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Abstract

Invertible neural networks based on coupling flows (CF-INNs) have various ma-
chine learning applications such as image synthesis and representation learning.
However, their desirable characteristics such as analytic invertibility come at the
cost of restricting the functional forms. This poses a question on their repre-
sentation power: are CF-INNs universal approximators for invertible functions?
Without a universality, there could be a well-behaved invertible transformation
that the CF-INN can never approximate, hence it would render the model class
unreliable. We answer this question by showing a convenient criterion: a CF-INN
is universal if its layers contain affine coupling and invertible linear functions as
special cases. As its corollary, we can affirmatively resolve a previously unsolved
problem: whether normalizing flow models based on affine coupling can be uni-
versal distributional approximators. In the course of proving the universality, we
prove a general theorem to show the equivalence of the universality for certain
diffeomorphism classes, a theoretical insight that is of interest by itself.

1 Introduction

Invertible neural networks based on coupling flows (CF-INNs) are neural network architectures with
invertibility by design [1, 2]. Endowed with the analytic-form invertibility and the tractability of the
Jacobian, CF-INNs have demonstrated their usefulness in various machine learning tasks such as
generative modeling [3–7], probabilistic inference [8–10], solving inverse problems [11], and feature
extraction and manipulation [4, 12–14]. The attractive properties of CF-INNs come at the cost of
potential restrictions on the set of functions that they can approximate because they rely on carefully
designed network layers. To circumvent the potential drawback, a variety of layer designs have been
proposed to construct CF-INNs with high representation power, e.g., the affine coupling flow [3, 4,
15–17], the neural autoregressive flow [18–20], and the polynomial flow [21], each demonstrating
enhanced empirical performance.

Despite the diversity of layer designs [1, 2], the theoretical understanding of the representation power
of CF-INNs has been limited. Indeed, the most basic property as a function approximator, namely the
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universal approximation property (or universality for short) [22], has not been elucidated for CF-INNs.
The universality can be crucial when CF-INNs are used to learn an invertible transformation (e.g.,
feature extraction [12] or independent component analysis [14]) because, informally speaking, lack
of universality implies that there exists an invertible transformation, even among well-behaved ones,
that CF-INN can never approximate, and it would render the model class unreliable for the task of
function approximation.

To elucidate the universality of CF-INNs, we first prove a theorem to show the equivalence of the
universality for certain diffeomorphism classes, which allows us to reduce the approximation of a
general diffeomorphism to that of a much simpler one. By leveraging this problem reduction, we
show that CF-INNs based on affine coupling flows (ACFs; see Section 2), one of the least expressive
flow designs, are in fact universal approximators for a general class of diffeomorphisms. The result
can be interpreted as a convenient means to check the universality of a CF-INN: if the flow design
can represent ACFs as special cases, then it is universal.

The difficulty in proving the universality of CF-INNs lies in two complications. (1) Only function
composition can be leveraged to make complex approximators (e.g., a linear combination is not
allowed). We overcome this complication by essentially decomposing a general diffeomorphism into
much simpler ones, by using a structural theorem of differential geometry that elucidates the structure
of a certain diffeomorphism group. Our equivalence theorem provides a way to take advantage of
this technique implicitly. (2) The flow layers tend to be inflexible due to the parametric restrictions.
As an extreme example, ACFs can only apply a uniform transformation along the transformed
dimension, i.e., the parameter of the transformation cannot depend on the variable which undergoes
the transformation. For ACFs, the reduction of the problem allows us to find an approximator with a
clear outlook by approximating a step function.

Our contributions. Our contributions are summarized as follows.

1. We present a theorem to show the equivalence of universal approximation properties for
certain classes of functions. The result enables the reduction of the task of proving the
universality for general diffeomorphisms to that for much simpler coordinate-wise ones.

2. We leverage the result to show that some flow architectures, in particular even ACFs, can be
used to construct a CF-INN with the universality for approximating a fairly general class of
diffeomorphisms. This result can be seen as a convenient criterion to check the universality
of a CF-INN: if the flow designs can reproduce ACF as a special case, it is universal.

3. As a corollary, we give an affirmative answer to a previously unsolved problem, namely the
distributional universality [18, 21] of ACF-based CF-INNs.

Our result is an interesting application of a deep theorem in differential geometry to investigate the
representation power of a neural network architecture.

