
How hard is to distinguish graphs
with graph neural networks?

Andreas Loukas
École Polytechnique Fédérale Lausanne

andreas.loukas@epfl.ch

Abstract

A hallmark of graph neural networks is their ability to distinguish the isomorphism
class of their inputs. This study derives hardness results for the classification
variant of graph isomorphism in the message-passing model (MPNN). MPNN
encompasses the majority of graph neural networks used today and is universal
when nodes are given unique features. The analysis relies on the introduced
measure of communication capacity. Capacity measures how much information
the nodes of a network can exchange during the forward pass and depends on the
depth, message-size, global state, and width of the architecture. It is shown that
the capacity of MPNN needs to grow linearly with the number of nodes so that
a network can distinguish trees and quadratically for general connected graphs.
The derived bounds concern both worst- and average-case behavior and apply to
networks with/without unique features and adaptive architecture—they are also
up to two orders of magnitude tighter than those given by simpler arguments. An
empirical study involving 12 graph classification tasks and 420 networks reveals
strong alignment between actual performance and theoretical predictions.

1 Introduction

A fundamental goal in the analysis of graph neural networks is to determine under what conditions
current networks can (or perhaps cannot) distinguish between different graphs [1–6]. The most
intensely studied model in the literature has been that of message-passing neural networks (MPNN).
Since its inception by Scarselli et al. [7], MPNN has been extended to include edge [8] and global
features [9]. The model also encompasses many of the popular graph neural network architectures
used today [10, 3, 11–16].

Roughly two types of analyses of MPNN may be distinguished. The first bound the expressive
power of anonymous networks, i.e., those in which nodes do not have any access to node features
(also known as labels or attributes) and that are permutation equivariant by design. Xu et al. [3] and
Morris et al. [4] established the equivalence of anonymous MPNN to the 1st-order Weisfeiler-Lehman
(1-WL) graph isomorphism test. A consequence of this connection is that anonymous MPNN cannot
distinguish between regular graphs with the same number of nodes, but can recognize trees as long as
the MPNN depth exceeds the tree diameter. Other notable findings include the observation that MPNN
cannot count simple subgraphs [6], as well as the analysis of the power of particular architectures to
compute graph properties [17, 18] and to distinguish graphons [19]—see also [20, 21, 5].

The aforementioned insights can be pessimistic in the non-anonymous case, where permutation
equivariance is either learned from data [22, 23] or obtained by design [24]. With node features
acting as identifiers, MPNN were shown to become universal in the limit [23], which implies that they
can solve the graph isomorphism testing problem if their size is allowed to depend exponentially on
the number of nodes [5]. The node features, for instance, may correspond to a one-hot encoding [10,
25, 22] or a random coloring [26, 27].
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Figure 1: (a) In MPNN, nodes exchange information by sending and receiving messages along edges.
Communication capacity is the maximal amount of information that can be sent across two subgraphs
(depicted in orange and green) (b) Communication complexity is the minimal amount of information
needed so that two parties jointly compute a function f . (c) To determine whether graphs G and G′
are isomorphic one may use an MPNN g to test whether g(G) = g(G′).

At the same time, universality statements carry little insight about the power of practical networks,
as they only account for behaviors that occur in the limit. Along those lines, recent work provided
evidence that the power of MPNN grows as a function of depth and width for certain graph prob-
lems [23], showing that (both anonymous and non-anonymous) MPNN cannot solve many tasks
when the product of their depth and width does not exceed a polynomial of the number of nodes.
Nevertheless, it remains an open question whether similar results hold also for problems relating to
the capacity of MPNN to distinguish graphs. Even further, it is unclear whether depth and width
needs to grow with the number of nodes solely in the worst-case (as proven in [23]) or with certain
probability over the input distribution.

1.1 Communication capacity and its consequences to distinguishing graphs

Aiming to study the power of MPNN of practical size to distinguish graphs, this paper defines and
characterizes communication capacity, a measure of the amount of information that the nodes of
the network can exchange during the forward pass (see Figure 1a). In Section 2 it is shown that the
capacity of MPNN depends on the network’s depth, width, and message-size, as well as on the cut-
structure of the input graph. Communication capacity is an effective generalization of the previously
considered product between depth and width [23], being able to consolidate more involved properties,
as well as to characterize MPNN with global state [8, 9, 28] and adaptive architecture [29–32].

