(X) and arbitrary T points on the left of m(X) and change all their position to m(X). Notice that
such a change produces a new data-set X ′ which has Hamming distance 2T = C ′(C) log 1

β with X
and has the same median with X , m(X) = m(X ′).

Notice that as we moved points closer to the median, all satisfied constraint fromH by the data-set
X according to (B.2) and (B.3) continue to be satisfied from X ′. On top of this, since at least 2T
points of X ′ take now exactly the value of the left empirical median, the data-set X ′ necessarily
satisfies also the, potentially violated by X , constraints corresponding to the T intervals on the left of
m(X ′) = m(X) and the T intervals on the right of m(X ′) = m(X). We conclude that X ′ satisfies
all the constraints described inH and therefore, X ′ ∈ H, which completes the proof.

For the rest part we focus on proving Lemma 3.5.

Proof of Lemma B.2. We start by noticing that by identical reasoning as the derivation of inequality
(14) of [BA19] in the proof of Lemma 3 in [BA19] we have for t = r/2 ∈ [0, r]

P (|m(X)−m(D)| ≥ r/2) ≤ 2e−nL
2r2/8. (B.4)

No we focus on proving the first out of the two probabilistic guarantee,

P

 ⋂
κ∈[T,Lr2C n]∩Z

∑
i∈[n]

1{Xi −m(X) ∈ [0,
Cκ

Ln
]} ≥ κ+ 1

 ≥ 1−O
(

(8Ce exp

(
−C

8

)
)dTe + e−Θ(L2r2n)

)
,

as the second follows naturally by the symmetric argument around zero. We make the following three
observations.

First, observe that generating i.i.d. samples from D and then determining the left empirical median
m(X) based on the realization of X1, . . . , Xn is equal in law with first sampling the place of the left
empirical median m(X) based on its distribution and sampling uniformly at random an Xi so that
Xi = m(X) and then generating dn−1

2 e − 1(n is even) i.i.d. samples from D conditional to be on
the left of m(X) and generating dn−1

2 e i.i.d. samples from D conditional to be on the right of m(X).
To model the underlying the randomness we can define for each i, the trinary random variables where
Ci = −1 if the sample i is chosen to be on the left of m(X), Ci = 0 if the sample equals m(X) and
Ci = 1 if they are chosen to be on the right.

Second, using the fact that D has density lower bounded by L in [m(D) − r,m(D) + r], observe
that our distribution D can be decomposed as a mixture,

D =
rL

2
Unif[m(D)− r,m(D) + r] +

(
1− rL

2

)
D′ (B.5)

20

for some other probability measureD′ on the reals. Now using the first observation, we first sample the
position of m(X) and describe the sampling of Xi as follows. If Ci = 0 we simply set Xi = m(X).
For the other two cases, we assume Ci = 1 as the other case is symmetric. If m(X)−m(D) ≥ r
then we sample from the distribution

(
1− rL

2

)
D′ conditional on being on the right of m(X). If

m(X) −m(D) ≤ r then we first flip a coin Bi
d
= Bernoulli(rL2) and with probability rL

2 (that is
when Bi = 1) we sample from Unif[m(D) − r,m(D) + r] conditional on being on the right of
m(X) and with probability 1 − rL

2 (that is when Bi = 0) we sample from some distribution D′
conditional on being on the right of m(X).

Third, observe that the event of interest becomes less probable when we restrict ourselves to only a
subset of the n samples. Hence, since we want to prove a lower bound on the probability of the event
we can restrict ourselves to an arbitrary subset.

Now, using (B.4) by neglecting an event of probability 2e−nL
2r2/8 ≤ e−Θ(L2r2n) from now on we

condition on |m(X) −m| ≤ r/2. Now using the three observations above, we restrict ourselves
only on the n1 ≤ n samples that satisfy Bi = Ci = 1, that is they are samples from Unif[m(D)−
r,m(D) + r] conditional on being on the right of m(X). We denote these samples by X1, . . . , Xn1

for simplicity. Notice that Unif[m(D)− r,m(D) + r] conditional on being on the right of m(X) is
just distributed as Unif[m(X),m(D) + r]. Hence, conditioning on the value of n1, the density of
the conditional distribution of each X1, . . . , Xn1 given the m(X) can be straightforwardly check to
satisfy

2

3r
≤ fXi(u|m(X), |m(X)−m(D)| ≤ r/2) ≤ 2

r
, u ∈ [m(X),m(D) + r]. (B.6)

Combining the above, to prove our result it suffices to prove

P

 ⋂
κ∈[T,Lr2C n]∩Z

∑
i∈[n1]

1{Xi −m(X) ∈ [0,
Cκ

Ln
]} ≥ κ+ 1

 ≥ 1−O
(

(8Ce exp

(
−C

8

)
))dTe + e−Θ(L2r2n)

)
.

Since m(X) = Xi for some i by definition of the left empirical median, it suffices to prove that for

Jκ := (m(X),m(X) +
Cκ

Ln
], κ = dT e, dT e+ 1, . . . , bLr

2C
nc − 1

and sequence of events

Aκ := {
∑
i∈[n1]

1{Xi ∈ Jκ} ≥ κ}, κ = dT e, dT e+ 1, . . . , bLr
2C

nc − 1

it holds

P

bLr2C nc−1⋂
κ=dTe

Aκ

∣∣∣∣|m(X)−m(D)| ≤ r/2

 ≥ 1−O
(

(8Ce exp

(
−C

8

)
))dTe + e−Θ(L2r2n)

)
).

Using a union bound it suffices to show

bLr2C nc−1∑
κ=dTe

P

Acκ ∩ κ−1⋂
s=dTe

As

∣∣∣∣|m(X)−m(D)| ≤ r/2

 ≤ O((8Ce exp

(
−C

8

)
))dTe + e−Θ(L2r2n)

)
.

Observe that as we are conditioning on |m(X)−m(D)| ≤ r/2 for all κ of interest

Jκ ⊆ [m(D)− r,m(D) + r].

Hence using (B.6) we have that, conditioned on n1, for each i ∈ [n1] and κ,

P (Xi ∈ Jκ|m(X), |m(X)−m(D)| ≤ r/2) ∈ [
2

3r
|Jκ|,

2

r
|Jκ|]. (B.7)

21

Furthermore recall that n1
d
= Binom

(
bn−1

2 c,
Lr
2

)
and that it holds κ ≤ Lrn

2C . Since C > 5 by

standard concentration inequalities, we have that with probability 1− e−Θ(L2r2n), it holds for all κ
of interest

κ <
Lrn

9
<
n1

2
< Lrn. (B.8)

In what follows we condition on the event (B.8). Suppose κ = dT e. Then using (B.7) by definition
the probability of AcdTe is at most the probability a sample from a binomial distribution with N := n1

draws and probability 2
r |JdTe| =

2CdTe
nLr is at most dT e. Now conditioning on n1 and denoting the

Binomial random variable by Z we have by the additive form of the Chernoff’s inequality,

P
(
AcdTe

∣∣∣∣m(X), |m(X)−m(D)| ≤ r/2, n1

)
≤ P (Z ≤ dT e)

≤ exp

−
(

2n1CdTe
Lnr − dT e

)2

2n1
2CdTe
Lnr

(
1− 2CdTe

Lnr

)


Using now that we condition on (B.8) it holds 2Lnr
9 < n1 < 2Lrn and T < Lnr

4C we have

P
(
AcdTe

∣∣∣∣|m(X)−m(D)| ≤ r/2
)

= Em(X),n1

[
P
(
AcdTe

∣∣∣∣m(X), |m(X)−m(D)| ≤ r/2, n1

)]
≤ exp

(
−
(

4
9C − 1

)2 dT e2
2CdT e

)

which since C > 5 > 9
7 gives that

P
(
AcdTe

∣∣∣∣|m(X)−m(D)| ≤ r/2
)
≤ exp

(
−CdT e

8

)
. (B.9)