2 Preliminary and goal

In this section, we describe the models analyzed in this study, the notion of universality, and the goal
of this paper. We use R (resp. N) to represent the set of all real numbers (resp. positive integers). For
a positive integer n, we define [n] as the set {1, 2, . . . , n}.

2.1 Invertible neural networks based on coupling flows

Throughout the paper, we fix d ∈ N and assume d ≥ 2. For a vector x ∈ Rd and k ∈ [d − 1], we
define x≤k as the vector (x1, . . . , xk)> ∈ Rk and x>k the vector (xk+1, . . . , xd)

> ∈ Rd−k.

Coupling flows. We define a coupling flow (CF) [1] hk,τ,θ by hk,τ,θ(x≤k,x>k) =
(x≤k, τ(x>k, θ(x≤k)), where k ∈ [d− 1], θ : Rk → Rl and τ : Rd−k × Rl → Rd−k are maps, and
τ(·, θ(y)) is an invertible map for any y ∈ Rk.

Affine coupling flows. One of the most standard types of CFs is affine coupling flows [3, 4, 16, 17].
We define an affine coupling flow Ψk,s,t : Rd → Rd by

Ψk,s,t(x≤k,x>k) = (x≤k,x>k � exp(s(x≤k)) + t(x≤k)),
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where k ∈ [d − 1], � is the Hadamard product, exp is applied in an element-wise manner, and
s, t : Rk → Rd−k are maps typically parametrized by neural networks.

Single-coordinate affine coupling flow. Let H be a set of functions from Rd−1 to R. We define
H-single-coordinate affine coupling flows byH-ACF := {Ψd−1,s,t : s, t ∈ H}, which is a subclass
of ACFs. It is the least expressive flow design appearing in this paper, but we show in Section 3.2
that it can form a CF-INN with universality. We specify the requirements onH later.

Invertible linear flows. We define the set of all affine transforms by Aff := {x 7→ Ax + b : A ∈
GL, b ∈ Rd}, where GL denotes the set of all regular matrices on Rd.

We consider the invertible neural network architectures constructed by composing flow layers:
Definition 1 (CF-INNs). Let G be a set consisting of invertible maps. We define the set of invertible
neural networks based on G as

INNG := {W1 ◦ g1 ◦ · · · ◦Wn ◦ gn : n ∈ N, gi ∈ G,Wi ∈ Aff} .
When G can represent the addition of a constant vector, we can obtain the same set of maps by
replacing Aff with GL, which has been adopted by previous studies such as Kingma et al. [4]. In
fact, it is possible to use only the symmetric group Sd that is the permutations of variables, instead
of Aff , when G containsH-ACF. For details, see Appendix H.

2.2 Goal: the notions of universality and their relations

Here, we clarify the notion of universality in this paper. First, we prepare some notation. Let
p ∈ [1,∞) and m,n ∈ N. For a measurable mapping f : Rm → Rn and a subset K ⊂ Rm, we
define

‖f‖p,K :=

(∫
K

‖f(x)‖p dx
)1/p

,

where ‖·‖ is the Euclidean norm of Rn. We also define ‖f‖sup,K := supx∈K ‖f(x)‖.
Definition 2 (Lp-/sup-universality). LetM be a model which is a set of measurable mappings from
Rm to Rn. Let p ∈ [1,∞), and let F be a set of measurable mappings f : Uf → Rn, where Uf is a
measurable subset of Rm which may depend on f . We say thatM is an Lp-universal approximator
or has the Lp-universal approximation property for F if for any f ∈ F , any ε > 0, and any compact
subset K ⊂ Uf , there exists g ∈ M such that ‖f − g‖p,K < ε. We define the sup-universality
analogously by replacing ‖·‖p,K with ‖·‖sup,K .

We also define the notion of distributional universality. Distributional universality has been used as
a notion of theoretical guarantee in the literature of normalizing flows, i.e., probability distribution
models constructed using invertible neural networks [2].
Definition 3 (Distributional universality). LetM be a model which is a set of measurable mappings
from Rm to Rn. We say that a model M is a distributional universal approximator or has the
distributional universal approximation property if, for any absolutely continuous2 probability measure
µ on Rm and any probability measure ν on Rn, there exists a sequence {gi}∞i=1 ⊂ M such that
(gi)∗µ converges to ν in distribution as i→∞, where (gi)∗µ := µ ◦ g−1

i .

