
We are grateful to the reviewers for their detailed comments, for their judgment of the problem setting as “interesting1

and well-motivated" (Reviewer 3), and for highlighting the novelty and intricacy of the fugal game (Reviewers 1-4). In2

this rebuttal, we address general concerns shared across reviewers rather than responding to individual comments.3

Q1: The proof techniques for the lower bound and mini-batching upper bound in dimension n > 1.4

A1: As Reviewer 3 noted “there are a variety of results over the years", so we naturally built on and clearly acknowledged5

prior work. Nonetheless, it was non-trivial to adapt prior techniques to the switching-constrained setting. First,6

concerning the adversary’s strategy (the “orthogonal trick", introduced by Abernethy et al.) for the lower bound: to7

prove our result, we had to impose a certain switching pattern upon the adversary which was not obvious a priori,8

since the adversary is free to play any functions they wish from round to round. Without constraining the adversary to9

follow the player’s switching pattern, the orthogonal trick cannot be applied. In addition, we found that this adversary’s10

strategy can be adapted for n = 2 - thereby avoiding the need for special treatment as in n = 1 - via a geometric fact11

about the intersection of two closed half-spaces. Abernethy et al.’s original work only covered n > 2.12

As the reviewers noted, the mini-batching algorithm of the upper bound was an existing innovation central to Arora et al.13

2012, and we were careful to clearly cite this paper; we thank Reviewer 3 for bringing Dekel et al. 2011 to our attention,14

and will add this reference. However, part of our appreciation of the result is the counter-intuitiveness that switching at15

evenly sized intervals is optimal (up to a constant). This is surprising because the algorithm of Jaghargh et al. used a16

Poisson process to decide when to switch actions and thus had unevenly sized blocks. Note that we also included more17

technically involved results in the Appendix, including dimension-independent (Proposition 30) and more precise regret18

(Proposition 34) upper bounds, which went beyond the immediate scope of mini-batching to attain tighter bounds.19

More broadly, it is not uncommon in online optimization for minimax bounds in one-dimension to be technically20

more demanding than for higher-dimensions, and our work is no different. However, we appreciate the elegance and21

coherence with past work of our bounds for n > 1 and do not find their value diminished as a result; quite the contrary.22

Q2: One dimensional lower bound and the broader applicability of fugal game.23

A2: We should highlight that for n = 1 we provide an alternative, shorter, and also completely new lower in Proposition24

7. However, the full machinery of the fugal game was necessary to achieve a bound asymptotically tight in T (see25

Proposition 8). Beyond our setting, the fugal game could be a valuable tool in proving lower bounds for any of the26

many other natural switching-constrained continuous settings, including the convex bandit optimization and Gaussian27

process bandit optimization, online submodular, and submodular bandit settings.28

Q3: The intuition behind the lack of phase transition in the continuous, as opposed to discrete, setting29

A3: We particularly thank Reviewer 2 for their excellent observation, which noted that in the discrete but not the30

continuous setting, the player modifies their probability distribution each round. This observation is at the heart of the31

difference in phase transition between the discrete and continuous settings. In our setting, such a randomization is32

futile because the adversary is stronger than in the discrete setting, and can choose the loss function ft based even33

on the player’s tth action. (Intuitively, randomizing over a discrete set is similar to picking deterministically from its34

convex hull.) By contrast, in prediction from experts, the adversary must be oblivious to avoid linear regret: they may35

choose ft based only on x1, . . . , xt−1 and knowledge of the player’s randomized strategy. With a strong adversary,36

any number of extra allotted switches can help the player, whereas with the weaker, oblivious adversary of prediction37

from experts, an increased switching budget only aids the player up to a certain point. Since one usually assumes the38

strongest adversary that yields sublinear regret, it is the continuity of the action space that permits an adaptive adversary39

and thus the lack of a phase transition.40

Q4: Cover’s impossibility result.41

A4: We thank Reviewer 1 for pointing out an error in our reference to Cover’s impossibility result in Footnote 2. To42

clarify, Cover showed that in the ordinary setting, any adaptive adversary can force linear regret; we state this on page 2.43

The analogous impossibility result with a switching constraint was proven by Altschuler et al., which we cite in the next44

paragraph. The footnote should have referred to this analogous fact instead; we will correct this in the revision.45

Q5: The difference between the switching-constrained and switching-cost settings.46

A5: In the discrete setting, there is indeed a duality between the two: their minimax rates are within a polylogarithmic47

factor in T for certain regimes (see Altschuler et al.). We have not previously considered the switching-cost formulation,48

but of course a K-budgeted mini-batching algorithm achieves switching-cost penalty O(T/
√
K) + cK; optimally49

setting K =
(
T/2c

)2/3

yields penalty O(T 2/3c1/3). It is not immediately clear whether this is optimal for certain c or50

if there is a reduction in the other direction, so we defer this interesting topic to future work. We also thank Reviewer 251

for bringing the Awerbuch et al. paper to our attention, and we will add it to the Related Work in the revision.52


