
Supplementary Material
A Online addition with a stash – Full proof

We now present the full proof of Theorem 3.1. We use the following lemmas from [Mahabadi et al.,
2019]. We restate them in our notation.

Lemma A.1. Let P be a set of points Q ✓ P be an approximately (with factor 1+✏) locally optimum
solution for size k volume maximization. In other words, |Q| = k, and for any p 2 P \Q and q 2 Q,
vol(Q [{p} \ {q})  (1 + ✏)vol(Q). Then Q is an ↵-approximate core-set for k-directional height
of P , where ↵ is 2k(1 + ✏).

The lemma is powerful because it says that any locally optimum solution is also an ↵-approximate
core-set. [Mahabadi et al., 2019] also showed the following.

Lemma A.2. Let c(P) be an ↵-approximate core-set for k-directional height for a point set P . Then
OPTk(P)  ↵

2k
· OPTk(c(P)).

Note that the two lemmas imply that any (1 + ✏)-locally optimal solution is a (2(1 + ✏)k)2k factor
approximate solution to the k volume maximization problem. This is because OPTk(Q) for a size k

set is simply vol(Q), and so Lemma A.2 implies the desired approximation bound.

Proof of Theorem 3.1. We will first prove parts 2, 3, 4 of the theorem about memory and running
time complexity of Algorithm 1. The size of the stash is clearly upper bounded by the number of times
we perform a swap and improve vol(S) by a 1 + ✏ factor (we think about ✏ as a constant). Therefore
its size is at most log�

✏
. Since ✏ is a positive constant, stash T has size O(log�). This proves the

O(log�) upper bound on the recourse in part 4 of the theorem. So we only keep k + O(log�)
vectors yielding the space complexity bound in part 2.

Every time, a new column vt arrives, we will check to see if swapping it with any of the k columns in
S improves vol(S) by a 1 + ✏ factor. This part consists of k volume computations which is fixed for
all steps. Every time set S is updated, we will check the stash for potential further improvements of
vol(S). Set S is updated at most O(log�) times throughout the course of the algorithm. Checking
the stash for a swap means computing vol(S[{vm}\{v`}) for every v` 2 S and vm 2 T . Therefore
we may compute the volume of O(k log2 �) sets in the while loop of Algorithm 1. This proves both
the worst case and amortized upper bound on the running time of each step of the algorithm.

It thus remains to prove the first statement, i.e., the approximation guarantee. We claim that it suffices
to prove that S [T is an O(k)-approximate core-set for k-directional height of V . This is because by
Lemma A.2, we would then have OPT(V)  k

O(k)OPT(T [S). And then, from the description of
the algorithm, we have that S is always a (1 + ✏) locally optimum solution for T [S. Using the note
following Lemma A.2, we have the desired bound.

Let us show that S[T is a core-set for V . We prove this by induction on time t. The statement clearly
holds until t = k. Let Vt denote {v1, v2, . . . , vt}. Suppose we had that S [T is a ⇢ := 2k(1 + ✏)
core-set for k-directional height for Vt. Now consider vt+1. If vt+1 was added to S, there is nothing
to prove (as the point remains forever). Else, we have the guarantee that S is a (1 + ✏)-locally
optimal solution for size k volume maximization problem in set S [{vt+1}. Lemma A.1 implies
that S is a ⇢-approximate core-set for k-directional height for the set S [{vt+1}, i.e. for any
(k � 1)-subspace H, maxs2S d(s,H) � 1

⇢
d(vt+1,H). Together with the inductive hypothesis, we

have that maxs2S[T d(s,H) � 1
⇢
maxv2Vt+1 d(v,H), thus proving the inductive step. Thus S [T

is a ⇢-core-set for all t. This completes the proof of the theorem.

B Analysis of ONLINE-DPP – Full proofs

B.1 Proof of Theorem 3.2

We first show how to prove Theorem 3.2 assuming Theorem 3.4. In what follows, let S = [�S� .

12

Proof of Theorem 3.2. Let us first bound the space usage. Using (5) and plugging in the value of �
from (3), we have a bound of

O

✓
k log2

�
(64k)2k

�
+ k log2

1

⌘2

◆
= O

✓
k
3 log2 k + k log2

1

⌘

◆
.