If a modelM has the distributional universal approximation property, then it impliesM approxi-
mately transforms a known distribution, for example, the uniform distribution on [0, 1]m, into any
probability measure µ on Rn, not only absolutely continuous but singular one. There exists another
convention that defines the distributional universality as a representation power for only absolutely
continuous probability measures. However, since absolutely continuous probability measures are
dense in the set of all the probability measures, that convention is equivalent to ours. We include a
proof for this fact in Lemma 5 in Appendix A.

The different notions of universality are interrelated. Most importantly, the Lp-universality for a
certain function class implies the distributional universality (see Lemma 1). Moreover, if a model
M is a sup-universal approximator for F , it is also an Lp-universal approximator for F for any
p ∈ [1,∞).

2In this paper, we say a measure on the Euclidean space is absolutely continuous when it is absolutely
continuous with respect to the Lebesgue measure.
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Our goal Our goal is to elucidate the representation power of the CF-INNs for some flow archi-
tectures G by proving the Lp-universality or sup-universality of INNG for a fairly large class of
diffeomorphisms, i.e., smooth invertible functions. To prove universality, we need to construct a
model g ∈ INNG that attains the approximation error ε for given f and K.

3 Main results

In this section, we present the main results of this paper on the universality of CF-INNs. The first the-
orem provides a general proof technique to simplify the problem of approximating diffeomorphisms,
and the second theorem builds on the first to show that the CF-INNs based on the affine coupling are
Lp-universal approximators.

3.1 First main result: Equivalence of universal approximation properties

Our first main theorem allows us to lift a universality result for a restricted set of diffeomorphisms
to the universality for a fairly general class of diffeomorphisms by showing a certain equivalence
of universalities. By using the result to reduce the approximation problem, we can essentially
circumvent the major complication in proving the universality of CF-INNs, namely that only function
composition can be leveraged to make complex approximators (e.g., a linear combination is not
allowed).

First, we define the following classes of invertible functions. Our main theorem later reveals an
equivalence of Lp-universality/sup-universality for these classes.
Definition 4 (C2-diffeomorphisms: D2). We define D2 as the set of all C2-diffeomorphisms f :
Uf → Im(f) ⊂ Rd , where Uf ⊂ Rd is an open set C2-diffeomorphic to Rd, which may depend on
f .
Definition 5 (Triangular transformations: T ∞). We define T ∞ as the set of all C∞-increasing
triangular mappings from Rd to Rd. Here, a mapping τ = (τ1, . . . , τd) : Rd → Rd is increasing
triangular if each τk(x) depends only on x≤k and is strictly increasing with respect to xk.
Definition 6 (Single-coordinate transformations: Src ). We define Src as the set of all compactly-
supported Cr-diffeomorphisms τ satisfying τ(x) = (x1, . . . , xd−1, τd(x)), i.e., those which alter
only the last coordinate. In this article, only r = 0, 2,∞ appear, and we mainly focus on S∞c (⊂ T ∞).
Here, a bijection τ : Rd → Rd is compactly supported if τ = Id outside some compact set.

Among the above classes of invertible functions, D2 is our main approximation target, and it is a
fairly large class: it contains any C2-diffeomorphism defined on the entire Rd, an open convex set,
or more generally a star-shaped open set. The class T ∞ relates to the distributional universality as
we will see in Lemma 1. The class S∞c is a much simpler class of diffeomorphisms that we use as a
stepladder for showing the universality for D2.

Now we are ready to state the first main theorem. It reveals an equivalence among the universalities
for D2, T ∞, and S∞c , under mild regularity conditions. We can use the theorem to lift up the
universality for S∞c to that for D2.
Theorem 1 (Equivalence of Universality). Let p ∈ [1,∞) and let G be a set of invertible functions.

(A) If all elements of G are piecewise C1-diffeomorphisms, then the Lp-universal approximation
properties of INNG for D2, T ∞ and S∞c are all equivalent.

(B) If all elements of G are locally bounded, then the sup-universal approximation properties of
INNG for D2, T ∞ and S∞c are all equivalent.

The proof is provided in Appendix B. For the definitions of the piecewise C1-diffeomorphisms and
the locally bounded maps, see Appendix E. The regularity conditions in (A) and (B) assure that
function composition within G is compatible with approximations (see Appendix F for details), and
they are usually satisfied, e.g., continuous maps are locally bounded.