Now for every κ > dT e notice that the eventAcκ∩
⋂κ−1
s=0 As can happen if and only if κ of the samples

belong in Jκ−1 and the rest n1 − κ samples belong to Jcκ. Therefore using the above observations
and (B.7),

P

Acκ ∩ κ−1⋂
s=dTe

As

∣∣∣∣m(X), |m(X)−m(D)| ≤ r/2, n1

 ≤ (n1

κ

)(
2

r
|Jκ−1|

)κ(
1− 2

3r
|Jκ|

)n1−κ

≤
(
n1

κ

)(
2C(κ− 1)

nLr

)κ(
1− 2Cκ

3Lrn

)n1−κ

≤
(n1e

κ

)κ(2Cκ

Lrn

)κ
exp

(
−C 2(n1 − κ)κ

3Lrn

)
≤
(

2Ce
n1

Lrn

)κ
exp

(
−C 2(n1 − κ)κ

3Lrn

)
,

where we used the elementary inequalities
(
m
m′

)
≤
(
me
m′

)m′
, 1 + x ≤ ex and that by definition

n1 ≤ n.
The last displayed inequality conditioned on the event (B.8) implies

22

P

Acκ ∩ κ−1⋂
s=dTe

As

∣∣∣∣|m(X)−m(D)| ≤ r/2

 = Em(X),n1

[
P

(
Acκ ∩

κ−1⋂
s=0

As

∣∣∣∣m(X), |m(X)−m(D)| ≤ r/2, n1

)]

≤ En1

[
(4Ce)

κ
exp

(
−2C

3

(n1 − n1

2)κ

Lrn

)]
≤ En1

[
(4Ce)

κ
exp

(
−2C

3

n1

2 κ

Lrn

)]
≤ En1

[
(4Ce)

κ
exp

(
−2C

27
κ

)]
=

(
4Ce exp

(
−2C

27

))κ
(B.10)

Using (B.9) for the first term and since 4Ce exp
(
− 2C

27

)
< 1/2 a geometric summation over κ ≥ dT e

for the rest terms, we have that conditional on (B.8),

bLr2C nc−1∑
κ=dTe

P

Acκ ∩ κ−1⋂
s=dTe

As

∣∣∣∣|m(X)−m(D)| ≤ r/2

 ≤ exp

(
−CdT e

8

)
+ (8Ce exp

(
−2C

27

)
)dTe.

Taking now into account the probability of the conditioned event we have (B.8),

bLr2C nc−1∑
κ=dTe

P

Acκ ∩ κ−1⋂
s=dTe

As

∣∣∣∣|m(X)−m(D)| ≤ r/2

 ≤ exp

(
−CdT e

8

)
+ (8Ce exp

(
−2C

27

)
)dTe + e−Θ(L2r2n)

≤ 2(8Ce exp

(
−C

8

)
)dTe + e−Θ(L2r2n)

where in the last line since C
8 > 2C

27 and 8Ce > 1 under our assumptions it holds for all T ≥ 0

exp

(
−CdT e

8

)
+ (8Ce exp

(
−2C

27

)
)dTe ≤ 2(8Ce exp

(
−C

8

)
)dTe.

The proof is complete.

B.6 Proof of Theorem 3.6

We establish instead the following slightly more general result which does not assume that C is a
constant, but could scale with n.
Theorem B.4. Suppose C > 0, possibly scaling with n, is bigger than a sufficiently large constant,
ε ∈ (0, 1), D is an admissible distribution and A is the ε-differentially private algorithm defined
above. Then for any α ∈ (0, r) and β ∈ (0, 1) for some

n = O

 log
(

1
β

)
L2α2

+ C
log
(

1
β

)
εLα

+
log
(
R
α + 1

)
εLr


it holds P

X1,X2,...,Xn
iid∼D

[|A(X1, . . . , Xn)−m (D) | ≥ α] ≤ β.

Proof. LetX = (X1, . . . , Xn) the n-tuple of i.i.d. samples fromD. Let us use a parameter γ ∈ (0, 1)
which we later choose a polynomial function of β. We consider the event

Tγ := {∃X ′ ∈ H s.t. dH (X,X ′) ≤ C ′ log
1

γ
,m(X ′) = m(X)},

23

where C ′ = C ′(C) is chosen to satisfy the conclusion of Lemma B.3. In particular it holds
C ′(C) = Θ(1

C) as C grows to infinity.

Notice that since α ≤ r for some n = O
(

log 1
γ

L2α2

)
it holds n ≥ D

log 1
γ

L2r2 for the D > 0 defined in

Lemma B.3. Furthermore, we can assume C > 5 is sufficiently large such that 4Ce exp
(
− 2C

27

)
<

1/2. Hence, by applying Lemma B.3 we have

P [|A (X)−m (D) | ≥ α] ≤ P [|A (X)−m (D) | ≥ α,X ∈ Tγ] + P [X 6∈ Tγ]

≤ P [|A (X)−m (D) | ≥ α|X ∈ Tγ] + γ. (B.11)

Now conditioning on X ∈ Tγ we have that there exists an X ′ ∈ H with dH (X,X ′) ≤ C ′ log 1
γ

and m(X ′) = m(X). Since the algorithm A is ε-differentially private by its definition, we have that
A(X) andA(X ′) assigns to each output value the same probability mass up to a multiplicative factor
of eεdH(X,X′) ≤ eεC

′ log 1
γ ≤ eC

′ log 1
γ , where in the last inequality we use that ε < 1. Hence

P [|A (X)−m (D) | ≥ α|X ∈ Tγ] ≤ E
[
eεdH(X,X′)P [|A (X ′)−m (D) | ≥ α|X ∈ Tγ]

]
≤ eC

′ log 1
γ

P [X ∈ Tγ]
max

X′∈H,m(X′)=m(X)
P [|A (X ′)−m (D) | ≥ α]

≤ eC
′ log 1

γ

1− γ
max

X′∈H,m(X′)=m(X)
P [|A (X ′)−m (D) | ≥ α]

=
eC
′ log 1

γ

1− γ
max

X′∈H,m(X′)=m(X)
P
[
|Â (X ′)−m (D) | ≥ α

]
,

(B.12)
(B.13)

where in the last line we use that for all X ′ ∈ H, it holds A(X ′)
d
= Â(X ′).

According to Lemma B.1 for some n = O

(
C

log 1
γ

εLα +
log(Rα+1)

εLr

)
we can guarantee

max
X′∈H,m(X′)=m(X)

P
[
|Â (X)−m (X) | ≥ α

2

]
≤ γ. (B.14)

Using classical results we have that for some n = O
(

log(1
γ)

L2α2

)
it holds

P[|m(X)−m (D) | ≥ α

2
] ≤ γ. (B.15)

Combining the (B.14) and (B.15) we have for some n = O

(
log(1

γ)

L2α2 + C
log 1

γ

εLα +
log(Rα+1)

εLr

)
it holds

max
X′∈H,m(X′)=m(X)

P
[
|Â (X)−m (D) | ≥ α

]
≤ 2γ. (B.16)

or, combining with (B.12),

P [|A (X)−m (D) | ≥ α|X ∈ Tγ] ≤ eC
′ log 1

γ

1− γ
2γ.

or, combining with (B.11),

P [|A (X)−m (D) | ≥ α] ≤ eC
′ log 1

γ

1− γ
2γ + γ.

Since C ′(C) = Θ(1
C) we can assume C > 0 sufficiently large so that C ′(C) < 1

2 . Hence for these

values of C some n = O

(
log(1

γ)

L2α2 + C
log 1

γ

εLα +
log(Rα+1)

εLr

)
it holds

P [|A (X)−m (D) | ≥ α] ≤
√
γ

1− γ
2γ + γ.

24

Choosing γ appropriately of the order γ = Θ
(
β

2
3

)
we conclude that

n = O

(
log(1

β)

L2α2
+ C

log 1
β

εLα
+

log
(
R
α + 1

)
εLr

)
it holds

P [|A (X)−m (D) | ≥ α] ≤ β.