The paper then delves into the communication complexity of determining the graph isomorphism class.
The theory of communication complexity compliments the definition of communication capacity
as it provides a convenient mathematical framework to study how much information needs to be
exchanged by parties that jointly compute a function [33] (see Figure 1b). In this setting, Section 3
derives hardness results for determining the isomorphism class of connected graphs and trees. It is
shown that the communication capacity of any MPNN needs to grow at least linearly with the number
of nodes so that the network can learn to distinguish trees, and quadratically to distinguish between
connected graphs. The analysis stands out from previous relevant works that have studied subcases
of isomorphism, such as subgraph freeness [34, 35] or those focused on anonymous networks [3–
6, 17, 19]. In fact, the derived hardness results apply to both anonymous and non-anonymous MPNN
and can be up to two orders of magnitude tighter than what can be deduced from simpler arguments.
In addition, the proposed lower bounds rely on a new technique which renders them applicable not
only to worst-case instances [23], but in expectation over the input distribution.

An empirical study reveals strong qualitative and quantitative agreement between the MPNN test
accuracy and theoretical predictions. In the 12 graph isomorphism tasks considered, the performance
of the 420 graph neural networks trained was found to depend strongly on their communication
capacity. In addition, the proposed theory could consistently predict which networks would exhibit
poor classification accuracy as a function of their capacity and the type of task in question.

2 Communication complexity for message-passing networks

Suppose that a learner is given a graph G = (V, E , a) sampled from a distribution D that is supported
over a finite universe of graphs X . Throughout this paper, V will denote the set of nodes of cardinality
n, E the set of edges, and a encodes any node and edge features of interest. With G as input, the
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learner needs to predict the output of function f : X → Y . This work focuses on graph classification,
in which case f assigns a class y ∈ Y (i.e., its isomorphism class) to each graph in the universe.

2.1 Message-passing neural networks (MPNN)

In MPNN, the node representation x
(�)
i of every node vi ∈ V is initialized to be equal to the node’s

attributes x
(0)
i = ai and is progressively updated by exchanging messages:

x
(�)
i = UPDATE�

(
x
(�−1)
i ,

{
msg

(�)
ij : eij ∈ E}) for � = 1, . . . , d,

where each message

msg
(�)
ij = MESSAGE�

(
x
(�−1)
j , aj , aij

)
contains some information that is sent to from node vj to vi.

Every neuron in a network utilizes some finite alphabet S containing s = |S| symbols to encode

its state. For this reason, x
(�)
i and msg

(�)
ij are selected from Sw� and Sm� , where w� and m� are the

width (i.e., number of channels) and the message-size of the �-th layer. For instance, to represent
whether a neuron is activated one uses binary symbols, whereas a practical implementation could use
as symbols the set of numbers represented in floating-point arithmetic.

MESSAGE� and UPDATE� are layer-dependent functions whose parameters are selected based on
some optimization procedure. It is common to parametrize these functions by feed-forward neural
networks [7, 12, 9]. The rational is that, by the universal approximation theorem and its variants [36–
38], these networks can approximate any smooth function that maps vectors onto vectors. If the
network’s output is required to be independent of the number of nodes, the output is recovered from

the representations of the last layer by means of a readout function: g(G) = READOUT
({

x
(d)
i : vi ∈

V}). For simplicity, it is here assumed that no graph pooling is employed [39, 40], though the results
may also be easily extended to account for coarsening [41–45].

Global state. In the description above, all message exchange needs to occur along graph edges.
However, one may also easily incorporate a global state (or external memory) to the model above by
instantiating a special node v0 and extending the edge set to contain edges from every other node to
it. Global state is useful for incorporating graph features to the decision making [9] and there is some

evidence that it can facilitate logical reasoning [46]. Here, I will suppose that x
(�)
0 belongs to set Sγ� .

Adaptive MPNN. The forward-pass of an MPNN concludes after d layers. However, the depth
of a network may be adaptive [29–32]. In particular, d may depend on the size and connectivity
of the input graph or any adaptive computation time heuristic [29, 30] based on, for example, the
convergence of the node representation [31, 32]. In the same spirit, in the following it will supposed
that all hyper-parameters of an MPNN, such as its depth, width, message-size, and global state size,
can be adaptively decided based on the input graph G.