If one of the two universality properties in Theorem 1 is satisfied, the model is also a distributional
universal approximator. Let p ∈ [1,∞), and we have the following.
Lemma 1. An Lp-universal approximator for T ∞ is a distributional universal approximator.
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Table 1: CF-INN instances analyzed in this work (Model: the considered CF-INN architecture. Flow
type: the flow layer architecture. Universality (this): the universal approximation property that this
work has shown. Universality (prev.): previously claimed universal approximation property. ) Our
proof techniques are easy to apply to analyze the universality of various CF-INN architectures.

Model Flow type Universality (this) Universality (prev.)

INNH-ACF Affine coupling [3, 4, 16, 17] Lp-universal -
INNDSF Deep sigmoidal flow [18] sup-universal Distributional [18]
INNSoS Sum-of-squares polynomial flow [21] sup-universal Distributional [21]

Since sup-universality implies Lp-universality, Lemma 1 can be combined with both cases of (A) and
(B) in Theorem 1. The proof is based on the existence of a triangular map connecting two absolutely
continuous distributions [23]. See Appendix A for details. Note that the previous studies [18, 21]
have discussed the distributional universality of some flow architectures essentially via showing the
sup-universality for T ∞. Lemma 1 clarifies that the weaker notion of Lp-universality is sufficient for
the distributional universality, which can also apply to the case (A) in Theorem 1.

Application to previously proposed CF-INN architectures. Theorem 1 can upgrade a previously
known sup-universality for T ∞ of a CF-INN architecture to that forD2. As examples, deep sigmoidal
flows (DSF; a version of neural autoregressive flows [18]) and sum-of-squares polynomial flows (SoS;
[21]) can both yield CF-INNs with the sup-universal approximation property for D2. We provide the
proof in Appendix G. See Table 1 for a summary of the results. See Section 5.1 for a comparison
with previous theoretical analyses on normalizing flows.

3.2 Second main result: Lp-universal approximation property of INNH-ACF

Our second main theorem reveals the Lp-universality of INNH-ACF for S0
c (hence for S∞c ), which

can be combined with Theorem 1 to show its Lp-universality for D2. We define C∞c (Rd−1) as the
set of all compactly-supported C∞ maps from Rd−1 to R.

Theorem 2 (Lp-universality of INNH-ACF). Let p ∈ [1,∞). Assume H is a sup-universal ap-
proximator for C∞c (Rd−1) and that it consists of piecewise C1-functions. Then, INNH-ACF is an
Lp-universal approximator for S0

c .

We provide a proof in Appendix D. For the definition of piecewise C1-functions, see Appendix E.
Theorem 2 can be combined with Theorem 1 to show that INNH-ACF is an Lp-universal approximator
for D2. Examples ofH satisfying the condition of Theorem 2 include multi-layer perceptron models
with the rectifier linear unit (ReLU) activation [24] and a linear-in-parameter model with smooth
universal kernels [25]. The result can be interpreted as a convenient criterion to check the universality
of a CF-INN: if the flow architecture G contains ACFs (or even just H-ACF with sufficiently
expressiveH) as special cases, then INNG is an Lp-universal approximator for D2.

By combining Theorem 1, Theorem 2, and Lemma 1, we can affirmatively answer a previously
unsolved problem [1, p.13]: the distributional universality of CF-INN based on ACFs.

Theorem 3 (Distributional universality of INNH-ACF). Under the conditions of Theorem 2,
INNH-ACF is a distributional universal approximator.

Implications of Theorem 2 and Theorem 3. Theorem 2 implies that, if G contains H-ACF as
special cases, then INNG is an Lp-universal approximator for D2. In light of Theorem 3, it is also a
distributional universal approximator, hence we can confirm the theoretical plausibility for using it
for normalizing flows. Such examples of G include the nonlinear squared flow [26], Flow++ [20],
the neural autoregressive flow [18], and the sum-of-squares polynomial flow [21]. The result may
not immediately apply to the typical Glow [4] models for image data that use the 1x1 invertible
convolution layers and convolutional neuralnetworks for the coupling layers. However, the Glow
architecture for non-image data [11, 14] can be interpreted as INNG with ACF layers, hence it is both
an Lp-universal approximator for D2 and a distributional universal approximator.
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4 Proof outline

In this section, we outline the proof ideas of our main theorems to provide an intuition for the
constructed approximator and derive reusable insight for future theoretical analyses.