The proof is complete.

C Proof for Section 3.4: Lower Bounds

Proof of Proposition 3.7. We argue by contradiction and consider an algorithm A satisfying the
negation of the statement of the proposition.

We first prove that

n = Ω

(
r2 log(1

β)

α2

)
(C.1)

and then

n = Ω

 log
(

1
β

)
L2α2

(1− 2Lr)

 . (C.2)

Notice that combined the lower bounds imply

n = Ω

r2 log(1
β)

α2
+

log
(

1
β

)
L2α2

(1− 2Lr)

 = Ω

(
log(1

β)

α2

(1− Lr)2

L2

)
= Ω

 log
(

1
β

)
L2α2

 ,

where for the last equality we useLr ≤ 1
2 . The last displayed equation yields the desired contradiction.

To prove C.1 notice that all uniform distributions which are supported on an interval of width 2r
inside [−R− r,R+ r] are admissible. Observe now that for a uniform distribution the mean and the
median of it are identical. For this reason, A to satisfy the negation of our statement, it should learn
the mean of these uniform distributions of width r from n samples with accuracy α with probability

1− β. Standard learning theory implies that it should hold n = Ω

(
r2 log(1

β)

α2

)
.

We now turn to C.2. Notice that if Lr = 1
2 the lower bound on n is trivial. Hence, to establish C.2,

we focus on the case where Lr < 1
2 .

Recall the standard fact that learning the parameter p of a Bernoulli random variable Bernoulli (p) at

accuracy γ > 0 with probability 1− β requires Ω

(
log(1

β)
γ2

)
samples.

We know fix p. We construct the admissible distribution D which assigns probability mass (1 −
2Lr)(1 − p) at −2r, probability mass (1 − 2Lr)p at 2r and with probability 2Lr samples from
the uniform distribution on [−r, r]. It can be easily checked that D is admissible with the assumed
parameters and median p

(
1
L − 2r

)
+ r − 1

2L . In particular, learning the median at accuracy α is
equivalent with learning the parameter p at accuracy α 2L

1−2Lr which from our assumption on Lr < 1
2

is Θ
(
(1− 2Lr)−1Lα

)
. Furthermore, notice that for learning the parameter p using the samples from

D one needs to focus only the samples from which are equal to either 2r or −2r. Therefore the task
of learning the median of D with n samples at accuracy α, reduces to learning the parameter p of a
Bernoulli(p) distribution with N1 = Binom(n, 1−2Lr) samples at accuracy Θ

(
(1− 2Lr)−1Lα

)
.

25

Using the standard fact mentioned above and this equivalence, we have that conditional on the event,
call it Eα,β(D), that we can learn the median of D with n samples at accuracy α it holds

N1 = Ω

 log
(

1
β

)
α2L2

(1− 2Lr)2

 .

Now recall that we assume that A can learn the median of D with n samples at accuracy α holds
with probability at least 1− β. Hence P (Eα,β(D)) ≥ 1− β. Combined with the last observation of
the paragraph above, we conclude

E[N1] ≥ P (Eα,β(D))E[N1|Eα,β(D)] ≥ (1− β)Ω

 log
(

1
β

)
α2L2

(1− 2Lr)2

 .

Using that E[N1] = (1− 2Lr)n and that β ∈ (0, 1
2) we have

(1− 2Lr)n = Ω

 log
(

1
β

)
L2α2

(1− 2Lr)2

 .

Using that Lr < 1
2 we have n = Ω

(
log(1

β)
L2α2 (1− 2Lr)

)
. The proof is complete.

Proof of Proposition 3.8. We argue by contradiction and consider an algorithm A satisfying the
negation of our statement. Since R > 2α, for η > 0 sufficiently small it holds 2α + η < R. We
consider a D1 which assigns mass 1

2 − Lr to −r −R, mass 1
2 − Lr to r +R and with probability

2Lr samples from the uniform distribution on [−r, r] and a D2 which assigns mass 1
2 − Lr to

−r −R, mass 1
2 − Lr to r +R and with probability 2Lr samples from the uniform distribution on

[−r + 2α + η, r + 2α + η]. Note that they are both admissible with the desired parameters and it
also holds m(D1) = 0,m(D2) = 2α+ η.

Using the accuracy guarantee of A and that the medians of the two distribution have distance strictly
bigger than 2α, it necessarily holds

P
X1,X2,...,Xn

iid∼D1
[|A(X)−m (D2) | ≤ α] ≤ P

X1,X2,...,Xn
iid∼D1

[|A(X)−m (D1) | ≥ α] ≤ β.
(C.3)

The two distribution can be coupled in the following way: we first sample from D1. If it falls
in [−r + 2α + η, r] we keep the sample from D1 as is, and translate it by +2r if it falls into
[−r,−r + 2α + η], to form a sample from D2. In particular, notice that by sampling two n-tuples
X,X ′ ∈ Rn of samples in an i.i.d. sense from D1 and D2 respectively, under this coupling the
dH(X,X ′) follows a Binom (n, (2α+ η)L). Hence using the definition of ε-differential privacy

E
[
e−εdH(X,X′)P

X′
iid∼D1

[|A(X ′)−m (D2) | ≤ α]
]
≤ P

X1,X2,...,Xn
iid∼D1

[|A(X)−m (D2) | ≥ α],

(C.4)
where the expectation is over the coupling mentioned above. Combining (C.3), (C.4) and the
assumption on the accuracy performance of A we have

E
[
e−εdH(X,X′)

]
≤ β

1− β
.

Using the moment generating function of the Binomial distribution we conclude(
1− L(2α+ η)

(
1− e−ε

))n ≤ β

1− β

which by basic asymptotics since β < 1/2 translates to n = Ω

(
log(1

β)
εL(α+η)

)
. Since η > 0 can be

taken arbitrarily small, the proof of the proposition is complete.

26

Proof of Proposition 3.9. We argue by contradiction and consider an algorithm A satisfying the
negation of our statement.

We consider the partition of the interval [−R,R] into N = Ω
(
R
α + 1

)
consecutive intervals of width

3α and let mi, i = 1, 2, . . . , N + 1 be the endpoints of these intervals.

Now consider N admissible distributions Di, i = 1, 2, . . . , N which for each i, assign mass 1
2 − Lr

at each of the points −2(R+ r) and 2(R+ r) and with probability 2Lr it draws a sample from the
uniform distribution on [mi − r,mi + r].

By assumption for all i = 1, 2, . . . , N it holds
P
X1,X2,...,Xn

iid∼Di
[|A(X1, X2, . . . , Xn)−mi| ≤ α] ≥ 1− β. (C.5)

Now since for all i = 2, . . . , N+1 (i 6= 1) the distributionsD1,Di differ only on the interval that they
are uniform on which they fall with probability 2Lr, we can straightforwardly couple the n-tuples
X,X ′ sampled in an i.i.d. fashion from D1,Di such that dH(X,X ′) follows a Binom (n, 2Lr) .
Hence from the definition of ε-differential privacy it holds for all i = 2, 3, . . . , N + 1

E
[
e−εdH(X,X′)P

X′
iid∼Di

[|A(X ′)−mi| ≤ α]
]
≤ P

X
iid∼D1

[|A(X)−mi|,≤ α] (C.6)

where the expectation of the left hand side is under the aforementioned coupling. Now using (C.5)
and the moment generating function of the Binomial distribution, it holds for all i = 2, 3, . . . , N + 1

(1− β)
(
1− 2Lr

(
1− e−ε

))n ≤ P
X
iid∼D1

[|A(X)−mi| ≤ α]

Now notice that the intervals [mi − α,mi + α], i = 2, 3, . . . , N are disjoint and therefore

(1− β)N
(
1− 2Lr

(
1− e−ε

))n ≤ P
X
iid∼D1

[

N+1⋃
i=2

{|A(X)−mi| ≤ α}] ≤ 1.