2.2 Communication capacity

An MPNN g can be thought of as a communication network N(G, g), having processors as nodes and
with connectivity determined by the input graph G. N(G, g) operates in � = 1, . . . , d synchronous
communication rounds and m� symbols are transmitted in round � from each processor vi to each
one its neighbors vj such that eij ∈ E . Further, the processors have limited and round-dependent
memory: in round � the processors corresponding to nodes V can store w� symbols, whereas the
external memory processor v0 can store γ� symbols.

The communication complexity of a message-passing neural network corresponds to the maximum
amount of information that can be sent in N(G, g) between disjoint sets of nodes:

Definition 2.1 (Communication capacity). Let g be an MPNN and fix a graph G = (V, E). For
any two disjoint sets Va,Vb ⊂ V , the communication capacity cg of g is the maximum number of
symbols that N(G, g) can transmit from Va to Vb and from Vb to Va.

To understand Definition 2.1, imagine that the node-disjoint subgraphs Ga = (Va, Ea) and Gb =
(Vb, Eb) of G are controlled by two parties: Alice and Bob (see Figure 1). In practice, Alice and Bob
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correspond to two sub-networks of g. By construction, when Alice needs to send information to Bob,
she does so by sending information across some paths that cross between Va and Vb. Bob does the
same. From this elementary observation, it can be deduced that the number of symbols that can be
sent during the forward pass is bounded by the cut between the two subgraphs:

Lemma 2.1. Let g be an MPNN of d layers, where each has width w� (i.e., number of channels),
exchanges messages of size m�, and maintains a global state of size γ�. For any disjoint partitioning
of V into Va and Vb, the communication complexity of g is at most

cg ≤ cut(Va,Vb)

d∑
�=1

min{m�, w�}+
d∑

�=1

γ�,

with cut(Va,Vb) being the size of the smallest cut that separates Va and Vb in G.

Whenever the MPNN involves sending for each eij ∈ E two messages, i.e., one from vi to vj and
one from vj to vi, every edge should be counted twice in the calculation of cut(Va,Vb).

It is also interesting to remark that cg may be a random quantity. In particular, when G is sampled
from a distribution D, the capacity of an adaptive MPNN, i.e., a network whose hyper-parameters
change as a function the input, may vary as well. For this reason, the analysis will also consider the
expected communication capacity cg(D) of g w.r.t. D.

2.3 Communication complexity

Let us momentarily diverge from graphs and suppose that Alice and Bob wish to jointly compute a
function f : Xa × Xb → Y that depends on both their inputs. Alice’s input is an element xa ∈ Xa

and Bob sees an element xb ∈ Xb. Later on, xa and xb will correspond to Ga and Gb, respectively,
whereas y ∈ Y will be the classification output (see Figure 1b).

To compute f(xa, xb), the two parties need to exchange information based on some communi-
cation protocol π. Concretely, π determines for each input (xa, xb) the sequence π(xa, xb) =
((ID1, s1), (ID2, s2), . . .) of symbols that are exchanged, with each symbol si ∈ S being paired with
the id of its sender (Alice or Bob)—for a more detailed description, see Appendix B. The number
of symbols exchanged by π to successfully compute f(xa, xb) are denoted by ‖π(xa, xb)‖m, with
subscript m ∈ {one, both} indicating whether “successful computation” entails one or both parties
figuring out f(xa, xb) at the end of the exchange.

Worst-case complexity. The focus of classical theory is on the worst-case input. The communication
complexity [33] of f is defined as

cm
f := min

π
max

(xa,xb)∈Xa×Xb

‖π(xa, xb)‖m (1)

and corresponds to the minimum worst-case length of any protocol that computes f .

Expected complexity. In machine learning, one usually cares about the expected behavior of a
learner when its input is sampled from a distribution. Concretely, let (Xa, Xb) be random variables
sampled from a distribution D with domain Xa ×Xb. The expected length of a protocol π is

ED

[
cmf (π)

]
:=

∑
(xa,xb)∈Xa×Xb

‖π(xa, xb)‖m · P(Xa = xa, Xb = xb) , (2)

where now the protocol length ‖π(xa, xb)‖m is weighted according to the probability of each input.
With this in place, I define the expected communication complexity of f as

cmf (D) := min
π

ED

[
cmf (π)

]
, (3)

corresponding to the minimum expected length of any protocol that computes f .