We then bound the recourse, i.e., the number of times we update the output of the algorithm. We
only output S if its value is at least ⌧ . The volume of a solution never exceeds 1, and every time we
update S, its volume doubles. So total number of changes made to the output solution is at most
log(1/⌧) = O(log(1/⌘) + k log k + k log log(1/⌘)).

Now we analyze the running time of each step. For every arriving vector vt and every � 2 D, we
compute the ridge leverage score, which takes time Tridge. Each S� has size O(4k log(8/�)) = O(kL)
where L is defined in the theorem statement. The number of � values in D is also  L, and so the
running time of each step in Algorithm 2 is the first term of the desired bound. When a vt is added
to some S�, we have a new core-set S, and therefore we need to rerun the local search algorithm
of Mahabadi et al. [2019] on S. That local search algorithm starts with the greedy solution as the
initialization which takes k|S| volume computations Tvol(k). It then searches for potential improving
swaps for at most O(k log k) iterations as analyzed in Mahabadi et al. [2019]. So the running time of
this part is at most O(k|S| · k log k · Tvol(k)). We have an upper bound of O(kL2) on |S| since it is
the union of at most L sets each with size at most O(kL). This proves the desired time bound.

Finally we bound the approximation factor. Suppose the optimal subset of columns of V (ones
with the maximum volume) is T = {u1, u2, . . . , uk}. If vol(T)  ⌘, there is nothing to prove (as
we tolerate an additive error ⌘), and therefore, assume that vol(T) > ⌘. We prove in this case,
OPT(V)  ↵

kOPT(S), where ↵ = 8
p
k log(8/�). Combining this with (4) completes the proof of

the approximation bound.

The idea is to use a sequence of swaps, replacing ui with elements of S, as in [Mahabadi et al.,
2019]. However, since S is a coreset in the weaker (↵, �) sense, we need a slightly more careful
argument. Consider the following sequence of swaps, that end up defining sets T (0)

, T
(1)

, . . . , T
(k).

Define T
(0) = T . Next, define T

(i) using T
(i�1) as follows: if ui 2 S, T (i) = T

(i�1); otherwise,
we remove ui from T

(i�1) and add the vector w 2 S that is furthest from span(T (i�1)
\ {ui}). This

defines the set T (i).

To show our theorem we prove using induction that vol(T (i)) � vol(T)
↵i for all i 2 [k]. The base case

i = 0 holds by definition. For any i, if we knew that d(ui, span(T (i�1)
\ {ui})) � �, then we can

appeal to the property of an (↵, �)-core-set to conclude that vol(T (i)) � 1
↵

vol(T (i�1)), completing
the inductive step.

So to show our induction step we only need to show that d(ui, span(T (i�1)
\ {ui})) � �. Now

note that by the base times height formula for the volume, we have vol(T (i�1)) to be equal to
d(ui, span(T (i�1)

\ {ui})) times the volume of the parallelepiped formed by the vectors in T
(i�1)

\

{ui}. As all the vectors have norm  1, the latter term is at most 1, and thus

d(ui, span(T (i�1)
\ {ui})) � vol(T (i�1)) �

vol(T)
↵i�1

�
⌘

↵i�1
,

where the second last inequality follows form the inductive hypothesis and the last from vol(T) � ⌘.

Thus, as long as ⌘/↵k � � we have that d(ui, span(T (i�1)
\ {ui})) � � and so we can prove the

inductive step. Recalling L = log(1/�) and writing E = log(1/⌘), this is equivalent to

� 
⌘

(64k log(8/�))k/2
() L � E +

k

2
log(64k) +

k

2
log(3 + L).

To ensure this, it suffices to set L = 2(E + k log(64k)). For this choice we have k

2 log(3 + L)  L

2
(just from the second term). Therefore we have

E +
k

2
log(64k) +

k

2
log(3 + L) 

L

2
+

L

2
= L.

Thus, the choice of � from (3) satisfies the desired properties and concludes the proof that OPT(V) 
↵
kOPT(S). Putting this together with 4 implies that vol(S) is at least OPT(V)/((3k)2k · ↵k). Since

13

optimum solution T has volume at least ⌘ (i.e. OPT(V) � ⌘), we deduce that vol(S) is at least ⌧ .
Thus, at any point in the stream where OPT(V) > ⌘, the algorithm will return S as the solution. This
completes the proof of the theorem.

