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A Comparison of Invariance Measure to Goodfellow et. al[28]

In Section 4.1 of the main text, we presented an approach to measure invariances in representations.
This approach was directly adopted from [28] with some minor modifications. In this section, we
describe these differences and the motivation for these modifications.

In our work, we wish to measure invariances encoded in representations while accounting for the
discriminative power of the representations. However, in [28], the focus is purely on measuring invari-
ances which in many cases could assign higher scores to representations that are not discriminative.
This is manifested in the following changes:

• Chosen Thresholds In [28], the threshold for each hidden unit is chosen to be a constant
such that the global firing rate is 0.01 (i.e. the hidden unit fires on 1% of all samples). In
contrast, in our work, we choose an adaptive threshold for each class in the dataset. For a
specific class y, we choose the threshold such that the global firing rate is Gy(i) = P (y) (i.e.
the fraction of samples having label y). This allows each hidden unit the ability to fire on all
samples having class y. In contrast, the threshold chosen in [28] could lead to a hidden unit
firing on only a fraction of the samples of class y (if p(y) > 0.01). Consider a hidden unit
that consistently has higher activations for samples of class y. Such a hidden unit is optimally
invariant and discriminative, by could have lower invariance scores under the heuristic of
[28] when a local trajectory contains a higher-scoring and a lower-scoring sample of y. Note
that the heuristic presented in the main paper for simplicity of notation is only applicable for
datasets with uniform distribution of labels where Gy(i) = P (y) = 1/|Y|.

• Local Firing Rate Since in our work we choose thresholds that are class-dependent, we
need to compute separate local firing rates considering the local trajectories for each class
Ly(i). This has the added benefit of assigning equal importance to samples of each class,
especially in class-imbalanced datasets. This is in contrast to [28], where a single local
firing rate is computed across all local trajectories of all classes (denoted by L(i) in [28]).
This assigns higher weights to classes with larger number of samples, hence disregarding
the discriminative power of representations.

• Invariance Scores Since in our work we compute class-dependent local firing rates, we
first compute task-dependent invariance scores Iy(i) = Ly(i)/Gy(i). The Top-K hidden
units are chosen for each class separately and the mean task-dependent invariance score is
computed.
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In [28], the Top-K hidden units are chosen across all classes, again penalizing hidden units
that are optimally discriminative and invariant for specific classes.

We believe that these modifications are essential to measure invariances in representations that are
intended to be used in tasks that require discrimination of classes.

B Implementation Details: Learning from Videos

In Section 5 of the main text, we present an approach to leverage naturally occurring temporal
transformations to train models in the MOCOv2 framework[10]. In Algorithm 1, we provide pseudo-
code to allow reproducibility of this method. In this section, we also describe the dataset creation,
unsupervised tracking method and other implementation details.

Dataset Creation For experiments in Section 5, we use the TrackingNet dataset[41] that consists
of 30K video sequences. In order to increase the size of the dataset, from each video we extract 4
temporal chunks of 60 consecutive frames such that the chunks are maximally spaced apart in time.
Each chunk is considered a separate video for all training purposes.
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Algorithm 1 MoCo-style Pseudo-code for Frame Temporal Invariance.

1# f_q, f_k: encoder networks for query and key
2# queue: dictionary as a queue of K keys (CxK)
3# m: momentum
4# t: temperature
5# use_tracks: True for Frame Temporal Invariance with tracks
6
7def get_loss_and_keys(x1, x2):
8x_q = aug(x1) # a randomly augmented version
9x_k = aug(x2) # another randomly augmented version
10q = f_q.forward(x_q) # queries: NxC
11k = f_k.forward(x_k) # keys: NxC
12k = k.detach() # no gradient to keys
13# positive logits: Nx1
14l_pos = bmm(q.view(N,1,C), k.view(N,C,1))
15# negative logits: NxK
16l_neg = mm(q.view(N,C), queue.view(C,K))
17# logits: Nx(1+K)
18logits = cat([l_pos, l_neg], dim=1)
19# contrastive loss, Eqn.(1)
20labels = zeros(N) # positives are the 0-th
21loss = CrossEntropyLoss(logits/t, labels)
22return loss, k
23
24f_k.params = f_q.params # initialize
25for x1, x2 in loader: # load a minibatch of frame pairs x1, x2 with N samples
26loss, k = get_loss_and_keys(x1, x2)
27
28if use_tracks:
29x1_patch, x2_patch = sample_track(x1, x2) # Sample a patch pair tracked from frame x1 to frame x2
30loss_patch, k_patch = get_loss_and_keys(x1_patch, x2_patch)
31loss = 0.5*loss + 0.5*loss_patch
32
33# SGD update: query network
34loss.backward()
35update(f_q.params)
36
37# momentum update: key network
38f_k.params = m*f_k.params+(1-m)*f_q.params
39
40# update dictionary
41enqueue(queue, k) # enqueue the current minibatch
42dequeue(queue) # dequeue the earliest minibatch
43
44if use_tracks:
45enqueue(queue, k_patch)
46dequeue(queue)

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.

Generating Tracks For each frame, we extract region proposals using the unsupervised method -
selective search[42]. We choose the top 300 region proposals for frames which produce more than 300
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For any pair of frames, we only consider tracks that have a score above a chosen threshold.

Sampling Frames Training the Frame Temporal Invariance model requires sampling pairs of
frames that are temporally separated Vpairs = {(zi, zi+k) | z ∈ V, i ∈ N(z), i mod k = 0}. We
sample frames that are at least k = 40 frames apart.

Implementation Details We use ResNet-50 as the backbone following the architecture proposed in
[10] for all models. We also use the same hyper-parameters as MOCOv2 [10]. In order to extract
features for patches (line 10,11 of Algorithm 1 when xq, xk are patches) in the Frame Temporal
Invariance with tracks model, we use ROI-Pooling[43] at layer3 of the ResNet model. We plan to
publicly release the code upon acceptance, for reproducing all the results presented in the main text.
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C Object Part Segmentation

In Section 5 of the main text, we proposed an approach that leverages videos to learn representations
using the contrastive learning framework. In this section, we perform an additional experiment to
demonstrate the efficacy of our proposed model. In this experiment, we evaluate the ImageNet-based
MOCO model, the ImageNet supervised model and our video-based model on the task of object-part
segmentation. In order to quantify performance on this task, we use the Pascal-Parts dataset[46].
From this dataset, we crop bounding boxes for the each object and create separate images. For each
object, we train a small CNN comprising of four transposed convolution layers that takes as input a
single representation. In Table 5, we present the pixel-wise classification accuracies for each object
and observe that our proposed model outperforms the ImageNet-MOCO model.

Table 5: Object Part Segmentation: We evaluate performance on the task on object-part segmentation using the Pascal Parts Dataset[46].

Method aeroplane bicycle bird bus car cat cow dog horse motorbike person sheep Avg.

ImageNet Supervised 62.8 65.1 56.5 36.3 41.1 40.1 47 45.1 45.2 76.4 47.6 54.6 51.5
ImageNet MOCOv2 57.9 61.2 49.8 35.5 41 39.7 46.9 44.4 43.7 75.8 48.8 51.9 49.7
Ours Region Tracker 62.7 62.2 51.2 36 41 39.9 47.1 43 45.2 75.9 47.2 53.4 50.4
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