For an overview of the classical theory of communication complexity pertaining to the worst-case
and an analysis of the newly-defined expected complexity, the reader may refer to Appendix B.

To use communication complexity for learning problems f : X → Y from a graph universe X to
a set of classes Y one needs to decompose (a subset of) X as Xa × Xb. As it will be seen in the
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following sections, the decomposition can be achieved by finding a disjoint partitioning of every
graph G ∈ X into subgraphs Ga ∈ Xa and Gb ∈ Xb, held by Alice and Bob, respectively. Then, in
the worst case, cm

f symbols need to be exchanged so that one (m=one) or both (m=both) parties can

correctly classify G into class y = f(G). Moreover, if G is sampled from some distribution D, then
the two parties need to exchange at least cm

f (D) symbols in expectation. Together with Lemma 2.1,

the aforementioned bounds can be used to characterize what an MPNN cannot achieve as a function
of its worst-case and expected capacity.

3 Hardness results for determining the isomorphism class

This section derives necessary conditions for the communication capacity of a network that determines
the graph isomorphism class of its inputs. This entails finding a mapping fisom : X → Y from
a universe of labeled graphs to their corresponding isomorphism classes. Crucially, though the
nodes of graph G are assigned some predefined order (which constitutes their label in graph-theory
nomenclature), the class fisom(G) should be invariant to this ordering.

As it will be shown, MPNN of sub-quadratic and sub-linear capacity cannot compute the isomorphism
class of connected graphs and trees, respectively:

Theorem 3.1. Let g be a MPNN using either a majority-voting or a consensus based readout (defined
in Section 3.2). Denote by cg its communication capacity.

1. To compute fisom for every graph and tree of n nodes, it must be that cg = Ω
(
n2

)
and

cg = Ω(n), respectively.

2. If each graph is sampled from Bn/2,p (defined in Theorem 3.3) to compute fisom in expectation
it must be that cg(D) = Ω

(
n2

)
. Further, if each graph is a tree sampled from Tn/2 (defined

in Theorem 3.4) to compute fisom in expectation it must be that cg(D) = Ω (n) .

For general graphs, these results are one or two orders of magnitude tighter than arguments that
compare the receptive field of a neural network with the graph diameter. Specifically, connected
graphs have diameter at most n and thus a diameter analysis yields d = Ω(n) without a global state
and d = Ω(1) with one (as any two nodes are connected by a path passing through v0).

The tree distribution was chosen purposefully to demonstrate that the bounds are also relevant for
the anonymous case, when MPNN can also be analyzed by equivalence to the 1-WL test [3, 4]. For
trees, the 1-WL test requires n iterations because there exists a tree of diameter n. However, since
MPNN is equivalent to 1-WL only when the former is built using injective aggregation functions
(i.e., of unbounded width [3, 4, 47]), the equivalence does not imply a relevant lower bound on the
width/message-size/global-state-size of MPNN. Further, the communication complexity analysis
introduced here yields tighter results in expectation: it asserts that one needs Ω(n) capacity on
average, even though the average tree in Tn/2 has O(

√
n) diameter (and thus 1-WL would require

d = Ω(
√
n) in expectation).

Graph isomorphism testing. There is also a close relation between fisom and the graph isomorphism
testing problem (see Figure 1c). Specifically, methods for isomorphism testing [3, 4, 6] that compare
graphs G and G′ by means of some invariant representation or embedding

g(G) = g(G′) if and only if fisom(G) = fisom(G
′)

can be expressed as g = q ◦fisom for some injective function q. Since q does not involve any exchange
of information, the communication complexity of such testing methods is the same as that of fisom.
The proposed hardness results thus still hold.

The rest of this section is devoted to proving Theorem 3.1. The analysis consists of two parts: the
communication complexity of distinguishing graphs and trees is derived in Section 3.1, and the
implications of these results to MPNN are discussed in Section 3.2.

3.1 Communication complexity analysis

Rather than focusing directly on the universe of all graphs and trees, respectively, it will be convenient
to analyze a strictly smaller universe X containing easily partitioned graphs. As it will be seen, we
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Figure 2: A visual depiction of a graph G = (V, E) chosen from X . Ga (in yellow) and Gb (in green)
are chosen from families Xa and Xb of graphs with v nodes. The edges of Gc (dashed lines) may
connect to any node but should induce a (Va,Vb)-cut of at most τ .

can utilize such a restriction without significant loss of generality, because the derived worst-case
impossibility results also apply to any universe that is a strict superset of X .