By standard asymptotics and as Lr ≤ 1
2 , (1− 2Lr (1− e−ε))n = Ω

(
e−Lrεn

)
. Hence combining

with the last displayed inequality, it holds

(1− β)N = O
(
eLrεn

)
.

As β < 1/2 and N = Ω
(
R
α + 1

)
we conclude

n = Ω

(
log
(
R
α + 1

)
εLr

)
.

The proof is complete.

D Insights about Sample Complexity

In this short section, we analyze the asymptotic behaviour of the optimal sample complexity for
different ranges in the input parameters (L,R, r, β) of the problem. Firstly, it is worth mentioning
the intuition behind the three terms of nsc:

nsc = c1
log
(

1
β

)
L2α2︸ ︷︷ ︸

Statistical Term T1

+ c2
log
(

1
β

)
εLα︸ ︷︷ ︸

Privacy Local-Term T2

+ c3
log
(
R
α + 1

)
εLr︸ ︷︷ ︸

Privacy Global-Term T3

Statistical Term T1 is derived by the fact that the empirical median itself admits a sub-Gaussian
error using Azuma’s concentration bound. The other two ε−dependent privacy terms T2 and T3, of
a smaller order in 1/α, are the price to pay in order to apply the truncated Laplace mechanism to
the bounded-range median. Privacy Local-Term T2 is derived by the fact that any private algorithm
intrinsically can not differentiate easily local changes of order dH(X,X ′) = O(Lna). Privacy
Global-Term T3 is derived by the fact that any ε-differentially private algorithm needs to assign at
least Ω(e−Lrn) probability mass in at least R/α+ 1 distinct intervals in [−R,R].

More interestingly, there exist two critical values εcrit(α, β, L, r,R), αcrit(β, L, r,R) that suffice to
determine which of the three aforementioned terms is the dominant one in the sample complexity.

27

1. (“Privacy for free”-regime) : If ε > εcrit(α, β, L, r,R) = Lαmax

{
1,
α log(Ra + 1)

log(1
β)r

}
,

then ncrit = Θ(T1) = Θ(1
α2)

2. (“Local changes matter”-regime) : If ε < εcrit and α > αcrit(β, r,R) =
log(1

β)r

log
(

R
r log(1

β)

) ,

then nsc = Θ(T2) = Θ(1
αε)

3. (“Range of median matters”-regime) : If ε < εcrit and α < αsc, then nsc = Θ(T3) = Θ(1
ε)

Figure 2: Contour plot of nsc. The lighter colors indicate higher number of samples.

For fixed (β, L, r,R) parameters, the behavior of the sample complexity is as follows: As long as
ε > εcrit —our algorithm requires low privacy guarantees— the main bottleneck is the statistical
task of computing an accurate approximate median of the distribution. Thus the dominant term is T1.
While our algorithm does not overstress the accuracy requirements and α > αcrit and it becomes
highly private and ε < εcrit the main bottleneck is the differential private task. The transition is
continuous in the asymptotic area of ε = Θ(1

α2). Finally when algorithm tries to be simultaneously
extremely accurate and private the sample complexity is dominated by the combined term T2.

28

E The Algorithm

In this section, we will present a polynomial-time algorithm which implements efficiently the
aforementioned ε-differentially private estimator A. The algorithm A has been proven to be rate-
optimal in Theorem 3.6 which is the case the tuning parameter C > 0 is a sufficiently large constant.
Here, we provide a sketch of our algorithm.

Algorithm 1: PRIVATEMEDIAN(X = (X1, . . . , Xn))

Sort X s.t X1 ≤ . . . ≤ Xn.
m(X)← LEFTMEDIAN(X)
Let I ≡ [−R− 4Cr,R+ 4Cr] ≡ [−B,B]
LetDrestricted ∼ exp

(
− ε4 min

{
Ln
3C |m(X)− ω| , Lrn

})
, ω ∈ I

Dgeneral ∼ exp

(
inf
X′∈H

[(ε
2
dH(X,X ′)

)
− ε

4
min

{
Ln

3C
|m(X ′)− ω| , Lrn

}])
, ω ∈ I

if X ∈ H then
m← Sample from Drestricted (Case (A))

else
m← Sample from Dgeneral (Case (B))

return m

It is easy to check that the running time of PRIVATEMEDIAN assuming a sorted data-set X depends
actually on the computational difficulty to sample from eitherDrestricted orDgeneral,since the queryX ∈
H can be answered with counting binary-searches in O(n log n). By inspection of the expressions
of distributions Drestricted and Dgeneral, the main bottleneck of the worst-case analysis is the sampling
process of Dgeneral, since it involves a challenging constrained optimization problem.

Recall that the typical setH as defined in 3.3, and in particular the PRIVATEMEDIAN algorithm, is a
function of the parameter C > 1. The parameter C > 1 is treated as a constant in the main body of
the present paper where we establish the optimality of the algorithm.

In Appendix E.1, we will show that even under the pessimistic model of worst-case analysis, our
mechanism runs at most in poly(n) time. The worst-case analysis below hold under arbitrary C > 1.
On the other hand, in our average-case analysis presented in Appendix E.2 we assume that C is
scaling logarithmically with n. We show that this sacrifices the optimality of our sample complexity
just up to a logarithmic factors and in that case our mechanism actually runs on expectation in Õ(n)
time.

Note:For our worst-case and average-case analysis, we will assume that there is an oracle O such
that we can always sample from Bernoulli, Uniform, Laplace, (Negative) Exponential Distribution
and their truncated versions in an interval I in O(1) time. For more details, check appendix E.3

E.1 Worst-case Time Complexity of PRIVATEMEDIAN(X = (X1, . . . , Xn))

We start by presenting a simple random generator for Drestricted (Case (A)):
Lemma E.1. For a given a date-set X = (X1, · · · , Xn) and its median m(X), there exists a
O(1)−protocol that generates a sample from Drestricted.

Proof. First, notice that in the case of a data-set X which belongs to the typical setH, our estimator
corresponds to sampling from the “flattened-Laplacian” continuous distribution of Â(X ′) as defined
in Equation (3.4).

Therefore, its implementation would correspond to a simple two-phase protocol. In the first round
we would flip an appropriately biased coin to decide between the two regions: the region where the
estimator samples proportional to the Laplacian density and the region where the estimator samples
proportional to the uniform distribution. In the second round we would simply apply conditional
sampling either from a Laplacian or a uniform distribution, depending on the outcome of the coin flip.
More specifically:

29

B−B m(X)m(X)− 3Cr m(X) + 3Cr

Ileft IrightIcenter

“The flattened”-Laplacian Mechanism: Drestricted ∼ exp
(
− ε4 min

{
Ln
3C |m(X)− ω| , Lrn

})

Algorithm 2: Sample from Drestricted

Let Ileft, Icenter, Iright be the decomposition of I = [−B,B] as described in the above figure
// For extreme values of C, r,m(X),
// either Ileft, Icenter or Iright may equal to ∅

Let



pcenter =

∫
Icenter

exp

(
−ε

4

Ln

3C
|m(X)− ω|

)
dω

pleft =

∫
Ileft

exp
(
−ε

4
Lrn

)
dω

pright =

∫
Iright

exp
(
−ε

4
Lrn

)
dω


Let p = pleft + pcenter + pright

Toss a trinary coin c := {L, C,R} with probability (pleft
p ,

pcenter
p ,

pright

p), correspondingly.
if c outputs L then

s← Sample from UNIFORM[I = Ileft]

if c outputs C then
s← Sample from TRUNCATEDLAPLACE[µ = m(X), σ = 12C

Lnε , I = Icenter]

if c outputsR then
s← Sample from UNIFORM[I = Iright]

return s

We continue by presenting the construction of our sample generator for Dgeneral (Case (B)). Firstly,
let’s recall the un-normalized term of Dgeneral, using the definition of fÂ(X) (Equation (3.6)):

UNNORMALIZED(X,ω) = exp

(
inf
X′∈H

[(ε
2
dH(X,X ′)

)
− ε

4
min

{
Ln

3C
|m(X ′)− ω| , Lrn

}])

defined in [−B,B] = [−R− 4Cr,R+ 4Cr].

