
Supplementary Material
A Additional Related Work

Metrical task systems is another broad area that overlaps switching-cost OCO, in which the goal
is to minimize both movement and cost per round. However, it fundamentally departs from OCO
in that the adversary reveals the loss function first in each round, and that success is measured by
competitive ratio rather than regret. Andrew et al. [5] considered OCO with a seminorm switching
penalty added to the regret, and bridged these two modes by demonstrating that no algorithm can
simultaneously achieve both sublinear regret and constant competitive ratio. Along the way, they also
showed that gradient descent achieves O(

√
T ) regret, even with added seminorm switching costs.

(Note, however, that a binary penalization for switching is not a seminorm.)

We here mention assorted results in switching-cost or switching-constrained OCO, although they
differ significantly in conventions. Instead of a binary penalization for switching per round, Li et al.
[20] added a quadratic switching cost to the regret,

∑T−1
i=1 ‖xi+1 − xi‖2. However, they allowed the

player some clairvoyance about future loss functions in the form of a fixed “lookahead” window,
and thus consider a modified “dynamic” regret. Badiei et al. [9] similarly considered a non-binary
switching penalization and a finite lookahead window, with a hard constraint on the total L1 distance
between consecutive actions and performance evaluation in terms of the competitive ratio. Gofer
[16] demonstrated that for OCO with linear objectives and any normed switching cost, no algorithm
can achieve bounded regret against every loss sequence with a finite quadratic variation. Anava et al.
[4] presented algorithms for OCO with memory against an oblivious adversary, achieving Õ(T 1/2)

regret and Õ(T 1/2) binary switching cost. This result demonstrated that restricting the adversary
can lead to regret-switching dependencies stronger than we prove are optimal against an adaptive
adversary. Awerbuch et al. [8] analyzed limited switching from a multiplicative ratio perspective.

B Preliminaries

We denote the p-norm by ‖ · ‖p. If x and y are two vectors living in Rn, we write x · y for their inner
product. If xi is a vector, let xi,j denote its j-th coordinate. Let 1[·] denote the indicator function
whose value is 1 if the statement inside the brackets holds and is 0 otherwise.

In the special case of switching-constrained online convex optimization that we focus on, the regret is
given by

T∑
i=1

wixi− inf
‖x‖p≤1

T∑
i=1

wi ·x =

T∑
i=1

wixi+ sup
‖x‖p≤1

T∑
i=1

wi ·(x)
(a)
=

T∑
i=1

wixi+

∥∥∥∥∥
T∑
i=1

wi

∥∥∥∥∥
p/(p−1)

. (1)

where (a) is because ‖ · ‖p/(p−1) is the dual norm of ‖ · ‖p. Recall that if ‖ · ‖ is a norm, its dual norm
‖ · ‖∗ is defined by ‖z‖∗ , sup‖x‖≤1 z · x. Let Bnp , {x ∈ Rn : ‖x‖p ≤ 1} be the n-dimensional
unit ball and let B∗nq = {f(x) = w · x : w ∈ Rn, ‖w‖q ≤ 1} denote the dual unit ball, where
1 ≤ p, q ≤ ∞. Since all p-norms coincide if n = 1, we simply write B1 and B∗1 and do not specify
an explicit p and q. We also use the more detailed notation ROCO(D,F ,K, T ) to indicate that the
player chooses actions from D, the adversary chooses functions from class F , and there are T rounds
with fewer than K switches.

We use the abbreviations OLO for online linear optimization, OCO for online convex optimization,
BLO for bandit linear optimization, and BCO for bandit convex optimization.

Moving and Stationary Rounds We call the first round and every round in which the player
chooses a new point a moving round. Formally the i-th round is a moving round if i = 1 or xi 6= xi−1.
We call every round in which the player sticks to her previous point a stationary round.
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C Lower Bound for One-Dimensional Switching-Constrained OCO

In this section, we will show the T√
2K

lower bound for the minimax regret of the one-dimensional
game.

Proposition 9 (Lower bound for one-dimensional game). The minimax regretROCO(B1, B∗1,K, T )
is at least T√

2K
.

The proof of Proposition 9 can be found in Appendix C.7. However, the proof relies on results in all
preceding subsections.

Recall that we defined the minimax regret with T rounds, a maximum number of k switches, and an
initial bias Z is by

Rk(T,Z) = inf
x1∈[−1,1]

sup
w1∈[−1,1]

. . . inf
xT∈[−1,1]

sup
wT∈[−1,1]

sup
λ>0(

T∑
i=1

wixi +

∣∣∣∣∣Z +

T∑
i=1

wi

∣∣∣∣∣+ λ1[c(x1, . . . , xT ) ≥ k]

)
.

C.1 Lower Bound via Fugal Games

As in the main body of the paper, we consider the modified fugal game, with the minimax regret of a
fugal game with T rounds (T ∈ R≥0), a maximum number of k − 1 switches, and an initial bias Z
defined by

rk(T,Z) = inf
x1∈[−1,1]

max
w1=±1

inf
M1≥0

. . . inf
xk∈[−1,1]

max
wk=±1

inf
Mk≥0

sup
λ>0(

k∑
i=1

Miwixi +

∣∣∣∣∣Z +

k∑
i=1

Miwi

∣∣∣∣∣+ λ1[

k∑
i=1

Mi 6= T ]

)
,

(2)

where Mi is the length between two moving rounds, and we have relaxed Mi by allowing it to take
any non-negative real values. The function rk(T,Z) is a fugal function.

The minimax regret in a fugal game gives a lower bound for the minimax regret of interest.6 In other
words, it holds that rk(T,Z) ≤ Rk(T,Z) if T is a natural number. Furthermore, whenever it is the
player’s turn to play, she must optimize over not only the action, but also the optimal length of time
to maintain that action to minimize her ultimate regret. As a result of this basic intuition, the function
rk(T,Z) satisfies the following recurrence relation for all k ≥ 1

rk+1(T,Z) = inf
x∈[−1,1]

max
w=±1

inf
0≤t≤T

(twx+ rk(T − t, Z + tw)) . (3)

C.2 Absolute Value Bounds for Fugal Games

In this subsection, we derive basic properties of the fugal functions. Lemma 10 shows that the
function rk(T,Z) is at least |Z| for all Z ∈ R and that the inequality is tight if |Z| ≥ T .

Lemma 10 (Absolute value bounds for fugal games). The minimax regret of a fugal game with an
initial bias rk(T,Z) satisfies the following two properties

(a) rk(T,Z) ≥ |Z| for all Z ∈ R; and
(b) rk(T,Z) = |Z| if |Z| ≥ T .

6Intuitively, strengthening the player and weakening the adversary can only lower the minimax re-
gret. Formally, this holds as a result of a few straightforward facts. If X ′ ⊆ X and Y ′ ⊆ Y , then
infx∈X′ supy∈Y f(x, y) ≥ infx∈X supy∈Y ′ f(x, y). To apply this recursively, simply note that if for all
x ∈ X and y ∈ Y we have f(x, y) ≤ g(x, y), then infx∈X supy∈Y f(x, y) ≤ infx∈X supy∈Y g(x, y). Thus
restricting the range of possible values for each supremum term inROCO(Bn,Ln,K, T ) (corresponding to the
adversary’s choices), followed by enlarging the range of possible values for each infimum term (corresponding
to the player’s actions), only lowers the ultimate minimax regret.
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Proof. To prove part (a), it suffices to design an adversary’s strategy that satisfies this lower
bound. Suppose that the adversary always plays sign(Z), or 1 if Z = 0. Since

∑k
i=1Miwixi ≥

−
∑k
i=1Mi = −T , if z 6= 0 we have

k∑
i=1

Miwixi +

∣∣∣∣∣Z +

k∑
i=1

Miwi

∣∣∣∣∣ ≥ − T + |Z + T sign(Z)| = −T + |(|Z|+ T ) sign(z)|

= − T + (|Z|+ T ) = |Z| .