Concretely, X will consist of all labeled graphs G = (V, E) on n nodes admitting to the following
(Xa,Xb, τ) decomposition:

(a) Subgraph Ga = (Va, Ea) induced by labels Va = (1, 2, · · · , v) belongs to Xa.

(b) Subgraph Gb = (Vb, Eb) induced by labels Vb = (v + 1, v + 2, · · · , 2v) belongs to Xb.

(c) Subgraph Gc = (V, E \ (Ea ∪ Eb)) yields cut(Va,Vb) ≤ τ .

An example (Xa,Xb, τ) decomposable graph is depicted in Figure 2. This decomposition is fairly
general: the main restriction placed is that the cut between Va and Vb is bounded by τ . Families Xa

and Xb can be chosen to contain relevant families of graphs (e.g., all connected graphs or all trees),
whereas Gc may be selected arbitrarily. To derive lower bounds, it will be imagined that Ga and Gb

are known by Alice and Bob, respectively, while both know Gc. The goal of the two parties is to
determine fisom(G) = fisom(Ga, Gb, Gc) by exchanging as little information as possible.

Two main results will be proven: Section 3.1.1 will show that, when Xa and Xb contain all labeled
connected graphs on v nodes, the worst-case and expected communication complexity are both Θ(v2).
Moreover, in Section 3.1.2 it is proven that, when Xa and Xb contain only trees, the two complexities
are Θ(v).

3.1.1 Distinguishing connected graphs

When Xa and Xb contain all connected graphs on v nodes, Alice and Bob should exchange Θ(v2)
symbols in the worst case:

Theorem 3.2 (Worst-case complexity). When Xa and Xb each contain the set of all connected graphs
on v nodes, the worst-case communication complexity of fisom is at least

O(v2) = cboth
fisom

≥ v2

log2 s
− 2v logs

(
v
√
2

e

)
− logs

(
2ve2

)
+ o(1) = β = Ω

(
v2

)

and O(v2) = cone
fisom

≥ β−(log2 s)−1

2 = Ω
(
v2

)
.

A similar bound holds also in the random graph model Gv,p. In Gv,p, every graph with v nodes and
k edges is sampled with probability

P(G ∼ Gv,p) = pk(1− p)(
v
2)−k.

Effectively, this means the probability of choosing each graph depends only on the number of edges
it contains. Moreover, for p = 0.5 each graph is sampled uniformly at random from the set of all
possible graphs. The following theorem bounds the expected communication complexity when the
subgraphs known to Alice and Bob are sampled from Gv,p:

Theorem 3.3 (Expected complexity). Let Ga and Gb be sampled independently from Gv,p, with
log v/v < p < 1− sΩ(1) and cut(Va,V \ Va) = cut(Vb,V \ Vb) = 1. Denote by Bv,p the resulting
distribution. With high probability,

O(v2) = cboth
fisom

(Bv,p) ≥ v2 Hs(p)− v
(
2 logs

(v
e

)
+Hs(p)

)
− logs

(
2ve2

)
= β = Ω(v2)
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and

O(v2) = cone
fisom

(Bv,p) ≥ β

2
− v2 − v(1−H2(p)) + 1

2 log2 s
= Ω(v2),

where Hs(p) = −(1− p) logs (1− p)− p logs p is the binary entropy function (base s).

The expected complexity, therefore, grows asymptotically with Θ(v2) and is maximized when every
graph in the universe is sampled with equal probability, i.e., for p = 0.5. Interestingly, in this setting,
the bounds of Theorems 3.2 and Theorem 3.3 match. This implies that, unless there is some strong
isomorphism class imbalance in the dataset, the communication complexity lower bound posed by
Theorem 3.2 does not only concern rare worst-case inputs, but should be met on average.

In the theorem it is asserted that log v/v < p < 1− sΩ(1). The aforementioned lower bound suffices
to guarantee that every G ∼ Bv,p will be connected with high probability, whereas the upper bound
is needed to ensure that Hs(p) = Ω(1).