Our main technical contribution for this part is showing that the above constrained optimization
problem can be solved in polynomial-time and then using it to obtain a polynomial-time sampler
for the desired distribution. A key observation is that UNNORMALIZED(X,ω) depends only on the
possible values of the median m(X ′) and the distance dH(X,X ′), for any data-set X ′ ∈ H.

30

To motivate our first technical lemma let’s re-write the above optimization expression with an
equivalent form

UNNORMALIZED(X,ω) = exp


inf
k∈[n]

inf
X ′ ∈ H

m(X ′) = ξ
ξ ∈ [−R− r/2, R+ r/2]

dH(X,X ′) = k

[(ε
2
k
)
− ε

4
min

{
Ln

3C
|ξ − ω| , Lrn

}]


Therefore, in order to discretize the optimization space overH, we use the following observation that
we presented in Lemma 4.1.
Lemma E.2 (Restated Lemma 4.1).
Let TYPICALHAMMING(X, ξ) = minX′∈H,m(X′)=ξ dH(X,X ′). Then for any data-set X ,
TYPICALHAMMING(X, ·) is piece-wise constant function in [−R − r/2, R + r/2] with at most
poly(n) changes. Additionally, for any ξ and data-set X , TYPICALHAMMING(X, ξ) can be com-
puted exactly using the poly(n) 4-time algorithm described in Algorithm 3.

Proof. Our proof is divided into two parts:

1. (Claim E.3) We begin the proof by presenting a simple greedy algorithm, Algorithm 3, that
outputs a data-set X ′ such that it belongs to the typical setH, and its median m(X ′) equals
to an input value ξ. From all the possible choices of X ′ the greedy algorithm chooses the
one that minimizes the Hamming distance from an input data-set X = (X1, X2, . . . , Xn).

2. (Claim E.4) Having established the correctness of the greedy method, we show that there
exists a partition of [−R − r/2, R + r/2] to a collection of poly(n) disjoint subintervals
such that in every subinterval, the output of the greedy algorithm remains constant.

Claim E.3. The procedure Algorithm 3 for solving TYPICALHAMMING(X = (X1, . . . , Xn), ξ) out-
puts a data-setX ′ satisfying the conditions thatm(X ′) = ξ andX ′ ∈ H that minimizes the Hamming
distance between X,X ′ over all X ′ ∈ H, i.e min

X′∈H
{dH(X,X ′)}. Moreover TYPICALHAMMING

runs in O(n2) time.

Proof. Firstly, we will write down the list of the constraints that the above optimization algorithm
needs to satisfy:

∑
i∈[n]

1{ξ −Xi ∈ [0,+∞]} ≥ n

2
Median-Left Side∑

i∈[n]

1{Xi − ξ ∈ [0,+∞]} ≥ n

2
Median-Right Side

∑
i∈[n]

1{ξ −Xi ∈ [0,
C

Ln
]} ≥ 2 κ = 1-Left Side

∑
i∈[n]

1{Xi − ξ ∈ [0,
C

Ln
]} ≥ 2 κ = 1-Right Side

...∑
i∈[n]

1{ξ −Xi ∈ [0,
bLnr2C cC
Ln

]} ≥ bLnr
2C
c+ 1 κ = bLnr2C c-Left Side

∑
i∈[n]

1{Xi − ξ ∈ [0,
bLnr2C cC
Ln

]} ≥ bLnr
2C
c+ 1 κ = bLnr2C c-Right Side

4For the interested reader, both the number of changes is at most 3n2 and the time complexity is O(n4), but
we will keep for simplicity the general expression poly(n) in our formal statement

31

Algorithm 3: TYPICALHAMMING(X = (X1, . . . , Xn), ξ)

If ξ 6∈ [−R− r/2, R+ r/2] then return Impossible
Create a copy X ′ of data-set X i.e X ′i ← Xi∀ i ∈ [n] Sort X ′ s.t X ′1 ≤ . . . ≤ X ′n and
permutation π : [n]→ [n] with X ′π(i) = Xi.

Part 1.Rebalance the data-set s.t ξ is the statistical median if(
LEFTMEDIAN(X ′) 6= ξ

)
then

Let X ′k ≤ ξ ≤ X ′k+1.
for i ∈

[∣∣dn2 ⌉− k|] do
if k <

⌈
n
2

⌉
then

Set X ′n−i+1 ← ξ

else
Set X ′i ← ξ

Part 2.Rebalance the data-set to achieve concentration around ξ
for κ ∈ {bLnr2C c, · · · , 1} do

Right← κ+ 1−
∑
i∈[n]

1{X ′i − ξ ∈ [0,
κC

Ln
]}

while Right > 0 do
X ′arg maxX′ ← ξ

Right← κ+ 1−
∑
i∈[n]

1{X ′i − ξ ∈ [0,
κC

Ln
]}

Left← κ+ 1−
∑
i∈[n]

1{ξ −X ′i ∈ [0,
κC

Ln
]}

while Left > 0 do
X ′arg minX′ ← ξ

Left← κ+ 1−
∑
i∈[n]

1{ξ −X ′i ∈ [0,
κC

Ln
]}

For all i = 1, . . . , n set X ′i ← X ′π(i)

return dH(X,X ′)

Our algorithm, as described in Algorithm 3, runs based on the following greedy choice:

{
setting the new values to the central value ξ
rebalancing always firstly the further elements from ξ

It is easy to check using classical exchange arguments for both part (A) and part (B) that the algorithm
outputs an optimal solution. We will show that given any other, different, optimal data-set XO we
can transform it to the solution of the above mechanism without increasing the Hamming Distance .

Indeed, let’s denote the list of the modifications from the set X to XO, i.e MO = {Xo1 →
X ′o1 , · · · , Xok → X ′ok}. Firstly we can mention that the greedy choice of setting the new values to
the central value ξ is always as good as any other optimal choice, since ξ is by definition the median
of XO. This holds because ξ is the central value for any of the interval constraints. Thus we can
transformMO toM′O = {Xo1 → ξ, · · · , Xok → ξ}.
Secondly, it is easy to check because of the nesting nature of the constraints around the median
that the greedy choice of rebalancing always firstly the further elements from ξ is again always as
good as any other optimal choice. Indeed, let T be the list of modifications provided by our method,
MT = {XT1 → ξ, · · · , XT` → ξ}. Indeed, ifMT andMO differ in one change we can always
follow the greedy’s choice since it will satisfy at least the same number of constraints than any other
solution.

32

Pi Pi+1
↑
ξ

Thus without never worsening the optimal solution, we can eliminate any differences by changing
inductively XO to the solution of TYPICALHAMMING(X = (X1, . . . , Xn), ξ). Finally the time
complexity of the algorithm is O(n log n) + O(n) for part (A) and O(Lnr) × O(n) = O(n2) for
part (B).

Claim E.4. For a given data-set X = (X1, . . . , Xn), there is an ordered collection of O(n2)
points P = {−R − r/2 = P0, P1, · · · , Pk, Pk+1 = R + r/2]} such that for every open interval
I = (Pi−1, Pi) , it holds that :

For any ξ1, ξ2 ∈ I : TYPICALHAMMING(X, ξ1) = TYPICALHAMMING(X, ξ2).

Proof. We will start by describing the set P. For each point of our data-set we create 2bLnr2C c + 1
anchor-points. More precisely for the point Xi, we set as anchor points:

anchors(Xi) =

{
Xi ± κ×

C

Ln

∣∣∣∀κ ∈ {0, 1, · · · , bLnr
2C
c}
}

Let P be equal with the union of all the anchor points plus the limit points of the interval [−R −
r/2, R+ r/2]:

P =
⋃
i∈[n]

anchors(Xi) ∪ {−R− r/2, R+ r/2}

It is easy to see that we need O(n2) time for its construction:

Algorithm 4: CONSTRUCTION − P(X = (X1, . . . , Xn))

P← {−R− r/2, R+ r/2}
for i ∈ [n] do

P← Xi ∪ P
for κ ∈

{
1 · · · bLnr2C c

}
do

P← (Xi + κ× C
Ln) ∪ P

P← (Xi − κ× C
Ln) ∪ P

return P

Finally, we will show that for any consecutive points of P, let pi, pi+1, the algorithm
TYPICALHAMMING(X, ξ) outputs the same value for any ξ ∈ (pi, pi+1).