When Z = 0, the expression above is clearly at least −T + T = 0 = |Z|. Therefore the lower bound
rk(T,Z) ≥ |Z| holds.

To prove part (b), we will show that rk(T,Z) ≤ |Z| if |Z| ≥ T . First, we assume Z ≥ T . In this
case, we have Z +

∑k
i=1Miwi ≥ T − T = 0. Since we are certain of the sign of the expression

inside the absolute value, we remove the absolute value and obtain

k∑
i=1

Miwixi +

∣∣∣∣∣Z +

k∑
i=1

Miwi

∣∣∣∣∣ = Z +

k∑
i=1

Miwi(1 + xi) .

The above expression equals Z if the player always plays −1. Therefore, if Z ≥ T , we obtain
rk(T,Z) ≤ Z = |Z|.

If Z ≤ −T , since Z +
∑k
i=1Miwi ≤ −T + T = 0, we have

k∑
i=1

Miwixi +

∣∣∣∣∣Z +

k∑
i=1

Miwi

∣∣∣∣∣ =

k∑
i=1

Miwixi − (Z +

k∑
i=1

Miwi) = −Z +

k∑
i=1

Miwi(xi − 1) .

Again, the above expression equals −Z if the player always plays 1. Therefore, if Z ≤ −T , we get
rk(T,Z) ≤ −Z = |Z|. In both cases, we show that rk(T,Z) ≤ |Z|, which completes the proof.

C.3 Extraspherical Minimax Regret

Recall that in (3), the minimum is taken over all t between 0 and T . Let us consider a subset of
t such that |Z + tw| ≤ T − t. Notice that if t < T , |Z + tw| belongs to a one-dimensional ball
[−T + t, T − t]. Lemma 11 gives a minimax lower bound for t such that |Z + tw| is outside the ball.
Since it is shown in Lemma 10 that rk(T,Z) = |Z| if |Z| ≥ T , we assume in the following lemma
that |Z| < T .

Lemma 11 (Extraspherical minimax regret). If Z ∈ (−T, T ),

inf
x∈[−1,1]

max
w=±1

inf
0≤t≤T

|Z+tw|≥T−t

(twx+ rk(T − t, Z + tw)) =
Z2 + T 2

2T
.

Proof. Let us first expand the maximum operator

A , inf
x∈[−1,1]

max
w=±1

inf
0≤t≤T

|Z+tw|≥T−t

(twx+ rk(T − t, Z + tw))

= inf
x∈[−1,1]

max

 inf
0≤t≤T
|Z+t|≥T−t

(tx+ rk(T − t, Z + t)) , inf
0≤t≤T

|Z−t|≥T−t

(−tx+ rk(T − t, Z − t))

 .

As the first step, we study the situation where w = 1. If |Z + t| ≥ T − t, it implies Z + t ≥ T − t
or Z + t ≤ −(T − t). The second case is impossible since it is equivalent to Z ≤ −T (recall our
assumption that |Z| < T ). The first case is equivalent to t ≥ (T − Z)/2. Therefore the range of t
over which the minimum is taken is T−Z

2 ≤ t ≤ T . The expression of which we take the infimum
becomes

tx+ rk(T − t, Z + t)
(a)
= tx+ |Z + t| = t(x+ 1) + Z ,
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where (a) is due to Lemma 10 by recalling |Z + t| ≥ T − t. In this way, since 1 + x ≥ 0, we obtain
a cleaner expression for the innermost infimum in the case w = 1

inf
0≤t≤T
|Z+t|≥T−t

(tx+ rk(T − t, Z + t)) = inf
T−Z

2 ≤t≤T
t(x+ 1) + Z =

T − Z
2

(1 + x) + Z .

The second step is to study the situation where w = −1. If |Z − t| ≥ T − t, it implies Z − t ≥ T − t
or Z − t ≤ −(T − t). The first case is impossible as it is equivalent to z ≥ 1. The second case is
equivalent to t ≥ (T + Z)/2. Therefore the range of t over which the minimum is taken becomes
T+Z
2 ≤ t ≤ T . The expression of which we take the infimum becomes

−tx+ rk(T − t, Z − t) = −tx+ |Z − t| = t(1− x)− Z .
where we use Lemma 10 again in the first equality. Since 1 − x ≥ 0, we obtain a similar clean
expression for the innermost infimum in the case w = −1

inf
0≤t≤T

|Z−t|≥T−t

(−tx+ rk(T − t, Z − t)) = inf
T+Z

2 ≤t≤T
t(1− x)− Z =

T + Z

2
(1− x)− Z .

Therefore, the extraspherical minimax can be lower bounded as follows

A = inf
x∈[−1,1]

max

{
T − Z

2
(1 + x) + Z,

T + Z

2
(1− x)− Z

}
.

The first term in the max is greater than the second term if and only if Tx > −Z. Therefore, the
infimum is attained at x = −Z/T and the extraspherical minimax equals

A =
Z2 + T 2

2T
,

as promised.

Corollary 12. If |Z| < T , the following recursive relation holds

rk+1(T,Z) = min

 inf
x∈[−1,1]

max
w=±1

inf
0≤t≤T

|Z+tw|<T−t

(twx+ rk(T − t, Z + tw)) ,
Z2 + T 2

2T

 . (4)

Note that if |Z+ tw| < T − t, it excludes the possibility of T − t = 0. Because T − t > |Z+ tw| ≥ 0.
We define the normalized regret

u′k(T, z) ,
1

T
rk(T, Tz)

for T > 0 (In the rest of this subsection, we assume |z| < 1). Plugging this definition into (4) yields
u′k+1(T, z)

= min

 inf
x∈[−1,1]

max
w=±1

inf
0≤t<T

|Tz+tw|<T−t

(
twx

T
+ (1− t

T
)u′k(T − t, T z + tw

T − t
)

)
,
z2 + 1

2

 .

For 0 ≤ t < T and |Tz+ tw| < T − t, we define a reparametrization z′(t) , Tz+tw
T−t . The derivative

of z′ is dz′

dt = T (w+z)
(T−t)2 . Since |z| < 1, z′(t) is an increasing function if w = 1 and is a decreasing

function if w = −1. If w = 1, the system of inequalities 0 ≤ t < T and |Tz + t| < T − t is
equivalent to 0 ≤ t < T (1−z)

2 and thereby z ≤ z′ < 1. If w = −1, the system of inequalities
0 ≤ t < T and |Tz − t| < T − t is equivalent to 0 ≤ t < T (1+z)

2 and thereby −1 < z′ ≤ z.
Combining these two cases, we obtain that |z′| < 1 and w(z′ − z) ≥ 0.

The definition of z′ gives t = T (z′−z)
w+z′ and

twx

T
+ (1− t

T
)u′k(T − t, T z + tw

T − t
) =

(w + z)u′k

(
T (w+z)
w+z′ , z

′
)

+ wx (z′ − z)

w + z′

(a)
=

(1 + wz)u′k

(
T (w+z)
w+z′ , z

′
)

+ x (z′ − z)

1 + z′w
,

where (a) is because we multiply the numerator and denominator by w and use the fact that w = ±1.
Therefore, we obtain the following corollary.
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Corollary 13. If |z| < 1, the following recursive relation holds

u′k+1(T, z) = min

 inf
x∈[−1,1]

max
w=±1

inf
|z′|<1

w(z′−z)≥0

(1 + wz)u′k

(
T (w+z)
w+z′ , z

′
)

+ x (z′ − z)

1 + z′w
,
z2 + 1

2

 .