3.1.2 Distinguishing trees

Distinguishing trees (connected acyclic undirected graphs) is significantly easier:

Theorem 3.4. Suppose that Ga and Gb are sampled independently from the set of all trees on v
nodes. Denote by Tv the resulting distribution. The communication complexity of fisom is at least

O(v) = cboth
fisom

≥ cboth
fisom

(Tv) � 2v logs α− 5 logs v + logs 7 = β = Ω(v)

and O(v) = cone
fisom

≥ cone
fisom

(Tv) � β+logs 2
2 = Ω(v), where α ≈ 2.9557652 and f(n) � g(n) means

f(n) ≥ g(n) as n grows.

Akin to the general case, the expected and worst-case complexities match when every tree is sampled
with equal probability. Since a distribution over trees cannot be meaningfully parametrized based
a connection probability p (trees always have the same number of edges), by default in Tv every
G ∈ X is sampled with equal probability.

3.2 Consequences for message-passing neural networks

Two types of networks are distinguished depending on how the readout function operates:

1. READOUT performs majority-voting. Specifically, for g to compute fisom(G) there should
exist a function r : Swd → Y and a set of nodes MG ⊆ V possibly dependent on G and of

cardinality at least |MG| ≥ μ = O(1), such that r(x
(d)
i ) = fisom(G) for every vi ∈ MG.

2. READOUT performs consensus. This is akin to a majority-voting, with the distinction that
MG should contain at least |MG| ≥ n− μ = Ω(n) nodes.

The implications of a communication complexity bound to MPNN capacity are as follows:

Lemma 3.1. Let D be a distribution over graphs that is supported on a universe X admitting to a
(Xa,Xb, τ) decomposition. Further, suppose that g is an MPNN whose communication capacity is
always bounded from above by cg and is at most cg(D) in expectation. The following hold:

1. There exists some G ∈ X for which computing fisom(G) necessitates cg ≥ cmfisom
. In addition,

for every X ′ ⊃ X network g cannot compute fisom(G) for some G ∈ X ′.

2. In expectation, computing fisom necessitates cg(D) ≥ cmfisom
(D). Moreover, if cg <

δ cmfisom
(D) for some δ ∈ [0, 1], then g cannot compute fisom(G) with probability at least

(1− δ)/((βm/cmfisom
(G))− δ).

Above, with majority-voting one should set m = one and v > (n− μ)/2, whereas with consensus
m = both and v > μ. Further, βm is the worst-case length of a protocol with optimal expected length.

With Lemma 3.1 in place, the proof of Theorem 3.1 follows from Theorems 3.2, 3.3 and 3.4 by
setting v = n/2.
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(a) distinguishing graphs (b) distinguishing trees

Figure 3: Test accuracy in terms of communication capacity and the number of nodes for 4 graph
(left) and 8 tree isomorphism tasks (right). Each marker corresponds to a trained network. Networks
of high (low) accuracy as plotted with large green (small red) markers. The two dashed colored lines
connect the smallest-capacity networks that attain 50% and 99% accuracy, respectively. The two gray
regions at the bottom of the figure correspond to the proposed distribution-dependent lower bounds
for a majority and consensus readout function. Best seen in color.

4 Empirical results

This section tests the developed theory on 12 graph and tree isomorphism classification tasks of
varying difficulty. In the 420 neural networks tested, the bounds are found to consistently predict
when each network can solve a given task as a function of its capacity.

4.1 Experimental setting

MPNN of different capacities were tasked with learning the mapping between a universe of graphs
their corresponding isomorphism classes.

Datasets. A total of 12 universes were constructed following the theory: Xn
graph for n = (6, 8, 10, 12)

and Xn
tree for n = (8, 10, . . . , 22). Each Xn

graph was built in two steps: First, geng [48] was used to

populate Xa and Xb with all possible connected graphs on v = n/2 nodes. Then, each G ∈ Xn
graph

was generated by selecting Ga and Gb from Xa and Xb and connecting them with an edge, such that
τ = 1. The labels added to the nodes of G were the one-hot encoding of a random permutation of
(1, . . . , v) and (v + 1, . . . , n). The construction of Xn

tree differed only in that Xa and Xb contained all
trees on v = n/2 nodes. Then, the 12 datasets were built by sampling graphs from each respective
universe. These were split into a training, a validation, and a test set (covering 90%, 5%, and 5% of
the dataset, respectively). Additional details are provided in Appendix A.