B.1.1 Proof of the packing lemma

The only piece that remains is the proof of Lemma 3.5. It is a geometric statement about vectors in
Rq , and the proof uses standard results about determinants of rank-one updates.

Recall the definition of Vi from the statement of the lemma. We define the potential function

�i = det(�2Iq + ViV
T

i
).

Clearly, we have �0 = �
2q . We first bound �m as follows:

tr(�2Iq + VmV
T

m
) = q�

2 +
X

im

kvik
2
 q�

2 +m,

As the trace is the sum of the eigenvalues and the determinant is their product (for a real symmetric
matrix), we have, by the AM-GM inequality,

�i 

✓
q�

2 +m

q

◆q



✓
2m

q

◆q

.

The last inequality follows because � < 1 and since we can assume that m > q (else there is nothing
to prove). Next, the hypothesis of the lemma directly implies (by the matrix determinant lemma) that
�i+1 > 2�i. Putting everything together, we have that

2m�
2q

�

✓
2m

q

◆q

() 2m/q


2m

q

1

�2
()

2m/q

m/q


2

�2
.

We may assume that m/q � 4 (else we are done). Otherwise since (m/q)  2m/2q, the above
implies that 2m/2q


2
�2

, which implies that m  4q log(2/�).

B.2 Proof of Lemma 3.6

Proof. Both parts of the lemma follow from the following simple claim.

Claim 3. Suppose M 2 Rd⇥p is a rank d matrix (and so p � d), and let v 2 Rd be any vector. Then
the minimum value of kyk2 subject to My = v is precisely v

T (MM
T)�1

v.

Proof of claim 3. This follows easily from using properties of the pseudo-inverse of M , or a direct
proof using the SVD of M as follows. Let L⌃RT be the SVD of M , where L,⌃ 2 Rd⇥d, R 2 Rp⇥d,
such that LT

L = R
T
R = Id. Now, the y with the minimum norm and My = v is precisely

y = M
†
v = R⌃�1

L
T
v, and thus we have

kyk
2 = v

T (L⌃�1
R

T
R⌃�1

L
T)v = v

T (L⌃�2
L)v = v

T (MM
T)�1

v.

This completes the proof of the claim.

Now consider the matrix M 2 Rd⇥p that has p = m + d columns. The first m columns are
u1, u2, . . . , um and the rest are �e1, �e2, . . . , �ed. Clearly, we have MM

T = �
2Id + UU

T .

To see the first part of the lemma, note that using Claim 3, there exists a y such that kyk2  c and
My = v. Splitting the coordinates of y into those correspond to ui and those that correspond to �ei

now completes the proof.

The second part can be shown by contradiction. Suppose we can write v = Ux+ z
0, where kxk  1

and kz
0
k  �. Let z = z

0
/�, and consider the vector y formed by the concatenation of x and z.

Clearly kyk
2
 kxk

2 + kzk
2
 2. Thus the Claim now gives a contradiction.

14

B.3 Full proof of Theorem 3.4

We need to show that for any vi 2 V and any (k�1) dimensional subspace H of Rd, if d(vi,H) � �,
then there exists a v 2 S such that d(v,H) � (1/↵) · d(vi,H). Let us fix any such vi and subspace
H. We show that in fact, some element of S� satisfies this property, where � is the unique value in D

satisfying 2� < d(vi,H)  4�. Note that by our choice of parameters, there is always exactly one
such � 2 D. In what follows, let us fix this value of �, and let ↵ =

p
64k log(8/�) be the core-set

approximation factor we are aiming to prove in Theorem 3.4. Since all values in D including � are at
least �/2, we also have log(4/�)  log(8/�). So it suffices to prove that there exists a a u 2 S� such
that

d(u,H)2 >
�
2

32k log(4/�)
.

Now, consider the set S� at the ith time step of the algorithm (when we see vi). If vi gets added to S� ,
there is nothing to prove. Otherwise, either the M� condition was not met, or the size of S� is already
at the threshold of 4k log(4/�). Let us consider these two cases separately and show the following
claims.
Claim 1. For � as above, suppose |S�| < 4k log(4/�) at the time that vi arrives, and suppose that
v
T

i
(M�M

T

�
)�1

vi  2. Then there exists a u 2 S� such that

d(u,H)2 �
�
2

4k log(4/�)
.