(5)

Remark 1. Since both z and z′ resides in the open interval (−1, 1) and w is either −1 or 1, the
quantity w+z

w+z′ is always positive.

C.4 Normalized Minimax Regret

To derive a closed-form lower bound for uk(z), we study the boundary condition when k = 1.

Lemma 14 (Boundary condition for r1). The boundary condition of rk(T,Z) when k = 1 is given
by

r1(T,Z) =
|Z − T |+ |Z + T |

2
.

Proof. It can be computed directly as below

r1(T,Z) = inf
x∈[−1,1]

max
w=±1

(Twx+ |Z + Tw|).

We can expand the innermost maximum, which is minimized at x = |z−1|−|z+1|
2 , as follows

inf
x∈[−1,1]

max
w=±1

(Twx+|Z+Tw|) = inf
x∈[−1,1]

max(Tx+|Z+T |,−Tx+|Z−T |) =
|z − 1|+ |z + 1|

2
.

Thus, r1(T,Z) = |Z−T |+|Z+T |
2 as claimed.

Corollary 15 (Boundary condition for u′1). If |z| < 1, we have

u′1(T, z) =
r1(T, Tz)

T
=
|z − 1|+ |z + 1|

2
= 1 .

Lemma 16. The normalized regret function u′k(T, z) does not depend on T . In other words, there
exists a function uk(z) such that for all z ∈ R and T > 0, u′k(T, z) = uk(z).

Proof. If |z| ≥ 1, Lemma 10 implies that u′k(T, z) = 1
T rk(T, Tz) = |Tz|

T = |z|, and thereby we
define uk(z) = |z| for |z| ≥ 1.

If |z| < 1, we will prove this lemma by induction on k. If we define u1(z) = 1, Corollary 15 shows
that u′1(T, z) = u1(z). Now we assume that u′i(T, z) = ui(z) holds for i ≥ 1. By Corollary 13, we
have

u′i+1(T, z) = min

 inf
x∈[−1,1]

max
w=±1

inf
|z′|<1

w(z′−z)≥0

(1 + wz)u′i

(
T (w+z)
w+z′ , z

′
)

+ x (z′ − z)

1 + z′w
,
z2 + 1

2


= min

 inf
x∈[−1,1]

max
w=±1

inf
|z′|<1

w(z′−z)≥0

(1 + wz)ui (z′) + x (z′ − z)
1 + z′w

,
z2 + 1

2

 .

Note that the rightmost side does not depend on T . If we define ui+1(z) by the rightmost side of the
above equation, we have u′i+1(T, z) = ui+1(z). The proof is completed.

The function that plays a central role in our minimax analysis is the function uk(z) given in Lemma 16.
We call it the normalized minimax regret function. By Lemma 10, Corollary 13 and Lemma 16, we
have an immediate corollary.
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Corollary 17 (Recursive relation of normalized minimax regret). If |z| ≥ 1, uk(z) = |z|. If |z| < 1,
the normalized minimax regret satisfies

uk+1(z) = min

 inf
x∈[−1,1]

max
w=±1

inf
|z′|<1

w(z′−z)≥0

(1 + wz)uk(z′) + x(z′ − z)
1 + z′w

,
z2 + 1

2

 . (6)

Lemma 18 (Boundary condition for u2). If |z| < 1, we have

u2(z) = inf
x∈[−1,1]

max
w=±1

inf
|z′|<1

w(z′−z)≥0

(1 + wz) + x(z′ − z)
1 + z′w

=
z2 + 1

2
.

Proof. Plugging k = 1 and u1(z) = 1 for |z| < 1 into (6) gives

u2(z) = min

 inf
x∈[−1,1]

max
w=±1

inf
|z′|<1

w(z′−z)≥0

(1 + wz) + x(z′ − z)
1 + z′w

,
z2 + 1

2

 .

We define the function f(z′) = (1+wz)+x(z′−z)
1+z′w . Differentiating this function yields

df

dz′
= − (w − x)(wz + 1)

(wz′ + 1)
2 .

Since w = ±1, |x| ≤ 1 and |z| < 1, we have wz + 1 > 0 and that the sign of df
dz is the same as

− sign(w), or 0 if w = x. Therefore, the function is non-decreasing if w = −1 and is non-increasing
if w = 1. The innermost infimum is attained as z′ → w. As a result, we deduce

inf
|z′|<1

w(z′−z)≥0

(1 + wz) + x(z′ − z)
1 + z′w

=
1

2
(w(x+ z)− xz + 1) ,

and

max
w=±1

inf
|z′|<1

w(z′−z)≥0

(1 + wz) + x(z′ − z)
1 + z′w

=
1

2
max
w=±1

(w(x+ z)− xz + 1)

=
1

2
max{x(1− z) + z + 1,−x(z + 1)− z + 1} .

The outermost infimum is attained when x(1− z) + z + 1 = −x(z + 1)− z + 1, or equivalently, at
x = −z. Therefore, we have

inf
x∈[−1,1]

max
w=±1

inf
|z′|<1

w(z′−z)>0

(1 + wz) + x(z′ − z)
1 + z′w

=
1

2
[x(1− z) + z + 1]x=−z =

z2 + 1

2
.

Therefore u2(z) also equals z2+1
2 .

Lemma 19 (Monotonicity in k). The sequence of functions uk(z) is non-increasing pointwise on
(−1, 1), i.e., uk+1(z) ≤ uk(z) for |z| < 1.

Proof. By the definition of rk in (2), we see that a player’s strategy with k switches can be viewed as
a strategy with k + 1 switches. Therefore, we have rk+1(T, z) ≤ rk(T, z) and therefore uk+1(z) =
1
T rk+1(T, z) ≤ 1

T rk(T, z) = uk(z).

Combining Lemma 18 and Lemma 19 implies the following corollary immediately.

Corollary 20. For all k ≥ 2 and |z| < 1, uk(z) ≤ z2+1
2 .
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Lemma 21 improves the recursive relation in Corollary 17 by removing the operation of taking the
minimum with z2+1

2 . In fact, Lemma 21 and Corollary 17 are mathematically equivalent since we
will show that the first term in the minimum operator in (6) is always less than or equal to the second
term z2+1

2 .

Lemma 21 (Improved recursive relation of uk). For all k ≥ 1 and |z| < 1, uk(z) obeys the recursive
relation

uk+1(z) = inf
x∈[−1,1]

max
w=±1

inf
|z′|<1

w(z′−z)≥0

(1 + wz)uk(z′) + x(z′ − z)
1 + z′w

. (7)

Proof. If k = 1, the desired equation holds due to Lemma 18. If k ≥ 2, Corollary 20 shows
uk(z) ≤ z2+1

2 . If we take z′ = z, we have

inf
|z′|<1

w(z′−z)≥0

(1 + wz)uk(z′) + x(z′ − z)
1 + z′w

≤ inf
|z′|<1

w(z′−z)≥0

(1 + wz) z
2+1
2 + x(z′ − z)

1 + z′w

≤

[
(1 + wz) z

2+1
2 + x(z′ − z)

1 + z′w

]
z′=z

=
z2 + 1

2
.