Pi

[

Pi+1

]

↑
ξ
↑
ξ′

Indeed, let’s assume any ξ 6= ξ′ such that ξ, ξ′ ∈ (pi, pi+1), where pi, pi+1 ∈ P. Since between ξ, ξ′
we assumed that there is no point of P, it easy to check that

1{pa ≤ ξ ≤ pb} = 1{pa ≤ ξ′ ≤ pb} ∀pa, pb ∈ P (Oblivious Property)

33

By inspection of the algorithm, it follows that all the decision of the algorithm have been taken based
on the queries of the form:

Q1(ξ) :
∑
i∈[n]

1{ξ ≥ Xi} ≥
n

2
Q2(ξ) :

∑
i∈[n]

1{Xi ≥ ξ} ≥
n

2

Q3(κ, ξ) :
∑
i∈[n]

1{Xi ≤ ξ ≤ Xi −
κC

Ln
]} > κ+ 1 Q4(κ, ξ) :

∑
i∈[n]

1{κC
Ln
≤ Xi ≤ ξ} > κ+ 1


More precisely the queries Q1(ξ), Q2(ξ) are used in Part(A) and Q3(ξ), Q4(ξ) in the Part (B). Addi-
tonally, it is easy to check that any query calculates sums of indicators of the form of eq. (Oblivious
Property). Therefore for any ξ, ξ′ that belong to the open interval (pi, pi+1), it holds that:

Qi(ξ) = TRUE ⇔ Qi(ξ
′) = TRUE ∀i ∈ {1, 2, 3, 4}

which implies that the output of the optimal algorithm is the same and therefore
TYPICALHAMMING(X, ξ) = TYPICALHAMMING(X, ξ′)

From the above lemma, we showed that TYPICALHAMMING(X, ξ) stays constant inside an open
subcover of [−R−r/2, R+r/2]. To complete our proof for Lemma E.2, we just extend the definition
also in the breakpoints P, i.e

TYPICALHAMMING(X, ξ) =



TYPICALHAMMING(X,P0) ξ ∈ I1 := [P0, P0] ≡ −R− r/2
TYPICALHAMMING(X, P0+P1

2) ξ ∈ I2 := (P0, P1)

TYPICALHAMMING(X,P1) ξ ∈ I3 := [P1, P1] ≡ P1

TYPICALHAMMING(X, P1+P2

2) ξ ∈ I4 := (P1, P2)

TYPICALHAMMING(X,P2) ξ ∈ I5 := [P2, P2] ≡ P2

...
TYPICALHAMMING(X,PO(n2)) ξ ∈ IO(n2) := [PO(n2), PO(n2)] ≡ R+ r/2

TYPICALHAMMING(X, ξ) = 6
↓

5
↓

3
↓

3
↓

2
↓

2
↓

2
↓

1
↓

4
↓

3
↓

2
↓

2
↓

1
↓

Figure 3: For illustrative purpose, we present a “possible” representative sketch of the decomposition
of our interval I = [−B,B] based on TYPICALHAMMING(X, ξ)

Remark E.5. One can establish more results on the structure of TYPICALHAMMING than the
one presented in Lemma E.2; for example TYPICALHAMMING can be proven to be left or right
semi-continuous depending on the position of the left empirical median m(X), implying an addi-
tional structure on the intervals where it is of constant value. For example, for the simple case of
H = Zn and X = {1, 2, 3, 4, 5} TYPICALHAMMING is constant in [1, 2)[2, 3), [3, 3], (3, 4], (4, 5].
Nevertheless, in order to avoid the complexity of the description of the rules of the continuity in the
more complex typical setH that we examine in our work, we just included in the proof of Lemma E.2
separately all the breakpoints as separated intervals where the TYPICALHAMMING is trivially of
constant value.

An immediate consequence of Lemma E.2 is that the following definition is well-defined.

Definition E.6. For any data-set X , there is a partition of [−R− r/2, R+ r/2] to a collection I of
poly(n) consecutive intervals, I = {I1, · · · , Ipoly(n)} for which we denote

TYPICALHAMMING(X, I) := TYPICALHAMMING(X, ξ),

for arbitrary ξ ∈ I .

We also define the following object.

34

Definition E.7. For each k ∈ [n], let us define Ik the union of the intervals I where
TYPICALHAMMING(X, I) = k:

Ik =
⋃

I∈I,TYPICALHAMMING(X,I)=k

I

Additionally, let us define the limit points ξk,inf , ξk,sup such that TYPICALHAMMING(X, I) = k:

ξk,inf = left-endpoint(Ik) = inf
ξ∈Ik

ξ, ξk,sup = right-endpoint(Ik) = sup
ξ∈Ik

ξ

Notice that for every k ∈ [n] we can compute in O(n4) time ξk,inf , ξk,sup We are ready now to prove
our main technical lemma:
Lemma E.8 (Restated Lemma 4.2). For any given data-set X , there is a partition of [−B,B] to a
collection J of poly(n) consecutive intervals, J = {J1, · · · , Jpoly(n)} such that :

For any Ji ∈ J : UNNORMALIZED(X,ω) = exp (αiω + βi) ∀ω ∈ Ji
Moreover, we can compute exactly J and the constants (αi, βi) for every Ji ∈ J in O(poly(n)) time.5

Proof. Using TYPICALHAMMING we can reduce the optimization problem for a given ω as:

UNNORMALIZED(X,ω) = exp


min
k∈[n]

inf
X ′ ∈ H

m(X ′) = ξ
ξ ∈ [−R− r/2, R+ r/2]

dH(X,X ′) = k

[(ε
2
k
)
− ε

4
min

{
Ln

3C
|ξ − ω| , Lrn

}]


= exp

min
k∈[n]

inf
TYPICALHAMMING(X,ξ)=k

ξ∈[−R−r/2,R+r/2]

[(ε
2
k
)
− ε

4
min

{
Ln

3C
|ξ − ω| , Lrn

}]
(By Definition E.6) = exp

(
min
k∈[n]

inf
ξ∈Ik

[
ε

2
k − ε

4
min

{
Ln

3C
|ξ − ω| , Lrn

}])

(By Definition E.7) = exp

ε2 min
k∈[n]

{
k − 1

2
· Ln

3C
min

{
max

p∈{ξk,inf ,ξk,sup}
|p− ω| , 3Cr

}}
︸ ︷︷ ︸

hk(ω)

⇔

UNNORMALIZED(X,ω) = exp

(
ε

2
min
k∈[n]

hk(ω)

)
(E.1)

5Again, for the interested reader, both the number of intervals is at most 7n2 and the exact time complexity
is O(n4), but we will keep for simplicity the general expression poly(n) in our formal statement

35

Let’s try to understand the form of the function hk(ω)

−B B

ξsup,kξinf,k

ξinf,k+ξsup,k
2

ξinf,k + 3Crξsup,k − 3Cr

By careful case study of hk(ω) and by inspection of the above figure it is not difficult to check that
every hk(ω) can be described actually by at most 4 different clauses 6 with linear expressions 7. Thus,
without loss of generality, we can assume that every hk(ω) is of the form:

∀k ∈ [n] : hk(ω) =



α
[k]
1 ω + β

[k]
1 ω ∈ [ρ

[k]
1 , ρ

[k]
2] ≡ [−B, ξsup,k − 3Cr]

α
[k]
2 ω + β

[k]
2 ω ∈ [ρ

[k]
2 , ρ

[k]
3] ≡ [ξsup,k − 3Cr,

ξinf,k+ξsup,k
2]

α
[k]
3 ω + β

[k]
3 ω ∈ [ρ

[k]
3 , ρ

[k]
4] ≡ [

ξinf,k+ξsup,k
2 , ξinf,k + 3Cr]

α
[k]
4 ω + β

[k]
4 ω ∈ [ρ

[k]
4 , ρ

[k]
5] ≡ [ξinf,k + 3Cr,B]

where BP [k] = {ρ[k]
1 , · · · , ρ[k]

5 } are the breakpoints of hk in which the function changes its expres-
sion.