4.1 Proof outline for Theorem 1

Here, we outline the equivalence proof of Theorem 1. For details, see Appendix B. Since we have
S∞c ⊂ T ∞ ⊂ D2, it is sufficient to prove that the universal approximation properties for S∞ implies
that for D2. Note that the proofs do not change for Lp-universality and sup-universality.

Therefore, we focus on describing the reduction from D2 to S∞c . Since the approximation of S2
c

can be reduced to that of S∞c by a standard mollification argument (see Appendix B.2), we show a
reduction from D2 to S2

c :
Theorem 4. For any element f ∈ D2 and compact subsetK ⊂ Uf , there exist n ∈ N,W1, . . . ,Wn ∈
Aff , and τ1, . . . , τn ∈ S2

c such that f(x) = W1 ◦ τ1 ◦ · · · ◦Wn ◦ τn(x) for all x ∈ K.

Behind the scenes, Theorem 4 reduces D2 to S2
c in four steps:

D2  Diff2
c  Flow endpoints nearly-Id S2

c

Here, A B (A is reduced to B) indicates that the universality for A follows from that for B, and
Id denotes the identity map. We explain each reduction step in the below.

From D2 to Diff2
c . We consider a special subset Diff2

c ⊂ D2, which is the group of compactly-
supported C2-diffeomorphisms on Rd whose group operation is functional composition. Here, a
bijection f : Rd → Rd is compactly supported if f = Id outside some compact set. Proposition 1
below reduces the problem of the universality for D2 to that for Diff2

c .

Proposition 1. For any f ∈ D2 and any compact subset K ⊂ Uf , there exist h ∈ Diff2
c , W ∈ Aff ,

such that for all x ∈ K, f(x) = W ◦ h(x).

From Diff2
c to flow endpoints. In order to construct an approximation for the elements of D2, we

devise its subset that we call the flow endpoints. A flow endpoint is an element of Diff2
c which can be

represented as φ(1) using an “additive” continuous map φ : [0, 1] → Diff2
c with φ(0) = Id. Here,

“additivity” means φ(s) ◦ φ(t) = φ(s+ t) for any s, t ∈ [0, 1] with s+ t ∈ [0, 1]. This additivity will
be later used to decompose a flow endpoint into a composition of some mildly-behaved fragments of
the flow map. Note that we equip Diff2

c with the Whitney topology [27, Proposition 1.7.(9)] to define
the continuity of the map φ. The importance of the flow endpoints lies in the following lemma that
we prove in Appendix C:

Lemma 2. Any element in Diff2
c can be represented as a finite composition of flow endpoints.

Lemma 2 is essentially due to Fact 1, which is the following structure theorem in differential geometry
attributed to Herman, Thurston [28], Epstein [29], and Mather [30, 31]:

Fact 1. The group Diff2
c is simple, i.e., any normal subgroup H ⊂ Diff2

c is either {Id} or Diff2
c .

From flow endpoints to nearly-Id. The flow endpoints in Diff2
c can be decomposed into "nearly-Id"

elements in Diff2
c by leveraging its additivity property, as in the following proposition. Let ‖·‖op

denote the operator norm.

Proposition 2. For any f ∈ Diff2
c , there exist finite elements g1, . . . , gr ∈ Diff2

c such that f =
g1 ◦ · · · ◦ gr and supx∈Rd ‖Dgi(x)− I‖op < 1, where Dgi is the Jacobian of gi.

Proposition 2 leverages the continuity of the flows with respect to the Whitney topology of Diff2
c :

φ(1/n) uniformly converges to the identity map both in its values and its Jacobian when n → ∞.
Thus, any flow endpoint φ(1) can be represented by an n-time composition of φ(1/n) each of which
is close to identity (nearly-Id) when n is sufficiently large.

From nearly-Id to S2
c . The nearly-Id elements, g ∈ Diff2

c in Proposition 2, can be decomposed into
elements of S2

c and permutation matrices:
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= ◦

f =

(
a b
c d

)
= f2 ◦ f1 f2

(
x1

y2

)
=

(
ax1 + b( y2−cx1

d
)

y2

)
f1

(
x1

x2

)
=

(
x1

cx1 + dx2

)
Figure 1: A nearly-Id transformation f can be decomposed into coordinate-wise ones (f1 and f2:
realized by S2

c and permutations). The arrows indicate the transportation of the positions. A general
nonlinear f can be analogously decomposed by Proposition 3 when f satisfies certain conditions.

f ACF (Step 1)

ψ∗n (Step 2) ψ∗n (Step 2)
(x, y) 7→ (x, vn(y)) (Step 3)

∃g1, g2, g3 ∈ INNACF :

g1 ' ψ∗n, g2 ' (x, vn(y)), g3 ' (ψ∗n)−1

=⇒ f ' g3 ◦ g2 ◦ g1 (Steps 4, 5)

Figure 2: Illustration of the proof technique for the Lp-universal approximation property of INNACF

for S0
c . The symbol ' indicates approximation to arbitrary precision.