Proof of Claim 1. By using Lemma 3.6, we have that

vi =
X

u2S�

�uu+ �z, where
X

u2S�

�
2
u
+ kzk

2
 2. (6)

Let ⇧ be the projection matrix orthogonal to H. By definition, d(vi,H) � 2� () k⇧vik � 2�.
Thus, squaring and using the Parallelogram law, we have that 2

⇣��P
u2S�

�u⇧u
��2 + �

2
kzk

2
⌘
�

4�2. However, by Cauchy-Schwarz, we have that
�����
X

u2S�

�u⇧u

�����

2



X

u2S�

�
2
u

!
X

u2S�

k⇧uk
2

!
.

Thus if we assume for the sake of contradiction that k⇧uk
2
<

�
2

|S�|
for all u 2 S� , then we have

�����
X

u2S�

�u⇧u

�����

2

<

X

u2S�

�
2
u

!
· |S�|

�
2

|S�|
 �

2(
X

u2S�

�
2
u
).

Using (6), we now obtain a contradiction to the inequality we obtained above using the parallelogram
law. This completes the proof.

The more challenging case is when |S�| � 4k log(4/�) (and we do not add vi to S� because of the
size threshold). Here we will use the packing lemma to claim that S� has a point with a sufficiently
large distance to any (k � 1) dimensional subspace.
Claim 2. For some � 2 (0, 1/2), suppose |S�| = 4k log(4/�). Then for any (k � 1) dimensional
subspace H, there exists u 2 S� such that d(u,H)2 >

�
2

8|S�|
.

Proof of Claim 2. Suppose for the sake of contradiction that d(u,H)2 
�

8|S�|
for all u 2 S� .

Now, let S� = {u1, u2, . . . , um}, where the indices are chosen in the order in which the points were
added. Let P be a matrix whose columns are an orthonormal basis for H. Then the projection matrix
onto H is ⇧H = PP

T . Suppose we define new (k � 1)-dimensional vectors wi = P
T
ui. We show

that we have the following properties: (a) kwik  1 for all i, and (b) for all i,

w
T

i

✓
�
2

4
I(k�1) +Wi�1W

T

i�1

◆�1

wi > 1. (7)

15

Property (a) is trivial because kuik  1 and P is the square root of a projection (and thus has all
singular values  1). To show (b), suppose if possible that (7) does not hold. Then by part 1 of
Lemma 3.6 (applied with �/2 and c = 1), we can express

wi =
�

2
z +

X

j<i

�jwj , where kzk
2 +

X

j<i

�
2
j
 1. (8)

Now, Pwj is the projection of uj to H. Writing w
0

j
= uj � Pwj (the orthogonal component):

������
ui �

X

j<i

�juj

������

2

=

������
�

2
Pz + w

0

i
�

X

j<i

�jw
0

j

������

2

 2

2

64
�
2

4
kPzk

2 +

������
w

0

i
�

X

j<i

�jw
0

j

������

2
3

75

 2

2

4�
2

4
+ |S�|(1 +

X

j<i

�
2
j
) ·max

j

��w0

j

��2
3

5 (9)

To get to (9) we have used the Cauchy-Schwarz inequality, along with the bound kPzk  1, which
follows from (8). Now, plugging in the assumption that

��w0

j

��2  �
2
/(8|S�|) (i.e., the ui’s all have

a small component orthogonal to H), and using the simple bound of (1 +
P

j<i
�
2
j
)  2 (which

follows from (8)), we have that ������
ui �

X

j<i

�juj

������

2

 �
2
.

In other words, ui can be expressed as z0 +
P

j<i
�juj , where kz

0
k  1 and

P
j
�
2
j
 1. By the

second part of Lemma 3.6, this now implies that at the time ui was being added, we have
u
T

i
(M�M

T

�
)�1

ui  2,

which is a contradiction because in this case, we would not have added ui to S� . Thus, we conclude
that (b) holds.

Finally, we apply the packing lemma (Lemma 3.5) to the vectors {wi}
m

i=1 with �/2 and q = (k � 1),
which gives us that m  4(k� 1) log(4/�) < 4k log(4/�), a contradiction. This completes the proof
of the claim.