By Corollary 17, we deduce

uk+1(z) = min

 inf
x∈[−1,1]

max
w=±1

inf
|z′|<1

w(z′−z)≥0

(1 + wz)uk(z′) + x(z′ − z)
1 + z′w

,
z2 + 1

2


= inf

x∈[−1,1]
max
w=±1

inf
|z′|<1

w(z′−z)≥0

(1 + wz)uk(z′) + x(z′ − z)
1 + z′w

.

C.5 Fugal Operator and Quadratic Lower Bound

The recursive relation in Lemma 21 relates two consecutive uk’s. In light of this recursive relation,
we define the fugal operator that sends uk to uk+1.

Definition 2 (Fugal operator). Let C[−1, 1] denote the space of continuous functions on [−1, 1]. The
fugal operator T : C[−1, 1]→ C[−1, 1] is defined by

(T f)(z) , inf
x∈[−1,1]

max
w=±1

inf
|z′|<1

w(z′−z)≥0

(1 + wz)f(z′) + x(z′ − z)
1 + z′w

,

where f ∈ C[−1, 1].

Remark 2. Using this notation, Lemma 21 can be re-written in a more compact way

uk+1 = T uk .

Remark 3 (Monotonicity of fugal operator). If f, g ∈ C[−1, 1] satisfy f(z) ≤ g(z) for all
z ∈ [−1, 1], we have the following inequality (1+wz)f(z′)+x(z′−z)

1+z′w ≥ (1+wz)g(z′)+x(z′−z)
1+z′w . This

is because 1 + wz ≥ 0 holds for any w = ±1 and |z| ≤ 1, and 1 + z′w > 0 holds for any w = ±1
and |z′| < 1. As a result, we have (T f)(z) ≥ (T g)(z) for all z ∈ [−1, 1].

Before deriving a lower bound for uk, we study the action of the fugal operator on quadratic lower
bound functions.
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Definition 3 (Quadratic lower bound functions). The quadratic lower bound functions ak(z) on
[−1, 1] are defined by by a1(z) = 1 and for i ≥ 2

ai(z) =

{√
i/2z2+

√
2/i

2 , |z| <
√

2/i ,

|z|, |z| ≥
√

2/i .

Remark 4 (Continuity). If z = ±
√

2/i, the expression
√
i/2z2+

√
2/i

2 =
√

2/i = |z|. The quadratic
lower bound function ai is continuous on [−1, 1].
Remark 5. If i = 1, 2, the quadratic lower bound functions agree with the normalized minimax
regret functions, i.e., a1(z) = u1(z) = 1 and a2(z) = u2(z) = z2+1

2 .

We will show later in Lemma 28 that the quadratic lower bound functions provide indeed a lower
bound for uk’s, i.e., ai(z) ≤ ui(z). This result will be proved in two steps. The first step is to
obtain the closed-form expression of T ai (Proposition 22) and the second step is to show that
the fugal operator interlaces ai, in other words, T ai ≥ ai+1 (Lemma 27). Then we can argue
that ui+1 = T ui ≥ T ai ≥ ai+1, provided that ui ≥ ai, where the first inequality is due to the
monotonicity of the fugal operator and the second inequality is because the fugal operator interlaces
ai. Therefore ai ≤ ui for all i can be obtained by induction.
Proposition 22 (Fugal operator on quadratic lower bound functions). If i ≥ 2, it holds that

(T ai)(z) =

{√
i
2

[
z2 − 1 +

√
1 + 2

i − z2
]
, |z| ≤

√
2/i ,

|z|, |z| >
√

2/i .

Before presenting the proof of Proposition 22, we need several lemmas.
Lemma 23. If i ≥ 2 and we define

z+ ,

√
1 +

2

i
− 2

√
2

i
x− 1

z− , 1−

√
1 +

2

i
+ 2

√
2

i
x

g+(x, z) , x+ (1 + z)

[
ai(z

′)− x
1 + z′

]
z′=max{z,z+}

g−(x, z) , − x+ (1− z)
[
ai(z

′) + x

1− z′

]
z′=min{z,z−}

,

the following equation holds

(T ai)(z) = inf
x∈[−1,1]

max {g+(x, z), g−(x, z)} . (8)

Proof. Recalling the definition of the fugal operator gives

(T ai)(z)

= inf
x∈[−1,1]

max
w=±1

inf
|z′|<1

w(z′−z)≥0

(1 + wz)ai(z
′) + x(z′ − z)

1 + z′w

= inf
x∈[−1,1]

max

{
inf

z′:z≤z′<1

(1 + z)ai(z
′) + x(z′ − z)

1 + z′
, inf
−1<z′≤z

(1− z)ai(z′) + x(z′ − z)
1− z′

}
We observe that if |z′| < 1, the following equations hold

(1 + z)ai(z
′) + x(z′ − z)

1 + z′
=

1 + z

1 + z′
(ai(z

′)− x) + x ,

(1− z)ai(z′) + x(z′ − z)
1− z′

=
1− z
1− z′

(ai(z
′) + x)− x .
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Therefore, we simplify the innermost infima

inf
z′:z≤z′<1

(1 + z)ai(z
′) + x(z′ − z)

1 + z′
= x+ (1 + z) inf

z′:z≤z′<1

ai(z
′)− x

1 + z′
,

inf
z′:−1<z′≤z

(1− z)ai(z′) + x(z′ − z)
1− z′

= − x+ (1− z) inf
z′:−1<z′≤z

ai(z
′) + x

1− z′
.

We define two functions f+(z′) = ai(z
′)−x

1+z′ and f−(z′) = ai(z
′)+x

1−z′ .

First, we assume |z′| <
√

2/i. Differentiating f+ gives

df+
dz′

=

√
2iz′ (z′ + 2)− 2

√
2
i + 4x

4 (z′ + 1)
2 .

Setting df+
dz′ > 0 yields

(z′ + 1)2 > 1 +
2

i
− 2

√
2

i
x .

The fact that |x| ≤ 1 implies 1 + 2
i − 2

√
2
i x ≥ 1 + 2

i − 2
√

2
i =

(√
2
i − 1

)2
≥ 0. Therefore

df+
dz′ > 0 is equivalent to

z′ + 1 = |z′ + 1| >

√
1 +

2

i
− 2

√
2

i
x .

In other words, df+dz′ > 0 if and only if z′ > z+ ,

√
1 + 2

i − 2
√

2
i x − 1. Our assumption i ≥ 2

implies √
1 +

2

i
− 2

√
2

i
x ≥

√
1 +

2

i
− 2

√
2

i
=

∣∣∣∣∣1−
√

2

i

∣∣∣∣∣ = 1−
√

2

i
.

As a result, z+ ≥ −
√

2
i . Since√

1 +
2

i
− 2

√
2

i
x ≤

√
1 +

2

i
+ 2

√
2

i
=

∣∣∣∣∣
√

2

i
+ 1

∣∣∣∣∣ = 1 +

√
2

i
,

we obtain the upper bound z+ ≤
√

2/i, where the second inequality uses the assumption i ≥ 2. Thus
we are certain that |z+| ≤

√
2/i.

If z′ ≥
√

2/i, the function f+ becomes f+(z′) = z′−x
1+z′ = 1 − 1+x

1+z′ , which is non-decreasing in
z′. On the other hand, if z′ ≤ −

√
2/i, the function f+ becomes f+(z′) = −z′−x

1+z′ = −1 + 1−x
1+z′ ,

which is non-increasing in z′. It follows that f+ is non-increasing on (−1, z+) and non-decreasing
on (z+, 1). Therefore we can solve the infimum

inf
z′:z≤z′<1

ai(z
′)− x

1 + z′
=

[
ai(z

′)− x
1 + z′

]
z′=max{z,z+}

.

