
A Proof of Proposition 1

Note that in problem (7) the term (aii − didi/(2m))vTi vi is constant because ‖vi‖ = 1. Thus, in the
subproblem Q(vi) for variable vi, we can ignore the constant term and write the gradient∇Q(vi) as

∇Q(vi) =
1

2m

∑
j 6=i

(
aij −

didj
2m

)
vj . (13)

Further, since there is no vi term in ∇Q(vi), the objective function Q(vi) for the subproblem of
variable vi becomes qT vi with q = ∇Q(vi), up to a constant. For simplicity, denote vi as v, and the
subproblem reduces to

maximize
v

qT v, s.t. v ∈ Rr+, ‖v‖ = 1, card(v) ≤ k. (14)

Let v∗ be the optimal solution of the above subproblem (8) (existence by compactness). When q ≤ 0,
we have max(q) ≤ 0. With ‖v‖2 = 1, v ≥ 0, and ‖v‖2 ≤ ‖v‖1, there is

max(q) = max(q)‖v‖2 ≥ max(q)‖v‖1 = max(q)
∑
t

vt ≥
∑
t

qtvt = qT v. (15)

Thus, e(t) with the max qt is the optimal solution in the first case. For the second case, there is at least
one coordinate p such that qp > 0. Now we exclude the following two cases of inactive coordinates
by contradictions.

(When qt < 0) We know v∗t = 0. Otherwise, suppose there is a v∗t > 0 with qt < 0.

If qT v∗ ≤ 0, selecting v∗ = e(p) violates the optimality of v∗, a contradiction.

If qT v∗ > 0, we have

0 < qT v∗ < qT (v∗ − e(t)v∗t) ≤ qT (v∗ − e(t)v∗t)/‖v∗ − e(t)v∗t ‖, (16)

also a contradiction to the optimality of v∗, because the last term is a feasible solution.

(When qt < q[k], where q[k] is the k-th largest value) We know v∗t = 0. Otherwise, there must
be a coordinate j in the top-k-largest value that is not selected (v∗j = 0) because card(v∗) ≤ k. This
way, we have

qT v∗ < qT (v∗ − e(t)v∗t + e(j)v∗t), (17)
which contradicts to the optimality of v∗ because (v∗ − e(t)v∗t + e(j)v∗t) is a feasible solution.

Thus, by removing the inactive coordinates, the effective objective function qT v∗ becomes
top+

k (q)T v∗, and the optimal solution follows from ‖v∗i ‖ = 1 and top+
k (q) ≥ 0.

13

B Proof of Theorem 2

Define the projected gradient (for maximization) as

grad(V) = PΩ(V +∇Q(V))− V, (18)

where PΩ is the projection (under 2-norm) to the constraint set Ω of the optimization problem (7)

Ω = {V | vi ∈ Rr+, ‖vi‖ = 1, card(vi) ≤ k, ∀i = 1, . . . , n}, (19)

and denote Ωi as the constraint for vi for the separable Ω. Because the cardinality constraint is an
union between finite hyperplanes, it is a closed set, which implies the constraint of the optimization
problem is a compact set. Thus, by the Weierstrass extreme value theorem, the function Q(V) is
upper-bounded and must attain global maximum over the constraint.

Now we connect the exact update in the Locale algorithm with the projected gradient. Denote v+
i as

the update taken for the subproblem Q(vi). Because the Locale algorithm performs an exact update
(Proposition 1), we have

∇Q(vi)
T v+

i ≥ ∇Q(vi)
Tu, ∀u ∈ Ωi. (20)

Further, because ‖v+
i ‖2 = 1 and ‖u‖2 = 1, we have

‖v+
i −∇Q(vi)‖2 ≤ ‖u−∇Q(vi)‖2, ∀u ∈ Ωi. (21)

This means that the update v+
i is the projection of ∇Q(vi) to the constraint set Ωi. To connect the

update with the projected gradient, we need the following lemma.
Lemma 4. Denote the projection (under 2-norm) of a point x on a closed constraint set Ω as PΩ(x).
Then for any scalar α > 1 and vector q, we have

qT (PΩ(x+ αq)− PΩ(x+ q)) ≥ 0

The proof is listed in Appendix C. Taking the lemma with α→∞ and let q = ∇Q(vi), we have

0 ≤ lim
α→0

qT (PΩi
(vi + αq)− PΩi

(x+ q)) = qT (v+
i − PΩi

(vi + q)), (22)

where the last equation follows because v+
i is the projection of q on Ωi with ‖ · ‖ = 1 constraint 4.

Further, apply the definition of projection PΩi
(vi + q) again on the feasible vi, we have

‖PΩi(vi + q)− (vi + q)‖2 ≤ ‖vi − (vi + q)‖2, (23)

and after rearranging there is

‖PΩi
(vi + q)− vi‖2 ≤ 2qT (PΩi

(vi + q)− vi). (24)

Applying (22) to the equation above, we have

‖PΩi
(vi + q)− vi‖2 ≤ 2qT (v+

i − vi). (25)

The right hand side of the above equation equals the function increment Q(v+
i)−Q(vi). Thus,

‖PΩi(vi + q)− vi‖2 ≤ 2(Q(v+
i)−Q(vi)). (26)

Now, taking expectation over the random coordinate i, we have

1

n
‖PΩ(V +∇Q(V))−V ‖2 = E‖PΩi

(vi+q)−vi‖2 ≤ 2E(Q(v+
i)−Q(vi)) = Q(V t+1)−Q(V t).