Having established the form of every hk(ω), we are now ready to solve the optimization problem
of computing mink∈[n] hk(ω). It is easy to verify that the minimum of those “triangular pulses”
would correspond to a piece-wise linear function. In other words, until now we have showed that,
for any given data-set X there is a partition of [−B,B] to a collection J consecutive intervals,
J = {J1, · · · , J|J|} such that :

For any Ji ∈ J : min
k∈[n]

hk(ω) = αiω + βi ∀ω ∈ Ji

or equivalently using eq. (E.1):

For any Ji ∈ J : UNNORMALIZED(X,ω) = exp (αiω + βi) ∀ω ∈ Ji
To conclude the proof of our lemma it suffices to show that the size of the collection J is polynomial
and to describe a poly(n)-time procedure that computes the piece-wise linear function mink∈[n] hk.

Observe that to calculate mink∈[n] hk(ω), it suffices to know the relative ordering of
h1(ω), · · · , hn(ω) for each ω ∈ [−B,B]. By continuity of hk, the relative order of a pair hk, h` can
not change inside an interval J where there is no solution of the equation hk(ω) = h`(ω). Let us
have Π[k,`] = π

[k,`]
1 , · · · , π[k,`]

ck,` be the ordered set of solutions of hk(ω) = h`(ω) for every k 6= `. Let
us denote denote also as Π =

⋃
k 6=` Π[k,`] ∪ {−B,B}. Observe that in any interval J of consecutive

points of Π, the relative ordering of hk(ω), h`(ω) for any k, ` ∈ [n] does not change inside J . Thus
the minimizing function h? does not change inside the interval J . We can further subdivide the
interval J , if it is needed into sub-intervals based on its breakpoints where h? is linear.

6The existence/size of the triangular pulse depends actually by the distance of ξinf,k, ξsup,k. Similarly, the
existence/duration of the constant pulse depends on the relation of {ξinf,k+3Cr, ξsup,k−3Cr} with {−B,B}.

7The constant pulse can be achieved by setting the corresponding α[k]
i zero.

36

We can now construct the promised J:

Algorithm 5: CONSTRUCTION − J(X = (X1, . . . , Xn))

Sort Φ =
⋃
k 6=`

Π[k,`] ∪ {−B,B} ∪
⋃
k

BP [k]

//Φ = {ϕ0 = −B ≤ π1 ≤ · · · ≤ ϕm ≤ ϕm+1 = B}
J← ∅
for i ∈ {1, · · · ,m+ 1} do

Set Ji = [ϕi−1, ϕi]
J← J ∪ Ji

return J

• To evaluate the size of J, it suffices to understand the size of Π and
⋃
k BP

[k]. On the
one hand, the size of

⋃
k BP

[k] is at most 4n, since we have at most 4 clauses in hk. On
the other hand, Π includes all the solutions of hk(ω) = h`(ω) for every k 6= `. This size
is upper bound by

(
n
2

)
× maxk 6=` Π[k,`]. Observe that to solve hk(ω) = h`(ω), we need

to solve at most 16 linear equations 8, each having at most one solution, since the pairs
(αkj , β

k
j) are unique. Thus J = O(n2) +O(n) = O(n2).

• The time complexity of construction J is the sum of the elapsed time to compute all the 4n
breakpoints BP [k], which can be done in O(n4) and compute the solutions of O(n2) linear
equations and sorting their union O(n2 log n). Thus, indeed we can construct J in poly(n)
time.

• To compute the constants (αi, βi) : mink hk(ω) = αiω + βi ∀ω ∈ Ji, we can start from
left to right. We compute the relative ordering of h1(−B), · · · , hn(−B). For each solution
hk(ω) = h`(ω), we update the relative ordering and for each breakpoint of hk we update its
current linear form.

Algorithm 6: CONSTRUCTION − (J,ααα,βββ)(X = (X1, . . . , Xn))

Sort Φ =
⋃
k 6=`

Π[k,`] ∪ {−B,B} ∪
⋃
k

BP [k]

//Φ = {ϕ0 = −B ≤ π1 ≤ · · · ≤ ϕm ≤ ϕm+1 = B}
Compute h1(−B), · · · , hn(−B)
Keep a list of the current order hk: Σ = {hi1 ≤ · · · ≤ hin}
Keep a list of the current liner form of hk: T = {h1 : (α

[1]
1 , β

[1]
1) · · ·hn : (α

[n]
1 , β

[n]
1)}

for i ∈ {1, · · · ,m+ 1} do
Set Ji = [ϕi−1, ϕi]
Set (αi, βi)← T [minhk]
if ϕi ∈ Π // The next point is crossing point of two functions then

Update the relative order Σ

if ϕi = ρ
[k]
j // The next point is some of the 4 breakpoints of hk then

Update T [hk] = (α
[k]
j , β

[k]
j)

return {(Ji, αi, βi)}m

8In the general case for two piece-wise linear functions with 4 clauses, the maximum number of intersections
Leveraging their specific “triangular-pulse” form,it is easy to verify that the maximum number is 4 and with an
even more detailed case study the maximum number of intersections is actually 2, because the slopes of the
“triangular-pulse” is the same for all hk functions.

37

Lemma E.9. For a given a date-set X = (X1, · · · , Xn) and its median m(X), there exists a
poly(n)−time protocol that generates a sample from Dgeneral.

Proof. Indeed, the implementation of Dgeneral implementation would correspond to a simple two-
phase protocol. In the first round we would sample from a discrete distribution on a poly(n)-
cardinality domain to decide among the regions J1, · · · , Jpoly(n). In the second round we would
simply apply conditional sampling from the corresponding either exponential or uniform which will
be truncated on the region which was the outcome of the first round. More specifically:

Algorithm 7: Sample from Dgeneral

Execute CONSTRUCTION − (J,ααα,βββ)(X = (X1, . . . , Xn))
Let {(Ji, αi, βi)}m be the poly(n)-decomposition of I = [−B,B] as described in lemma E.8
// For any Ji : UNNORMALIZED(X,ω) = exp (αiω + βi) ∀ω ∈ Ji
for i ∈ [m] do

pi =

∫
Ji

exp (αiω + βi) dω

Let p =
∑
i∈[m] pi

Toss a m-nary coin c := {1, · · · ,m} with probability (p1p , · · · ,
pm
p), correspondingly.

if c outputs C then
s← Sample from TRUNCATEDEXPONENTIAL [α = αi, β = βi, I = Ji]

return s

The correctness of our estimator is derived by Lemma E.8.As we showed, the size of J =
{(Ji, αi, βi)}m is poly(n) and we need poly(n) time to compute {(Ji, αi, βi)}m. Our final step is
to toss a m-nary coin which needs an extra Θ(m) = poly(n) time.

38

E.2 Average-case Time Complexity of PRIVATEMEDIAN(X = (X1, . . . , Xn))

In this section we discuss about the average-case time complexity of the algorithm
PRIVATEMEDIAN(X = (X1, . . . , Xn)) which implements the algorithm A defined in (3.6). We
consider running the algorithm forC = C0 log n for some appropriate constantC0 > 0.Note that this
is different from the main body of this paper where it discusses the algorithm for a sufficiently large
constant C > 0 and establishes its rate-optimality. We establish the following Corollary establishing
that the algorithm remains rate-optimal up to logarithmic factors for this value of C.
Corollary E.10. Suppose C = C0 log n for some constant C0 > 0. Suppose also ε ∈ (0, 1), D is an
admissible distribution and A is the ε-differentially private algorithm defined in (3.6) for this value
of C. Then for any α ∈ (0, r) and β ∈ (0, 1) for some

n = Õ

 log
(

1
β

)
L2α2

+
log
(

1
β

)
εLα

+
log
(
R
α + 1

)
εLr


it holds P

X1,X2,...,Xn
iid∼D

[|A(X1, . . . , Xn)−m (D) | ≥ α] ≤ β.