If |z′| <
√

2/i, the derivative of f− with respect to z′ is

df−
dz′

=
4
√
ix−

√
2i (z′ − 2) z′ + 2

√
2

4
√
i (z′ − 1)

2 .

Setting the derivative greater than 0 yields

(z′ − 1)2 < 1 +
2

i
+ 2

√
2

i
x .
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The right-hand side is at least 1 + 2
i − 2

√
2
i = (1 −

√
2/i)2 ≥ 0. Since the right-hand side is

non-negative and z < 1, we have

z′ > z− , 1−

√
1 +

2

i
+ 2

√
2

i
x .

If z′ ≥
√

2/i, the function f− equals z′+x
1−z′ = −1 + x+1

1−z′ , which is non-decreasing in z′. On the
other hand, if z′ ≤ −

√
2/i, the function f− equals −z

′+x
1−z′ = 1 + x−1

1−z′ , which is non-increasing in
z′. It follows that f− is non-increasing on (−1, z−) and non-decreasing on (z−, 1). Thus we solve
the other infimum

inf
z′:−1<z′≤z

ai(z
′) + x

1− z′
=

[
ai(z

′) + x

1− z′

]
z′=min{z,z−}

.

The equation (8) is thereby obtained by combining our results regarding the two infima.

Lemma 24. If z+ and z− are as defined in Lemma 23, we have z+ ≥ z−.

Proof. We compute the difference of z+ and z−

z+ − z− =

√
1 +

2

i
+ 2

√
2

i
x+

√
1 +

2

i
− 2

√
2

i
x− 2 .

To show that z+ − z− ≥ 0, it is sufficient to show that√1 +
2

i
+ 2

√
2

i
x+

√
1 +

2

i
− 2

√
2

i
x

2

≥ 4 .

The left-hand side equals

2

(
1 +

2

i

)
+ 2

√(
1 +

2

i

)2

− 4 · 2

i
x2 ≥ 2

(
1 +

2

i

)
+ 2

√(
1 +

2

i

)2

− 4 · 2

i

= 2

(
1 +

2

i
+

∣∣∣∣1− 2

i

∣∣∣∣) = 4 ,

where the last inequality is because i ≥ 2 and thus 1− 2
i ≥ 0. Therefore we establish z+ ≥ z−.

Lemma 25. Given |z| ≤ 1, the function hz(x) , g+(x, z)− g−(x, z) has a unique zero x = x0(z)
on [−1, 1] and it satisfies

(T ai)(z) = inf
x∈[−1,1]

max{g+(x, z), g−(x, z)} = g+(x0(z), z) = g−(x0(z), z) .

Proof. Recall that z+ and z− are functions of x but do not rely on z. They obey an additional relation
z+(x) + z−(−x) = 0 .

Their inverses are

z−1+ (z) =
2− iz2 − 2iz

2
√

2i
, z−1− (z) =

iz2 − 2iz − 2

2
√

2i
,

respectively. Both inverse functions are strictly decreasing. Using the relation z+(x) + z−(−x) = 0,
since max{−z, z+(−x)} = max{−z,−z−(x)} = −min{z, z−(x)} and ai is an even function, we
have

g+(−x,−z) = − x+ (1− z)
[
ai(z

′) + x

1 + z′

]
z′=max{−z,z+(−x)}

= − x+ (1− z)
[
ai(z

′) + x

1 + z′

]
z′=−min{z,z−(x)}

= − x+ (1− z)
[
ai(−z′) + x

1− z′

]
z′=min{z,z−(x)}

= g−(x, z) .

(9)
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If z ≥ z+, we have z′ = z and g+(x, z) = ai(z). In this case, g+ is a constant function with respect
to x. If z < z+, we have z′ = z+ and g+(x, z) = x + (1 + z)ai(z+)−x

1+z+
. Since |z+| ≤

√
2/i, we

have ai(z+) =

√
i/2z2++

√
2/i

2 and

g+(x, z) = x+ (1 + z)
(
√
i/2z2+ +

√
2/i)/2− x

1 + z+
.

Differentiating g+ yields
∂g+
∂x

= 1− i(z + 1)√
i
(
−2
√

2ix+ i+ 2
) .

Since z < z+ =

√
1 + 2

i − 2
√

2
i x− 1, we have

z + 1 <

√
1 +

2

i
− 2

√
2

i
x ,

which, in turn, implies

∂g+
∂x

> 1−
i

√
1 + 2

i − 2
√

2
i x√

i
(
−2
√

2ix+ i+ 2
) = 0 .

Therefore, g+(x, z) is strictly increasing in x if z < z+(x) (i.e., x < z−1+ (z)) and is constant with
respect to x if z ≥ z+(x) (i.e., x ≥ z−1+ (z)). Furthermore, we verify that g+(−1, z) = z and
g+(1, z) = ai(z).

In light of the relation (9), we derive the property of g−. The function g−(x, z) is strictly decreasing
if −z < z+(−x), or equivalently, z > z−(x) (i.e., x > z−1− (z)). It stays at ai(z) if z ≤ z−(x)

(i.e., x ≤ z−1− (z)). Furthermore, we have g−(−1, z) = g+(1,−z) = ai(z) and g−(1, z) =
g+(−1,−z) = −z.

Let hz(x) , g+(x, z)−g−(x, z) be the difference of these two functions. Since g+ is non-decreasing
in x and g− is non-increasing in x, the function hz is non-decreasing in x. Then we check the value
of hz at x = −1 and x = 1. We have hz(−1) = g+(−1, z) − g−(−1, z) = z − ai(z) and
hz(1) = g+(1, z) − g−(1, z) = ai(z) + z. Their product is hz(−1)hz(1) = z2 − a2i (z), which is
non-positive because |z| ≤ ai(z). The continuity of hz implies the existence of a zero on [−1, 1].
Next, we will show the uniqueness of the zero. Since g+ is strictly increasing with respect to x at the
initial stage when x < z−1+ (z) and stays constant when x ≥ z−1+ (z), and g− is constant with respect
to x at the initial stage when x ≤ z−1− (z) and strictly decreases when x > z−1− (z), the only possibility
of having more than one zero is that z−1− (z) > z−1+ (z) and that the setR = [z−1+ (z), z−1− (z)]∩[−1, 1]

contains more than one point. The inequality z−1− (z) > z−1+ (z) is equivalent to |z| >
√

2/i. A
necessary condition for the set R containing more than one point is that both z−1− (z) > −1 and
z−1+ (z) < 1 holds. If i = 2, |z| >

√
2/i = 1 will never happen. If i > 2, the expression

z−1− (z) > −1 is equivalent to −1 ≤ z <
√

2
i while the expression z−1+ (z) < 1 is equivalent to

−
√

2
i < z ≤ 1. However, the three inequalities |z| >

√
2/i, −1 ≤ z <

√
2
i , and −

√
2
i < z ≤ 1

cannot be satisfied simultaneously. Therefore, we show that hz(x) has a unique zero on [−1, 1]. Let
x0(z) denote the unique zero, which is a function of z. By its definition, the two functions g+ and g−
are equal at x = x0. Since hz is non-decreasing with respect to x and x0 is the unique zero, we know
that g+(x) > g−(x) if x > x0 and g+(x) < g(x) if x < x0. Therefore, by Lemma 23, (T ai)(z)
equals

(T ai)(z) = inf
x∈[−1,1]

max{g+(x, z), g−(x, z)} = g+(x0(z), z) = g−(x0(z), z) .

