
First off, I would like to thank the reviewers for their helpful feedback. The reviewers agree that this work provides a1

novel way of looking at the expressivity of GNNs and establishes insightful results for the important problem of graph2

isomorphism. Following their suggestions, the paper’s exposition will be improved by: 1) providing further (graphical)3

intuition on the concept of a protocol; 2) unifying Theorems 3.1-3.3 and Prop. 3.1 into a main theorem; and 3) by4

expliciting the differences with [33] and the 1-WL test (discussed below). I will also address any other minor comments5

that are not discussed here due to space limitations.6

R1: Why is the learnability of the isomorphism class (fiso) important? 1) fiso is a good proxy for graph classifica-7

tion: due to MLP universality, a GNN that solves fiso is sufficiently powerful to solve any graph classification problem8

on the same graph distribution (i.e., irrespective of how the classes are assigned). 2) The bounds also apply to any GI9

testing method (like [31]) that compares graphs by means of some invariant representation (see Sec.3:129-133). GI10

testing is a subject of intense study within the GNN community [11, 22, 31, 25].11

R1 & R2: Anonymity, and improvement over 1-WL bounds for trees. The proposed bounds apply both to12

anonymous and non-anonymous MPNN. The tree distribution was chosen purposefully to demonstrate that the bounds13

are also relevant for the anonymous case. As R1/R2 mentioned, it is known that 1-WL can recognize v-node trees in v14

iterations, simply because there exists a tree of diameter v. However, since MPNN is equivalent to 1-WL only when15

the former is built using injective aggregation functions (i.e., of unbounded width), the equivalence does not imply a16

relevant lower bound on the width/message-size/global-state-size of MPNN. Further, the communication complexity17

theoretic bound is tighter and more refined: e.g., it asserts that one needs Ω(v) capacity in expectation, even though the18

average tree has O(
√
v) diameter (and thus 1-WL would require depth=Ω(

√
v) in expectation).19

R1: Experiments: why were they set-up in this manner and are they small-scale? The experiments were intended20

as a verification of the bounds and thus were constructed to closely match the studied setting. Yet, since the considered21

distributions form a (size-able) subset of all possible graphs/trees on n nodes, the demonstrated impossibility results22

will similarly hold for the full distribution. The hyper-parameters v = n/2, τ = 1, w ≤ 16 were selected to illustrate23

the bounds for small n—the bounds also hold for different settings of v, τ, w, but then a larger n would be needed to24

demonstrate the dependency (rendering the experiments more lengthy). Overall, the experiments considered ∼36.5k25

different graphs and 420 different MPNN, lasting more than 672 GPU hours. In terms of these metrics, I would not26

consider them small-scale.27

R2: Communication complexity (CC) and coding theory. The applicability of Shannon’s theorem (proof of Lemma28

B.2) arises when shifting from a worst-case complexity definition (studied in CC) to an expected one (defined here). I29

believe that this is the reason why these connections were not exploited previously.30

R3: Relation to [33]. There are four main differences (beyond that [33] did not consider graph isomorphism): 1) The31

current paper derives necessity bounds for the expected as well as worst case. The results of [33] assert that there32

exists a distribution such that for some graph in the distribution dw needs to depend on n — however, the MPNN could33

still attain 99.99% accuracy without needing to satisfy the dw condition. Differently, the current paper bounds the34

probability of error over the distribution (see third bullet in Prop. 3.1). Note also that Lemma 2.1 can be used to define35

a capacity bound for any arbitrary family of graphs (though the bound is tighter when the graphs in question can be36

jointly partitioned with a cut of at most τ ). Further, since anonymous MPNN is oblivious to node ordering, in the37

anonymous setting the bound is valid as long as each graph can be cut in two pieces of roughly equal size. 2) In contrast38

to [33], the bounds here consider the message-size and apply to MPNN with global-state. 3) This paper considers39

graph classification (with readout); [33] considered node classification problems (no readout function). 4) Finally, the40

current paper derives lower bounds by developing a new, technically more involved, and insightful connection to CC.41

R3: Regarding rigor and completeness. 1) All results were fully proven. Employing a previous result (Corollary42

B1) in a proof is standard practice in theoretical papers and does not affect rigor. To help the reader, relevant CC43

arguments and results are summarized in App. B.1 and B.2. These might not suffice to provide a complete intuition, but44

they suffice for completeness. To aid the reader further, the camera-ready will include a more in-depth explanation45

of protocols and communication complexity. 2) The intuition behind the technical constructions is provided by the46

introduction of Section 3. Further intuition in the main text would require an understanding of App. B, which I believe47

goes beyond the interests of the casual reader.48

R3: Why is a rectangle-based analysis necessary? The argument of the reviewer could be used in a setting where49

the information needs to be transmitted one-way. However, in MPNN any two subgraphs (parties) arrive to the output50

by exchanging information over multiple steps/layers (i.e., the transmission is both ways). This renders the approach51

suggested by the reviewer inapplicable and motivates the need for rectangles/communication complexity: a rectangle52

represents the uncertainty inherent to each party after every step of the communication exchange (protocol).53

R4: Communication capacity. The definition can be found in Definition 2.1 (lines 112-114).54