Proposition 3. For any g ∈ Diff2
c with supx∈Rd ‖Dg(x)− I‖op < 1, there exist d elements

τ1, . . . , τd ∈ S2
c and permutation matrices σ1, . . . , σd such that

g = σ1 ◦ τ1 ◦ · · · ◦ σd ◦ τd.

The machinery of this decomposition is illustrated in Figure 1.

4.2 Proof outline for Theorem 2

Here, we give the proof outline of Theorem 2. For details, see Appendix D. The main difficulty
in constructing the approximator is the restricted functional form of ACFs. However, the problem
reduction by Theorem 1 allows us to construct an approximator by approximating a step function.

For illustration, we only describe the case for d = 2 and K ⊂ [0, 1]2. For complete proof of
Theorem 2, see Appendix D. Let f(x, y) = (x, u(x, y)) be the target function, where u(·, y) is
a continuous function that is strictly increasing for each y (i.e., f ∈ S0

c ). For the compact set
K ⊂ [0, 1]2 ⊂ R2, we find g ∈ INNH-ACF arbitrarily approximating f on K as follows (Figure 2).

Step 1. Align the image into the square: First, without loss of generality, we may assume that the
image f([0, 1]2) is again [0, 1]2. Indeed, we can align the image so that u(x, 1) = 1 and
u(x, 0) = 0 for all x ∈ [0, 1] by using only an ACF Ψ1,s,t with continuous s and t, which
can be approximated byH-ACF.
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Step 2. Slice the squares and stagger the pieces: We consider an imaginary ACF ψ∗n := Ψ1,1,tn
defined using a discontinuous step function tn :=

∑n
k=0 k1[k/n,(k+1)/n). The map ψ∗n splits

[0, 1]2 into pieces and staggers them so that a coordinate-wise independent transformation
(e.g., vn in Step 3), which is uniform along the x-axis, can affect each piece separately.

Step 3. Express f by a coordinate-wise independent transformation: We construct a continuous
increasing function vn : R → R such that for y ∈ [k, k + 1), vn(y) = u(k/n, y) + k

(k = 0, . . . , n − 1). A direct computation shows that f̃n := (ψ∗n)−1 ◦ (·, vn(·)) ◦ ψ∗n
arbitrarily approximates f on [0, 1]2 if we increase n. We take a sufficiently large n.

Step 4. Approximate the coordinate-wise independent transformation vn: We find an element
of INNH-ACF sufficiently approximating (·, vn(·)) on [0, 1]× [0, n]. This is realized based
on a lemma that we can construct an approximator for any element of S0

c of the form
(x, y) 7→ (x, v(y)) on any compact set in R2.

Step 5. Approximate ψ∗n and combine the approximated constituents to approximate f̃n: We
can also approximate ψ∗n and its inverse by ACFs based on the universality ofH. Finally,
composing the approximated constituents gives an approximation of f on [0, 1]2 with
arbitrary precision (see Appendix F).

5 Related work and discussions

In this section, we relate the contribution of this work to the literature on the representation power of
invertible neural networks.

5.1 Relation to previous theoretical analyses for normalizing flow models

The distributional universality of normalizing flows constructed using CF-INNs has been addressed
in previous studies such as [18, 21]. Previously proposed architectures with distributional universality
include the neural autoregressive flows [18] and the sum-of-squares polynomial flows [21]. Our
findings elucidate the much stronger universalities of these architectures, namely the sup-universality
for D2, which enhances the reliability of these models in the tasks where function approximation
rather than distribution approximation is crucial, e.g., feature extraction [12, 14]. The deeply lazy
maps (DLMs) proposed in Brennan et al. [32] can also be considered as a class of CF-INNs. Brennan
et al. [32] provided a sufficient condition for a series of DLMs to result in some normalizing flows
that weakly converge to a target distribution.

