
We thank all the reviewers for their work in this challenging time. We will fix all typos and apply the clarifications1

suggested in the reviews. Below, we address specific questions and concerns.2

Reviewer 1. Q1: In some applications of DPP, the actual features vectors are not available,[...]3

A1: Thanks for suggesting the problem. While the Online-DPP algorithm only requires computing ridge leverage4

scores, it is not clear if the entire analysis goes through. This is an interesting point that we will verify.5

Q2: Out of curiosity I was thinking if your analysis in the first part is tight and I came up with this example.6

A2: Beautiful! Thanks for this observation :)7

Reviewer 2. Q1: Experimental focus on Online-LS and not Online-DPP8

A1: Thanks for the suggestion, we decided to focus our experiments on Online-LS because it is a more practical9

approach to the problem. In line 148, volmin should be volfirst. Finally, Shuttle dataset refers to Statlog, we will clarify10

this in the final version.11

Reviewer 3. Q1: Experiments do not seem to be convincing [...]12

A1: Thanks for raising those points. For (1), please refer to the answer to Reviewer 2. For (2), we compared with a13

natural heuristic for the problem, it is not clear to us how to define an alternative heuristic for the online problem. An14

additional advantage of Online-Greedy is that it is a simplified version of Online-LS and so it shows how our theoretical15

results compare with experiments. For (3), we think that it is interesting that Online-LS (a) always seems to do strictly16

better, (b) the gap is not too large on chosen datasets even though we show that it can be arbitrarily bad (Appendix E). It17

suggests that the choice of algorithm in practice depends on how much accuracy we care about.18

We will also add references to the recent works on submodular optimization.19

Reviewer 4. Q1: The proposed methodology works for small values of k only.20

A1: Our algorithm works for all k. The approximation factor depends exponentially on k but this is unavoidable for21

this problem even in the offline setting unless P=NP (see answer to Q6)22

Q2: It is not clear whether the output of Algorithm 2 (Online-DPP) has size k, while the is the very purpose of the paper23

A2: Algorithm 2 (Online-DPP) provides a core-set (a set that is guaranteed to contain a k-subset that provides a good24

approximation). As is standard, a core-set has size larger than k. In lines 199-209, we explain how to maintain a25

solution of size exactly k over the course of the algorithm.26

Q3: There is no comparison with streaming algorithms, nor with a random baseline[...]27

A3: Streaming algorithms do not optimize the number of times the maintained solution “changes” (which is the key28

parameter in the online version). Our Online-Greedy and Online-LS may be viewed as variants of streaming algorithms29

where we do not change the solution unless the value improves considerably. Moreover, we show that our solution30

quality is comparable with the offline algorithm, which is much stronger than the streaming and random baselines.31

Q4: Supplementary code, and proposed change to the title.32

A4: We will make the code publicly available once the paper is accepted, and will consider the title change, thanks!33

Q5: Magnitude of the solution in the experiments approaches machine precision?34

A5: In our experiment (note that we track the change of the cost of the solution after each column insertion) we did not35

observe any sort of numerical instability.36

Q6: How useful is the exponential kO(k) approximation factor [...]37

A6: An exponential dependence on k in the approximation factor is the best possible guarantee unless P = NP (as38

discussed in lines 39-40), even in the offline setting. This is effectively because volume in k dimensions scales as the39

kth power. This is why some works use vol()1/k as the measure of interest.40

Q7: Please give the time complexity of Tridge(kL) + Tvol(k).41

A7: The time complexity of Tridge(kL) is discussed in lines 185-187. To compute the volume of k columns, Tvol(k),42

you need to consider the columns in an arbitrary order and find the distance of each column to the span of previous43

ones. This can be done by maintaining an orthonormal basis of prefixes of this sequence of columns. So for the i-th44

column (2 ≤ i ≤ k), the inner product of it with the previous i− 1 columns is needed. So the volume computation is45

reduced to O(k2) inner product computations. We will clarify this in the final version of the paper.46

We will incorporate the other proposed suggestions (including fixing the reference to Derezinski et al.) and typo fixes to47

improve the readability. The DPP terminology (instead of optimal design) is preferred mainly to be consistent with48

recent work on coresets (which is why we mention optimal designs in related work).49