The claim immediately implies that if |S�| was 4k log(2/�), it does not matter that ui was not added
to S�. For any H, we already have maxu2S� d(u,H) being � (1/↵) · 4� � (1/↵) · d(ui,H). This
completes the proof of the theorem.

C Removing the boundedness assumption on vector lengths

We now show how to remove the assumption that kvtk  1 for all vt 2 V . Thus in this case, all we
are given is an additive error parameter ⌘, and an upper bound B on the maximum norm. I.e., B
satisfies B � maxt kvtk.

In fact, as we will see, our bounds only depend on M = dlogBe. Thus, having an upper bound on
M up to a constant suffices (and this is much weaker than having a good bound on B).

The modification to the algorithm is now straightforward: once a vector vt arrives, we scale it
down by a factor B, and we use ⌘

0 = ⌘

Bk in place of ⌘ in the algorithm (i.e., in the definitions
of �, D, etc.). Note that scaling each vector by B changes the volume of every k-simplex by
exactly B

k, so if vol0 denotes the volume after scaling, then vol0(S) = 1
Bk vol(S). Thus, if we had

vol0(S) � � · vol0(S⇤)� ⌘
0, then vol(S) � � · vol(S⇤)� ⌘.

Plugging this into Theorem 3.2, we end up with a multiplicative approximation factor of ((k +

k logB + log(1/⌘))O(k) and a space complexity of O
⇣
k
3 log2 kB + k log2 1

⌘

⌘
vectors.

16

D Additional experiments

In this section, we present additional experiments. In particular, we present the results the Pen-Based
Recognition dataset and we present the missing experiments on the dependency on ✏. Finally we
show how the performance of our algorithm change as we change k but we keep ✏ fix to ✏ = 0.1 for
the Spambase dataset and the Statlog dataset and ✏ = 0.05 for the Pen-Based Recognition dataset.

D.1 Quality, consistency and amount of computation for the Pen-Based Recognition dataset

In Figure 3 we show the quality, the number of volume computations and the consistency for the
Pen-Based Recognition dataset. Also in this case we see that the final solution of ONLINEGREEDY is
comparable with the solution of offline GREEDY, the solution of ONLINELS is slightly worse than
it. Furthermore ONLINELS and ONLINEGREEDY make a similar number of computation but that
ONLINELS is significant more consistent.

0 2000 4000 60000.
00

0
0.

00
4

0.
00

8
0.

01
2

Number of Analyzed Columns

So
lut

ion
 V

alu
e

OnlineLS
OnlineGreedy
Greedy

(a)

0 2000 4000 6000

0
20

00
0

40
00

0
60

00
0

Number of Analyzed Columns

Nu
m

be
r o

f V
olu

m
e

Co
m

pu
ta

tio
ns

OnlineLS
OnlineGreedy

(b)

0 2000 4000 6000

0
10

20
30

40
50

Number of Analyzed Columns

Nu
m

be
r o

f S
wa

ps

OnlineLS
OnlineGreedy

(c)

Figure 3: Performances of the algorithms on the Pen-Based Recognition for k = 8 and ✏ = 0.05. In
the figures we report the quality of the solution((a)), the number of volume computations((b)) and the
number of swaps((c)) as a function of the number of rows processed so far.

D.2 Dependency on ✏ for the Pen-Based Recognition dataset and the Spambase dataset

In Figure 4 we present how the performance of ONLINELS as a function of ✏. Also in this case we
note a smooth trade-off between quality and efficiency.

0 2000 4000 60000.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Number of Analyzed Columns

So
lut

ion
 V

alu
e

ε= 0.05
ε= 0.1

ε= 0.3
ε= 0.5

(a)

0 2000 4000 6000

0
20

00
0

40
00

0
60

00
0

Number of Analyzed Columns

Nu
m

be
r o

f V
olu

m
e

Co
m

pu
ta

tio
ns

ε= 0.05
ε= 0.1

ε= 0.3
ε= 0.5

(b)

0 2000 4000 6000

0
5

10
15

20
25

30

Number of Analyzed Columns

Nu
m

be
r o

f S
wa

ps

ε= 0.05
ε= 0.1

ε= 0.3
ε= 0.5

(c)

0 1000 2000 3000 40000e
+0

0
4e
−1

6
8e
−1

6

Number of Analyzed Columns

So
lut

ion
 V

alu
e

ε= 0.05
ε= 0.1

ε= 0.3
ε= 0.5

(d)