Architecture and training. The networks combined multiple GIN0 [3] layers with batch normal-
ization and a simple sum readout. Their depth and width varied in d ∈ (2, 3, 4, 5, 6, 7, 8) and
w ∈ (1, 2, 4, 8, 16), respectively, the message-size was set equal to w, and no global state was used.
Each network was trained using Adam with a decaying learning rate. Early stopping was employed
when the validation accuracy reached 100%.

4.2 Findings

Let me begin by stating that networks of sufficient size could solve nearly every task up to 100%
test accuracy (Table 2 in Appendix A), which corroborates previous theoretical findings that non-
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anonymous MPNN are universal and can solve graph isomorphism [23, 5], as well as that they can
learn to be permutation invariant [22]. On the other hand, anonymous MPNN are always permutation
equivariant but cannot distinguish between graphs of more than three nodes [6].

Figures 3a and 3b summarize the neural network performance for all the tasks considered. The
achieved accuracy strongly correlated with communication capacity (computed based on Lemma 2.1)
with larger-capacity networks performing consistently better. Moreover, in qualitative agreement
with the analysis, solving a task can be seen to necessitate larger capacity when the number of nodes
is increased. A case in point, whereas a capacity of 4 suffices to classify 99% of graphs of 6 nodes
correctly, for 8, 10, and 12 nodes the required capacity increases to 8, 24, and 112, respectively.
This identified correlation between capacity and accuracy could not be explained by the depth or
width of the network alone, as, in most instances, tasks that could not be solved by wide and shallow
networks could also not be solved by deep networks of the same capacity. The only exception was
when receptive field did not cover the entire graph (see Figures 6a and 6b in Appendix A).

The gray regions at the bottom of each figure indicate the proposed expected communication com-
plexity lower bounds. Here, |S| = 2 based on the interpretation that each neuron can be either in an
activated state or not. There are also two lower bounds plotted since a network that sums the final
layer’s node representations can learn to differentiably approximate both a majority-voting and a
consensus function. The analysis asserts that a network with capacity below the gray dashed lines
should not be able to correctly distinguish input graphs for a significant fraction of all inputs (see
precise statement in Lemma 3.1). Indeed, networks in the gray region consistently perform poorly.
The empirical accuracy appears to match closely the consensus bound, though it remains inconclusive
if the network is actually learning to do consensus. A closer inspection (see Figures 5a and 5b in
Appendix A) also reveals that the poor performance of networks in the gray region is not an issue
of generalization. In agreement with the theory, networks of insufficient communication capacity
do not possess the expressive power to map a fraction of all inputs to the right isomorphism class,
irrespective of whether these graphs appear in the training or test set.

5 Conclusion

This work proposed a hardness-result for distinguishing graphs in the MPNN model by characterizing
the amount of information the nodes can exchange during their forward pass (termed communication
capacity). From a practical perspective, the results herein provide evidence that, if the amount of
training data is not an issue, determining the isomorphism class of graphs is hard but not impossible
for MPNN. Specifically, it was argued that the number of parameters needs to increase quadratically
with the number of nodes. The implication is that, in the most general case, networks of practical size
should be able to solve the problem for graphs with at most a few dozen nodes, but will encounter
issues otherwise.

Broader Impact

As we rely on neural networks more heavily, we are unfortunately sacrificing some of our ability
to understand how our computers solve problems. Our lack of insight hinders us from using our
technology to its full potential and can yield mistrust to the public. After all, if we cannot understand
what a neural network is (capable of) doing, how can we know whether it is solving the correct
problem? Poor understanding of fundamentals can also lead researchers to misguided optimism,
believing that, given the right hyper-parameter tweaking and a large enough training set, neural
networks can solve their problem. When incorrect, this mindset can lead to a waste of precious
resources, such as time and energy.

In this light, impossibility results, such as those presented in this work, provide an insight into the
fundamental limits of neural networks. Hardness results for graph neural networks, in particular,
characterize the relational pattern recognition ability of practical networks and provide necessary
conditions for using our tools to solve classical graph problems. The central implication of the
results presented in this work is that one cannot expect to learn algorithms that distinguish (even
approximately) connected graphs and trees unless the network size grows at-least polynomially with
the graph size.
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