Huang et al. [33] has also shown that a general flow architecture realized by arbitrary autoregressive
neural networks is a universal distributional approximator. Although Proposition 1 of Huang et al.
[33] was formulated to analyze the inverse autoregressive flow (IAF) [17], which can be regarded
as a composition of ACFs, it should be noted that the analyzed architecture is the class of arbitrary
autoregressive neural networks, hence it does not provide a guarantee for the IAF in Kingma et
al. [17]. In this regard, Theorem 3 is the first to show the distributional universality of ACF-based
CF-INNs to the best of our knowledge.

5.2 Theoretical guarantee for other invertible neural network architectures

One-dimensional case. In the one-dimensional case (d = 1), strict monotonicity is a necessary
and sufficient condition for a function to be invertible. In this case, there have been a few invertible
neural network architectures with sup-universality for the set of all homeomorphisms on R, e.g.,
monotonic networks [34] and rational quadratic splines [35]. These models complement CF-INNs in
that they provide an invertible neural network only in the one-dimensional case, whereas the latter
can be defined only in the multi-dimensional case.

Limited approximation efficiency of residual-flow based normalizing flows. Kong et al. [36]
provided a quantitative theoretical analysis of the representation power of normalizing flows con-
structed by using INNs based on residual flows, which is another approach for designing a flow layer.
Specifically, it presented a lower bound on the number of layers required for approximating a certain
distribution using previously proposed residual-flow based normalizing flows. The result, albeit for a
different type of flow layers from CFs, shows the importance of developing flow layers with improved
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approximation efficiency. In such an endeavor, our results can provide a simple route to confirming
the universality of those CFs to be designed in the future for improved approximation efficiency.

Relation to examples of functions that cannot be approximated by NODEs. Neural ordinary
differential equations (NODEs) [37, 38] can be considered as another design of invertible flow layers
different from CFs. Zhang et al. [39] formulated its Theorem 1 to show that NODEs are not universal
approximators by presenting a function that a NODE cannot approximate. The existence of this
counterexample does not contradict our result because our approximation target D2 is different
from the function class considered in Zhang et al. [39]: the class in Zhang et al. [39] can contain
discontinuous maps whereas the elements of D2 are smooth and invertible. Also, in Proposition 1,
we cap an affine transformation (realizable by INNG) on top of the target function to reduce the
approximation of D2 to that of Diff2

c . Such an affine transformation may enhance the approximation
capacity by allowing a certain set of transformations, e.g., coordinate-wise sign flipping.

5.3 The strength of the representation power of INNH-ACF

In this study, we showed the Lp-universal approximation property of INNH-ACF. While the Lp-
universality is likely to suffice for developing probabilistic risk bounds for machine learning tasks [40,
41] and for showing distributional universality, whether INNH-ACF is a sup-universal approximator
for D2 remains an open question. Our conjecture is negative due to the following theoretical
observation. The sup-universality requires a precise approximation uniformly everywhere while the
Lp-universality can allow an approximation error on negligible regions. As described in Section 4.2,
we used a smooth approximation of step functions to show the Lp-universality of INNH-ACF.
Intuitively, approximating the step functions and composing them can accumulate errors around the
discontinuity points, so that it can retain the Lp-universality but it can affect the sup-universality.
Since the step functions are devised to bypass the uniformity of the transformation by ACFs, we
conjecture that the difficulty is intrinsic and a sup-universality is unlikely to hold for INNH-ACF.

6 Conclusion

In this study, we elucidated the representation power of CF-INNs by proving their Lp-universality or
sup-universality forD2. Along the course, we invoked a structure theorem from differential geometry
to establish an equivalence of the universalities for D2, S∞c , and T ∞, which itself is of theoretical
interest. Our result advances the theoretical understanding of CF-INNs by formally showing that
most of the CF-INN architectures already yield Lp-universal approximators and that the different
flow layer designs purely contribute to the efficiency of approximation, not much to the capacity of
the model class. Comparing the approximation efficiency of different layer designs is an important
area in future work. Also, the approximation efficiency for a better-behaved subset of D2 (e.g.,
bi-Lipschitz ones) remains as an open question for future research.

Broader Impact

This work advances the theoretical understanding of invertible neural networks (INNs), a recently
emerging function model in machine learning. Since the major contribution of this paper is to provide
a framework to theoretically guarantee the representation power of INNs, the presented results are
likely to promote the use of INNs in various machine learning tasks, although an immediate direct
impact on the practice of machine learning is unlikely.
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