0 1000 2000 3000 4000

0
10

00
0

30
00

0
50

00
0

Number of Analyzed Columns

Nu
m

be
r o

f V
olu

m
e

Co
m

pu
ta

tio
ns

ε= 0.05
ε= 0.1

ε= 0.3
ε= 0.5

(e)

0 1000 2000 3000 4000

0
10

20
30

40
50

Number of Analyzed Columns

Nu
m

be
r o

f S
wa

ps

ε= 0.05
ε= 0.1

ε= 0.3
ε= 0.5

(f)

Figure 4: Performances of the algorithms for the Pen-Based Recognition((a),(b),(c))
dataset((a),(b),(c)) and the Spambase dataset((d),(e),(f)) for different values of ✏ and k = 8.

17

D.3 Experiments for different values of k

In this subsection we present experiments for different values of k for the three datasets. In the
experiments we use ✏ = 0.1 for the Spambase dataset(Figure 6) and the Statlog dataset(Figure 7)
and ✏ = 0.05 for the Pen-Based Recognition dataset(Figure 5). We experiment for k = 4 and
16(for Statlog dataset we only experiment with k = 4 because the dataset has 9 dimensions).
Overall the results are consistent with the results for k = 8. ONLINELS has similar performance to
ONLINEGREEDY but it is significantly more consistent and the final solution of both online algorithm
is close to the offlline solution of ONLINEGREEDY. Although we note that as k grow the gap between
the online and offline solution grows as well.

0 2000 4000 6000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Number of Analyzed Columns

So
lut

ion
 V

alu
e

OnlineLS
OnlineGreedy
Greedy

(a) k = 4

0 2000 4000 6000

0
50

00
15

00
0

25
00

0

Number of Analyzed Columns

Nu
m

be
r o

f V
olu

m
e

Co
m

pu
ta

tio
ns

OnlineLS
OnlineGreedy

(b) k = 4

0 2000 4000 6000

0
5

10
15

20
25

30
35

Number of Analyzed Columns

Nu
m

be
r o

f S
wa

ps

OnlineLS
OnlineGreedy

(c) k = 4

0 2000 4000 60000.
0e

+0
0

4.
0e
−0

8
8.

0e
−0

8
1.

2e
−0

7

Number of Analyzed Columns

So
lut

ion
 V

alu
e

OnlineLS
OnlineGreedy
Greedy

(d) k = 16

0 2000 4000 6000

0
50

00
0

10
00

00
15

00
00

Number of Analyzed Columns

Nu
m

be
r o

f V
olu

m
e

Co
m

pu
ta

tio
ns

OnlineLS
OnlineGreedy

(e) k = 16

0 2000 4000 6000

0
20

40
60

80
10

0

Number of Analyzed Columns

Nu
m

be
r o

f S
wa

ps

OnlineLS
OnlineGreedy

(f) k = 16

Figure 5: Performances of the algorithms on the Pen-Based Recognition dataset for ✏ = 0.05. In the
figures we report the quality of the solution((a),(d)), the number of volume computations((b),(e)) and
the number of swaps((c),(f)) as a function of the number of rows processed so far.

E Necessity of the stash

The following example shows that a local search algorithm that online keeps only the best solution
without a stash cannot achieve any bounded approximation guarantee. In particular this implies that
the algorithm ONLINEGREEDY (which performs quite well in experiments) has unbounded worst
case guarantees.

We give a simple example with k = 2. Let r > 2 be an integer and consider the vectors:

v0 = (1, 0, y)

v1 = (1, x,�y)

v2 = (1, 2x, y)

...
vr = (1, rx, (�1)ry)

The optimal solution is to choose the first and the last vectors. It turns out that the squared area of the
parallelogram spanned is r2x2

y
2 + r

2
x
2.