The corollary follows directly by applying for this value of C the Theorem 3.6 and using the basic
asymptotic formula that for A = Ω(1), it holds n/ log n = Ω (A) if and only if n = Ω (A logA). In
particular, Corollary E.10 combined with the results of Section 3.4 allows us to conclude that the
algorithm where C scaling logarithmically with n remains rate-optimal up to logarithmic factors.

We now show that for appropriate tuning of the parameter C0 > 0 and under a weak bound on the
sampling size n, satisfied for instance by the third term in the almost optimal rate of Corollary E.10,
the algorithm runs in average-case in Õ(n) time.
Theorem E.11. There exists constantsC0, D0 > 0 such that ifC = C0 log n and T is the termination
of time of PRIVATEMEDIAN(X = (X1, . . . , Xn)) for this choice of C > 0 the following holds. If
n ≥ D0

1
Lr log(1

Lr), then
E [T] = O (n log n) .

Proof. We have by the law of total expectation,

E [T] = P [X ∈ H]E [T |X ∈ H] + P [X 6∈ H]E [T |X 6∈ H]

≤ E [T |X ∈ H] + P [X 6∈ H]E [T |X 6∈ H] . (E.2)

We now consider each term separately.

In the case where X ∈ H we need to check that X ∈ H to confirm the inclusion to the set H and
then sample from the Drestricted distribution. For the first part, standard O(n log n) counting binary
searches and locating the value of the median m(X) suffices to certify that X ∈ H. Furthermore,
given Lemma E.1, since we have located the median m(X), it takes O(1)-time to sample from
Drestricted. In conclusion

E [T |X ∈ H] = O (n log n) . (E.3)

For the second part, since the algorithm runs in worst case polynomial-time there is a constant M > 0
such that

E [T |X 6∈ H] = O
(
nM
)
. (E.4)

Now we focus on bounding P [X 6∈ H] . Notice that by identical reasoning as the derivation of
inequality (14) of [BA19] in the proof of Lemma 3 in [BA19] we have for t = r/2 ∈ [0, r]

P (|m(X)−m(D)| ≥ r/2) ≤ 2e−nL
2r2/8.

Since |m (D) | ≤ R we conclude

P (m(X) 6∈ [−R− r/2, R+ r/2]) ≤ 2e−nL
2r2/8. (E.5)

Furthermore, notice that since C = C0 log n by assuming n is bigger than a constant, Lemma B.2
can be applied with T = 1. Note that for T = 1, all counting constraints of H are considered and
therefore, combined with (E.5) we have

P [X 6∈ H] ≤ O
(
C0 log n exp

(
−C0 log n

8

)
+ e−Θ(L2r2n)

)
.

39

Combining with (E.4) we have

P [X 6∈ H]E [T |X 6∈ H] ≤ O
(
nMC0 log n exp

(
−C0 log n

8

)
+ nMe−Θ(L2r2n)

)
.

Now using standard asymptotics there are C0, D0 > 0 sufficiently large constants dependent on M
for which if n ≥ D0

1
Lr log(1

Lr), then

P [X 6∈ H]E [T |X 6∈ H] ≤ O (1) .

Combining with (E.3) and (E.2) we conclude

E [T] ≤ O (n log n) . (E.6)

This completes the proof of the Theorem.

40

E.3 Comments about Truncated-Sampling

In this last subsection, for the sake of completeness, we will present how we can simulate a random
generator for Categorical, Bernoulli, Uniform, Laplace, (Negative) Exponential Distribution and their
truncated versions in an interval I in O(1) time and O(1) random queries of Unif[0, 1] using the
standard “inverse-CDF” sampling method.

The general inverse-CDF sampling method works as follows:

//Suppose that we want to simulate a distribution D
s.t its cdf FD is invertible.

1. Generate a random number u from the standard uniform distri-
bution in the interval [0, 1], e.g. from U ∼ Unif[0, 1].

2. Find the inverse of the desired CDF, e.g. F−1
D (x).

3. Output X = F−1
D (u).

Indeed, the computed random variable X follows the distribution D, since

Pr(X ≤ x) = Pr(F−1
D (U) ≤ x) = Pr(U ≤ FD(x)) = FD(x).

E.3.1 UNIFORM

We start with an arbitrary uniform distribution in an interval I = [a, b]:

Algorithm 8: UNIFORM [I = [a, b]]

u← Sample from U ∼ Unif[0, 1]
s← a+ (b− a)× u
return s

E.3.2 k−nary coin

We continue with a k−nary coin, known as Categorical distribution, which is a discrete probability
distribution that describes the possible results of a random variable that can take on one of k possible
categories, with the probability of each category separately specified.

Algorithm 9: k−nary coin {o1, · · · , ok} with probability p1, · · · , pk
u← Sample from U ∼ Unif[0, 1]

Compute CDF vector (q0, q1, q2, · · · , qk−1, qk) = (0, p1, p1 + p2, · · · ,
∑k−1
i=1 pi,

∑k
i=1 pi = 1)

for i ∈ [k] do
if qi−1 ≤ s < qi then

s← oi

return s

E.3.3 TRUNCATEDEXPONENTIAL

Our next probability distibution is the truncated (Positive/Negative) Exponential distribution
DTruncExponential ∼ exp (αω + β) ω ∈ I = [left, right].

• If α = 0 then the actual distribution is the uniform.
• If α 6= 0 we get the CDF of DTruncExponential is

FDTruncExponential(x|α, β) =
exp (αx+ β)− exp (α · left + β)

exp (α · right + β)− exp (α · left + β)
.

41

Thus we get that:

F−1
DTruncExponential

(x|α, β) =
1

α
ln
(

exp (α · left + β)+x (exp (α · right + β)− exp (α · left + β))
)
−β

Algorithm 10: TRUNCATEDEXPONENTIAL [α : scale, β : shift, I = [left, right]]

u← Sample from UNIFORM
[
I = [0, 1] = [FDTruncExponential(left), FDTruncExponential(right)]

]
s← F−1

DTruncExponential
(u)

return s

E.3.4 TRUNCATEDLAPLACE

Our last probability distibution is the truncated Laplace distribution DTruncLaplace ∼
1

2σ exp
(
− |ω−µ|σ

)
ω ∈ I = [left, right]. Here we firstly present the CDF and its inverse

of the classical non-truncated version of Laplace distribution.

• FDLaplace(x|µ, σ) = 1
2 + 1

2 sign(x− µ)
(

1− 1
σ exp

(
− |ω−µ|σ

))
• F−1

DLaplace
(x|µ, σ) = µ+ σ sign(x− 1

2) ln (1− 2|x− 0.5|)

FDTruncLaplace(x|µ, σ) =
FDLaplace(x|µ, σ)− FDLaplace(left|µ, σ)

FDLaplace(right|µ, σ)− FDLaplace(left|µ, σ)
.

Thus we get that:

F−1
DTruncLaplace

(x|µ, σ) = F−1
DLaplace

(
FDLaplace(left|µ, σ) + x×

(
FDLaplace(right|µ, σ)− FDLaplace(left|µ, σ)

)
|µ, σ

)

Algorithm 11: TRUNCATEDLAPLACE [µ : location, σ : scale, I = [left, right]]

u← Sample from UNIFORM
[
I = [0, 1] = [FDTruncLaplace(left), FDTruncLaplace(right)]

]
s← F−1

DTruncLaplace
(u)

return s

42