(27)
Further, since Q(V t+1)−Q(V t) is monotonic increasing, summing them over iterations 0 to T − 1
forms a telescoping sum, which is upper-bounded by Q(V ∗) − Q(V 0), where V ∗ is the global
optimal solution of Q(V). Substitute the definition of projected gradient (18), we have

T

n
min
t
‖grad(V t)‖2 ≤ 1

n

T−1∑
t=0

‖grad(V t)‖2 ≤ 2(Q(V ∗)−Q(V 0)). (28)

Thus, the projected gradient grad(V) converges to zero at a O(1/T) rate.
4Note that in Proposition 1, when q ≤ 0 and there are multiple maximum qt, we further select the t with the

maximum (vi)t in the previous iteration. This makes the limit to hold on the corner case q = 0.

14

C Proof for Lemma 4

By definition of the projection PΩ(x+ q), we have

‖PΩ(x+ q)− (x+ q)‖2 ≤ ‖PΩ(x+ αq)− (x+ q)‖2.

Take out the q term out of the norm and rearrange, there is

‖PΩ(x+ q)− x‖2 ≤ ‖PΩ(x+ αq)− x‖2 − 2qT (PΩ(x+ αq)− PΩ(x+ q)). (29)

Similarly, by definition of the projection PΩ(x+ αq), there is

‖PΩ(x+ αq)− x‖2 ≤ ‖PΩ(x+ q)− x‖2 − 2αqT (PΩ(x+ q)− PΩ(x+ αq)). (30)

Sum (29) and (30), the norms cancel, and we have

2(α− 1)qT (PΩ(x+ αq)− PΩ(x+ q)) ≥ 0,

which implies
qT (PΩ(x+ αq)− PΩ(x+ q)) ≥ 0. (31)

Thus, the result holds.

D Experiments on networks with ground truth

In this section, we compare results from the Leiden-Locale method on data with the ground truth for
partitions. The result is listed in Figure 4.

0
1

2 3

4

5 6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22 23 24

25

26

27

28

29

30

31
32

33

(a) zachary (ground truth = 4 clusters)

0 1

2

3

4

5

6

7

8

9

10

11

12
13

14

15
16

1718
19

20

21

22

23
24

25

26 27

28

29

30
31

3233
34

3536 37
38

39

40
41

42
43

44

45

46

47

48

49

50

51

52

53
54

55

56

57
58

59
60

61

62 63

64

65

66

67
68

69

70

71

72
73 74

75

76

77

7879

8081

8283
84

85

86

878889 90

91 92

93
94

95

96
97 98
99 100

101

102

103

104

(b) polbook (ground truth = 3 clusters)

Figure 4: The comparison of the results from Leiden-Locale method to ground-truth partitions in the
zachary and polbook datasets. The position of each node is arranged using the 2D Fruchterman-
Reingold force-directed algorithm from the ground-truth using networkx [25], and the color of each
node indicates the solution community given by Leiden-Locale algorithm. The red edges between
nodes indicates the case when two nodes are inside the same cluster in the ground truth but wasn’t
assigned so in our algorithm. For zachary, the Leiden-Locale algorithm returns a perfect answer
comparing to the ground truth with a perfect modularity of 0.4197 [32]. For polbook, it misclassifies
18 over 105 nodes, but still attains a best known modularity of 0.5272 [2].

15

E Pseudo-code for the Leiden-Locale algorithm

Here we list the pseudo-code for the Leiden-Locale method. Note that we reuse Algorithm 2 in
Algorithm 3–4 for rounding and refinement by changing its constraint and initialization. And in the
actual code, Algorithm 3–4 are combined as a single subroutine.

Algorithm 2 Optimization procedure for the Locale algorithm

1: procedure LOCALEEMBEDDINGS(Graph G , Partition P)
2: Initialize V with vi = e(i), i = 1, . . . , n.
3: Initialize the ring queue R with indices i = 1, . . . , n.
4: Let z =

∑n
j=1 djvj .

5: while not yet converged do
6: i = R.pop() . Pick an index from the ring queue
7: ∇Q(vi) =

∑
j∈P(i) aijvj −

di
2m (z − divi) . Sums only j in the same partition of i

8: gi =

{
e(t) with the max (∇Q(vi))t, if ∇Q(vi) ≤ 0,

top+
k (∇Q(vi)), otherwise.

9: vold
i = vi, vi = gi/‖gi‖ . Perform the closed-form update

10: z = z + di(vi − vold
i) . Maintain the z

11: Push all neighbors j with nonzero aij into the ring queue R if it is not already inside.
12: end while
13: return the embedding V
14: end procedure

Algorithm 3 Rounding procedure for the Locale algorithm

1: procedure LOCALEROUNDING(Graph G , Partition P , Embedding E)
2: Initialize V with input E.
3: Run line 3–12 of Algorithm 2 with cardinality constraint k = 1.
4: Let the index of the 1-sparse embedding above be the new partition P ′.
5: return P ′

6: end procedure

Algorithm 4 Refine and Aggregate procedure from the Leiden algorithm

1: procedure LEIDENREFINEAGGREGATE(Graph G , Partition P)
2: Refine P ′ ← LocaleRounding(G ,P) by restricting the local move within its partition.5
3: Forms a hypergraph G ′ by merging nodes inside the same partitions in P ′ and simplify P ′.
4: done← |P | equals |G ′|.
5: return G ′, P ′, done
6: end procedure

5This is the refinement step implemented in the package python-leiden.

16