Now consider the execution of the ONLINEGREEDY algorithm. It starts by choosing v0 and v1 as
the solution. We claim that after seeing v2, it drops v0 and maintains v1, v2 as the solution. More
generally, we claim that the algorithm always maintains the last two vectors it has seen as the solution.
We show this by induction. Consider the (t+1)th time step. The inductive hypothesis implies that the

18

0 1000 2000 3000 40000.
00

00
0

0.
00

00
4

0.
00

00
8

0.
00

01
2

Number of Analyzed Columns

So
lut

ion
 V

alu
e

OnlineLS
OnlineGreedy
Greedy

(a) k = 4

0 1000 2000 3000 4000

0
50

00
10

00
0

15
00

0
20

00
0

Number of Analyzed Columns

Nu
m

be
r o

f V
olu

m
e

Co
m

pu
ta

tio
ns

OnlineLS
OnlineGreedy

(b) k = 4

0 1000 2000 3000 4000

0
10

20
30

Number of Analyzed Columns

Nu
m

be
r o

f S
wa

ps

OnlineLS
OnlineGreedy

(c) k = 4

0 1000 2000 3000 40000e
+0

0
2e
−3

9
4e
−3

9
6e
−3

9

Number of Analyzed Columns

So
lut

ion
 V

alu
e

OnlineLS
OnlineGreedy
Greedy

(d) k = 16

0 1000 2000 3000 4000
0

40
00

0
80

00
0

12
00

00
Number of Analyzed Columns

Nu
m

be
r o

f V
olu

m
e

Co
m

pu
ta

tio
ns

OnlineLS
OnlineGreedy

(e) k = 16

0 1000 2000 3000 4000

0
20

40
60

80
10

0
12

0

Number of Analyzed Columns

Nu
m

be
r o

f S
wa

ps

OnlineLS
OnlineGreedy

(f) k = 16

Figure 6: Performances of the algorithms on the Spambase dataset for ✏ = 0.1. In the figures we
report the quality of the solution((a),(d)), the number of volume computations((b),(e)) and the number
of swaps((c),(f)) as a function of the number of rows processed so far.

0 10000 20000 30000 400000.
00

0
0.

00
2

0.
00

4

Number of Analyzed Columns

So
lut

ion
 V

alu
e

OnlineLS
OnlineGreedy
Greedy

(a) k = 4

0 10000 20000 30000 40000

0
50

00
0

10
00

00
15

00
00

Number of Analyzed Columns

Nu
m

be
r o

f V
olu

m
e

Co
m

pu
ta

tio
ns

OnlineLS
OnlineGreedy

(b) k = 4

0 10000 20000 30000 40000

0
5

10
15

20
25

Number of Analyzed Columns

Nu
m

be
r o

f S
wa

ps
OnlineLS
OnlineGreedy

(c) k = 4

Figure 7: Performances of the algorithms on the Statloog dataset for ✏ = 0.1. In the figures we report
the quality of the solution((a),(d)), the number of volume computations((b),(e)) and the number of
swaps((c),(f)) as a function of the number of rows processed so far.

solution before seeing vt+1 is {vt�1, vt}. Now consider the vectors vt�1, vt, vt+1. A straightforward
calculation now shows the following:

vol2(vt�1, vt) = (2t� 1)2x2
y
2 + x

2 + 4y2

vol2(vt�1, vt+1) = 4x2
y
2 + 4x2

vol2(vt, vt+1) = (2t+ 1)2x2
y
2 + x

2 + 4y2.

Now, if we choose x = y and both small enough, vol(vt, vt+1) has the largest volume. Because of
this, the algorithm ONLINEGREEDY will always keep only the last two vectors in its solution.

Thus, at the end of the stream, vr, the ratio between the volume that the algorithm ends up with and
the optimal is:

r
2
x
2
y
2 + r

2
x
2

(2r � 1)2x2y2 + x2 + 4y2
⇡ r,

assuming x, y ⇡ 1/
p
r. Thus the approximation ratio of ONLINEGREEDY, even with k = 2, grows

linearly with the number of vectors in the stream even in this simple three-dimensional example.

19

	Introduction
	Related work

	Preliminaries
	Online volume maximization
	Online addition with a stash
	Additive error algorithm

	Experiments
	Conclusion
	Online addition with a stash – Full proof
	Analysis of Online-DPP – Full proofs
	Proof of Theorem 3.2
	Proof of the packing lemma

	Proof of Lemma 3.6
	Full proof of Theorem 3.4

	Removing the boundedness assumption on vector lengths
	Additional experiments
	Quality, consistency and amount of computation for the Pen-Based Recognition dataset
	Dependency on for the Pen-Based Recognition dataset and the Spambase dataset
	Experiments for different values of k

	Necessity of the stash