We are now ready to prove Proposition 22.
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Proof of Proposition 22. In light of Lemma 25, we compute the closed-form expression of T ai by
verifying that

x0(z) =

{
− z
√
−iz2+i+2√

2
, |z| ≤

√
2/i ,

− sign(z), |z| >
√

2/i ,

is the unique zero of hz(x). We consider two cases |z| ≤
√

2/i and |z| >
√

2/i.

Case 1: |z| >
√

2/i. Let us begin with the case where |z| >
√

2/i. In this case, x0(z) = − sign(z)

and it is indeed on [−1, 1]. We further divide this case into two sub-cases where z >
√

2/i and
z < −

√
2/i, respectively.

Case 1.1: z >
√

2/i. If z >
√

2/i, and since |z+| ≤
√

2/i, we know that z > z+ and
max{z, z+} = z. In this sub-case, we have x0 = −1 and

g+(x0, z) = −1 + (1 + z)
ai(z) + 1

1 + z
= ai(z) = z .

Since |z−| ≤
√

2/i and z > z−, we have min{z, z−} = z−. Therefore, we can compute

z− = z−(−1) = 1−

√
1 +

2

i
− 2

√
2

i
=

√
2

i

and

g−(x0, z) = 1 + (1− z)ai(z−)− 1

1− z−
= 1 + (1− z)

√
2/i− 1

1−
√

2/i
= z .

Case 1.2: z < −
√

2/i. In the second sub-case, we assume that z < −
√

2/i. In this sub-case, we
have x0 = 1, max{z, z+} = z+ = −

√
2/i, and min{z, z−} = z. The function g+(x0, z) equals

g+(x0, z) = 1 + (1 + z)
ai(−

√
2/i)− 1

1−
√

2/i
= −z ,

where the function g−(x0, z) equals

g−(x0, z) = −1 + (1− z)ai(z) + 1

1− z
= ai(z) = −z .

Therefore, x0 = − sign(z) is indeed the root when |z| >
√

2/i. Combining these two sub-cases, we
deduce that if |z| >

√
2/i,

(T ai)(z) = |z| . (10)

Case 2: |z| ≤
√

2/i. The case that needs more work is |z| ≤
√

2/i. In this case, the root function
is x0(z) = − z

√
−iz2+i+2√

2
. First, let us check that x0(z) resides on [−1, 1]. Since |z| ≤

√
2/i, it

holds that (z2− 1)(iz2− 2) ≥ 0. Expanding it and re-arranging the terms yields z2(i+ 2− iz2) ≤ 2
and therefore |x0(z)| ≤ 1.

We claim z−1− (z) ≤ x0(z) ≤ z−1+ (z). Notice the following factorization

x0(z)− z−1− (z) =

(√
−iz2 + i+ 2−

√
i
) (√
−iz2 + i+ 2− 2

√
iz +

√
i
)

2
√

2i
.

The first term
√
−iz2 + i+ 2 −

√
i is a decreasing function with respect to z2. Since z2 ≤ 2/i,

the first term is non-negative. Let s(z) ,
√
−iz2 + i+ 2 − 2

√
iz +

√
i denote the second term.

Its derivative is s′(z) = − iz√
−iz2+i+2

− 2
√
i. If z ≥ 0, we see that s′(z) < 0. Since i ≥ 2, it

holds that 2/i ≤ 4(1 + 2/i)/5. In light of the assumption z2 ≤ 2/i, we get z2 ≤ 4(1 + 2/i)/5.
Re-arranging the terms gives z2 ≤ 4(1 + 2/i− z2). If z < 0, taking the square root of both sides
yields −z ≤ 2

√
1 + 2/i− z2. Re-arranging the terms again proves that if z < 0, s′(z) ≤ 0. Since
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s(z) is a continuous function, we show that s is a non-increasing function on [−
√

2/i,
√

2/i] and
that for any z ∈ [−

√
2/i,

√
2/i], we have s(z) ≥ s(

√
2/i) = 2(

√
i−
√

2) ≥ 0. Thus we show that
x0(z) ≥ z−1− (z).

Next we need to show that x0(z) ≤ z−1+ (z). Notice the following factorization

z−1+ (z)− x0(z) =

(√
−iz2 + i+ 2−

√
i
) (√
−iz2 + i+ 2 + 2

√
iz +

√
i
)

2
√

2i
.

We observe that z−1+ (z) − x0(z) = x0(−z) − z−1− (−z) ≥ 0 since −z is also on [−
√

2/i,
√

2/i].
Therefore we conclude that for all z ∈ [−

√
2/i,

√
2/i], the inequality z−1− (z) ≤ x0(z) ≤ z−1+ (z)

holds. This inequality implies

z−(x0(z)) ≤ z ≤ z+(x0(z)) .

In what follows, we compute the exact values of z+(x0(z)) and z−(x0(z)). We first compute
z+(x0(z))

z+(x0(z)) =

√
2z

√
−z2 + 1 +

2

i
+

2

i
+ 1− 1

=

∣∣∣∣∣
√
−z2 + 1 +

2

i
+ z

∣∣∣∣∣− 1

=

√
−z2 + 1 +

2

i
+ z − 1 .

The last equality is because
√
−z2 + 1 + 2

i + z ≥ 0. To see this, we define s1(z) ,√
−z2 + 1 + 2

i + z. Its second derivative is s′′1(z) = i+2√
2
i−z2+1(i(z2−1)−2)

≤ 0. Therefore, for any

z ∈ [−
√

2/i,
√

2/i], its derivative satisfies s′1(z) ≥ s′1(
√

2/i) = 1 −
√

2/i ≥ 0. As a result, for
any z ∈ [−

√
2/i,

√
2/i], s1(z) ≥ s1(−

√
2/i) = 1−

√
2/i ≥ 0. On the other hand, we compute

z−(x0(z))

z−(x0(z)) = 1−

√
−2z

√
−z2 + 1 +

2

i
+

2

i
+ 1

= 1−

∣∣∣∣∣
√
−z2 + 1 +

2

i
− z

∣∣∣∣∣
= −

√
2

i
− z2 + 1 + z + 1 .

The last inequality is because
√
−z2 + 1 + 2

i − z = s1(−z) ≥ 0.

Now, let us compute g+(x0(z), z) and g−(x0(z), z). Since max{z, z+(x0)} = z+(x0) and ai(z+) =√
i/2z2++

√
2/i

2 (this is because |z+| ≤
√

2/i), plugging z+(x0(z)) into the definition of g+(x0(z), z)
yields

g+(x0(z), z) =
−
√
i (−iz2 + i+ 2) + (z + 1)

(
z
√
i (−iz2 + i+ 2) + i(z − 1)2

)
+ 2

√
2
(√
−iz2 + i+ 2 +

√
iz
) . (11)

Let A =
√
−iz2 + i+ 2. Solving z out of this expression, we get z = ±

√
−A2+i+2√

i
. Plugging it into

(11), we obtain

g+(x0(z), z) =
A
√
i−A2 + 2√

2i
.

23



Note that the result remains invariant no matter whether we plug in z =
√
−A2+i+2√

i
or z =

−
√
−A2+i+2√

i
. We plug in the definition of A and express g+(x0(z), z) in terms of z again

g+(x0(z), z) =

√
i

2

[
z2 − 1 +

√
1 +

2

i
− z2

]
.

Similarly, since min{z, z−(x0)} = z−(x0) and ai(z−) =

√
i/2z2−+

√
2/i

2 , plugging z−(x0(z)) into
the definition of g−(x0(z), z) yields

g−(x0(z), z) =
(z − 1)z

√
i (−iz2 + i+ 2)−

√
i (−iz2 + i+ 2)− i(z − 1)(z + 1)2 + 2√

2
(√
−iz2 + i+ 2−

√
iz
) . (12)

Again plugging z = ±
√
−A2+i+2√

i
into (12) gives

g−(x0(z), z) =
A
√
i−A2 + 2√

2i
,

which equals g+(x0(z), z). Therefore, we conclude that if |z| ≤
√

2/i,

(T ai)(z) =

√
i

2

[
z2 − 1 +

√
1 +

2

i
− z2

]
. (13)

Combining (8), (10) and (13), we establish

(T ai)(z) =

{√
i
2

[
z2 − 1 +

√
1 + 2

i − z2
]
, |z| ≤

√
2/i ,

|z|, |z| >
√

2/i .

C.6 Exact Values of Normalized Minimax Regret

Recall that u2(z) = a2(z). Proposition 22 implies

u3(z) = (T u2)(z) = (T a2)(z) =

{
z2 − 1 +

√
2− z2, |z| ≤ 1 ,

|z|, |z| > 1 .

Therefore we have u1(0) = 1, u2(0) = 1
2 , and u3(0) =

√
2− 1. These exact values imply that the

minimax regret of a T -round fugal game is exactly T , T2 , and (
√

2 − 1)T if the player is allowed
to switch at most 0, 1, and 2 times, respectively. In Proposition 26, we compute the exact value of
u4(0). The complicated form of u4(0) suggests that it is highly challenging to find a pattern for the
general form of ui(0) and that we should consider lower bounds whose behavior under the action of
the fugal operator is more amenable to analysis, as what we will discuss in Appendix C.7.

Proposition 26. The value of u4(0) is given by

u4(0)

=
1

3

3

√
45
√

2 + 3

√
3
(

502
√

2 + 945
)

+ 145− 5

3
−

2
(
3
√

2 + 1
)

3 3

√
45
√

2 + 3
√

3
(
502
√

2 + 945
)

+ 145

≈ 0.362975 .
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Proof. By the definition of the fugal operator, we have

u4(0)

= (T u3)(0)

= inf
x∈[−1,1]

max
w=±1

inf
|z′|<1
wz′≥0

u3(z′) + xz′

1 + z′w

= inf
x∈[−1,1]

max
w=±1

inf
|z′|<1
wz′≥0

(z′2 − 1 +
√

2− z′2) + xz′

1 + z′w

= inf
x∈[−1,1]

max

{
inf

0≤z′<1

(z′2 − 1 +
√

2− z′2) + xz′

1 + z′
, inf
−1<z′≤0

(z′2 − 1 +
√

2− z′2) + xz′

1− z′

}
.

If we define f(x, z′) , (z′2−1+
√
2−z′2)+xz′

1+z′ and g(x) , inf0≤z′<1 f(x, z′), the value of u4(0) can
be re-written as

u4(0) = inf
x∈[−1,1]

max

{
inf

0≤z′<1
f(x, z′), inf

−1<z′≤0
f(−x,−z′)

}
= inf

x∈[−1,1]
max

{
inf

0≤z′<1
f(x, z′), inf

0≤z′<1
f(−x, z′)

}
= inf

x∈[−1,1]
max {g(x), g(−x)} .

Note that f(x, z) is non-decreasing with respect to x provided that z′ ∈ [0, 1]. Therefore, the function
g(x) is non-decreasing in x and the inequality g(x) ≥ g(−x) is equivalent to x ≥ 0. As a result, we
deduce that

u4(0) = inf
x∈[−1,1]

max {g(x), g(−x)} = g(0) = inf
0≤z′<1

f(0, z′) = inf
0≤z′<1

z′2 − 1 +
√

2− z′2
1 + z′

.

The derivative of f(0, z′) with respect to z′ is ∂f(0,z′)
∂z′ = − z′+2

(z′+1)2
√
2−z′2 + 1. Setting this derivative

greater than or equal to 0 yields a sextic polynomial p(z′) , −z′6 − 4z′5 − 4z′4 + 4z′3 + 10z′2 +
4z′ − 2 ≥ 0. By Descartes’ rule of signs, this polynomial has two sign differences and thereby has
two or zero positive roots. Since p(0) = −2, p(1) = 7 and p(2) = −178, we deduce that there is
exactly one root in (0, 1) and (1, 2) respectively. Let z0 denote the unique root of p(z′) in (0, 1).
The function f(0, z′) is decreasing on [0, z0] and increasing on [z0, 1]. Thus the desired infimum
inf0≤z′<1 f(0, z′) is attained at f(0, z0).

We notice that p(z′) can be factorized in Q(
√

2) as below

p(z′) =
(
z′3 + 2z′2 −

√
2z′ −

√
2− 2

)(
z′3 + 2z′2 +

√
2z′ +

√
2− 2

)
.

Solving the two cubic polynomials with Cardano formula, we obtain the unique root in (0, 1)

z0 =
1

6

−2
(

3
√

2− 4
)

3

√√√√ 2

−9
√

2 + 3
√

6
(
2
√

2 + 9
)

+ 38

+22/3
3

√
−9
√

2 + 3

√
6
(

2
√

2 + 9
)

+ 38− 4


≈ 0.283975 .

Plugging z′ = z0 into f(0, z′) yields the desired expression for u4(0).

C.7 Interlacing Quadratic Lower Bound Functions

Lemma 27 (Fugal operator interlaces quadratic lower bound functions). For i ≥ 1 and z ∈ [−1, 1],
ai+1(z) ≤ (T ai)(z).
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Proof. If i = 1, recall that a1(z) = 1 and a2(z) = u2(z) = z2+1
2 . Lemma 18 implies a2(z) =

(T a1)(z) and therefore the promised inequality holds. In the sequel, we assume that i ≥ 2. In
Proposition 22, we show that for i ≥ 2,

(T ai)(z) =

{√
i
2

[
z2 − 1 +

√
1 + 2

i − z2
]
, |z| ≤

√
2/i ,

|z|, |z| >
√

2/i .

Recall the definition of ai+1

ai+1(z) =


√

i+1
2 z2+

√
2
i+1

2 , |z| <
√

2
i+1 ,

|z|, |z| ≥
√

2
i+1 .

If |z| >
√

2
i , we have (T ai)(z) = ai+1(z). If

√
2
i+1 ≤ |z| ≤

√
2
i , we need to show that

(T ai)(z)− |z| =
√
i

2

[
z2 − 1 +

√
1 +

2

i
− z2

]
− |z| ≥ 0 .

Note that in this case, l(z) , (T ai)(z)− |z| is an even function. Therefore it suffices to show the

inequality for
√

2
i+1 ≤ z ≤

√
2
i . For any y ∈ [0, 1] and i ≥ 2, the following inequality holds

1√
2
i (1− y2) + 1

+
1

y
− 2 ≤ lim

i→∞

 1√
2
i (1− y2) + 1

+
1

y
− 2

 =
1

y
− 1 ≥ 0 .

Since
√

i
2z ∈ [0, 1], setting y =

√
i
2z in the above inequality gives

1√
2
i − z2 + 1

+

√
2√
iz
− 2 ≥ 0 .

Re-arranging the terms, we get

dl

dz
= −1 +

√
2

i
z

2− 1√
2
i − z2 + 1

 ≤ 0 .

This implies that l(z) is non-increasing if z ≤
√

2
i . Therefore, for any

√
2
i+1 ≤ z ≤

√
2
i , we have

l(z) ≥ l(
√

2
i ) = 0.

If |z| ≤
√

2
i+1 , we need to show that

(T ai)(z)− ai+1(z) =

√
i

2

[
z2 − 1 +

√
1 +

2

i
− z2

]
−

√
i+1
2 z2 +

√
2
i+1

2
≥ 0 .

Since in this case the function (T ai)(z)− ai+1(z) is an even function with respect to z, we assume

that 0 ≤ z ≤
√

2
i+1 . Since (T ai)(z) − ai+1(z) is a concave function with respect to z2 (note

that
√

1 + 2
i − z2 is concave with respect to z2 and that the remaining terms are linear in z2), it is

sufficient to check its non-negativity when z2 = 0 and z2 = 2
i+1 (i.e., when z = 0 and z =

√
2
i+1 ).

Recall that we have shown that (T ai)(z)− ai+1(z) ≥ 0 holds for any
√

2
i+1 ≤ z ≤

√
2
i . It remains

to check the non-negativity of (T ai)(0) − ai+1(0). We have (T ai)(0) − ai+1(0) = 1√
2
(−
√
i +

√
i+ 2− 1√

i+1
). The concavity of the square root function implies

√
i+ 1 ≥

√
i+2+

√
i

2 = 1√
i+2−

√
i
.

Thus we obtain
√
i+ 2−

√
i ≥ 1√

i+1
and the non-negativity of (T ai)(0)− ai+1(0). We conclude

that (T ai)(z) ≥ ai+1(z) in all three cases.
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Lemma 28 shows that the quadratic lower bound functions indeed provide a lower bound for uk(z).

Lemma 28 (Quadratic lower bound). For all k ≥ 1 and |z| < 1, it holds that ak(z) ≤ uk(z).

Proof. If k = 1, the claim holds by recalling uk(z) = 1 on (−1, 1), as shown in Corollary 15. If
k = 2, we have a2(z) = z2+1

2 ≤ u2(z) by Lemma 18, as promised. For k > 2, we will show the
desired inequality by induction. Assume that ai(z) ≤ ui(z) for some i ≥ 2. We will show that
ai+1(z) ≤ ui+1(z). Since ai(z) ≤ ui(z), by Lemma 21, we deduce

ui+1(z) = inf
x∈[−1,1]

max
w=±1

inf
|z′|<1

w(z′−z)≥0

(1 + wz)ui(z
′) + x(z′ − z)

1 + z′w

≥ inf
x∈[−1,1]

max
w=±1

inf
|z′|<1

w(z′−z)≥0

(1 + wz)ai(z
′) + x(z′ − z)

1 + z′w
= (T ai)(z)

(a)

≥ ai+1(z) ,

where (a) is due to Lemma 27. By induction, we know that ak(z) ≤ uk(z) holds for all k ≥ 1 and
|z| < 1.

We are in a position to prove the minimax lower bound for the one-dimensional game.

Proof of Proposition 9. By Lemma 28, plugging z = 0 into uK(z) ≥ aK(z) shows that the normal-
ized minimax regret without initial bias uK(0) ≥ aK(0) = 1√

2K
. Recall that uK(0) = 1

T rK(T, 0)

for all T > 0, where rK(T, 0) is the minimax regret with T rounds, a maximum number of K
switches, and without initial bias. Therefore, we have 1

T rK(T, 0) ≥ 1√
2K

, which implies that

RK(T, 0) ≥ T√
2K

(because the minimax regret of switching-constrained online convex optimization
is lower bounded by the minimax regret of a fugal game).

C.8 Tightness of Lower Bound

In the following two propositions, we validate the one-dimensional lower bound of the previous
section in two senses. First, in Proposition 4 we show that the constant in Proposition 9 cannot be
increased for arbitrary K and T . In particular, we demonstrate that when K = 2, the player has a
simple strategy — playing 0 in the first half of the rounds, and an appropriately chosen constant in
the second half — to guarantee regret no greater than dT/2e.
Proposition 4 (The constant in T√

2K
is unimprovable). The constant 1√

2
in the lower bound

R(T,K) ≥ T√
2K

cannot be increased.

Proof. We will show that the lower bound is tight when K = 2 by proving the upper bound
ROCO(B1, B∗1, 2, T ) ≤ dT/2e. Recall that if K = 2, the lower bound T√

2K
is T/2. To prove the

upper bound, we consider the following player’s strategy. First, we assume that T is an even number
and we will address the situation where T is odd later. The player plays 0 in the first half of the
rounds. Let W1 be the sum of numbers that the adversary plays in the first half of the rounds and
W2 be the sum in the second half. In other words, W1 =

∑T/2
t=1 wt and W2 =

∑T
t=T/2+1 wt. In the

second half of the rounds, the player plays − W1

T/2 . Since |W1| ≤ T/2, the player’s choice − W1

T/2 lies
in [−1, 1]. The regret is equal to

W2 ·
(
−W1

T/2

)
+ |W1 +W2| .

If W1 +W2 is non-negative, the regret equals W1 +W2 − 2W1W2

T = W1 +W2(1− 2W1

T ) ≤W1 +
T
2 (1− 2W1

T ) = T
2 , where the inequality is because 1− 2W1

T ≥ 0 andW2 ≤ T
2 . IfW1+W2 is negative,

the regret becomes −W1 −W2 − 2W1W2

T = −W1 −W2(1 + 2W1

T ) ≤ −W1 + T
2 (1 + 2W1

T ) = T
2 ,

where the inequality is because 1 + 2W1

T ≥ 0 and W2 ≥ −T2 . Therefore, the regret is at most T2 . If
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T is odd, the player plays 0 at the first round and the number of remaining rounds is T − 1, which
is even. The player then uses the previous strategy for an even T . In other words, the player plays

0 from the first round to the T+1
2 -th round and plays −

∑(T+1)/2
t=2 wt
(T−1)/2 at all remaining rounds. The

regret differs from the regret in the (T − 1)-round game by at most 1. Therefore, the regret is upper
bounded by T−1

2 + 1 = T+1
2 = dT2 e.

The previous proposition demonstrated that the constant 1√
2

could not be improved when K = 2,
and thus could not be increased for an arbitrary K. In the next proposition, we show that our
previous analysis of the fugal game was “tight" in a separate, asymptotic sense. When K = o(T ),
the minimax regret of the fugal game relaxation is asymptotically (in T ) equal to that of the original,
switching-constrained OCO formulation. To understand the implication of this result, recall that
the fugal game departed from the original game in two key ways. First, the player was permitted to
choose non-discrete block lengths, Mi ≥ 0, rather than only integral Mi. It is perhaps unsurprising
that, as T grows large, this restriction does not make a difference: intuitively, one can approximate
Mi

T , where Mi is non-integral and T is small, arbitrarily well by M̃i

T̃
, where M̃i is integral but both it

and T̃ are large. However, the fugal game also required the adversary to copy the player’s switching
pattern, and to play only ±1. It may be surprising that the combination of these various restrictions
has no affect on the minimax rate, asymptotically.

To prove the result, we present a reduction which converts the player’s optimal algorithm in achieving
the fugal minimax rate, to an algorithm (Algorithm 1) for ordinary, switching-constrained OCO.
The regret of this algorithm against an optimal adversary necessarily upper bounds the constrained
OCO minimax rate by Appendix C. Intuitively, the player simulates a fugal game based on the
real game, and chooses actions based on the simulated game. The player’s strategy in Algorithm 1
“translates" in an appropriate manner from the actual game to a simulated fugal game, and proceeds
according to the optimal strategy in the simulated game. In particular, she converts from the received,
non-integral wi to an internal, stored set of fugal w′i ∈ {±1}, representing the closest approximation
to a fugal game of the actual game. Once the adversary’s cumulative action since the last switch, Wt,
exceeds (in absolute value) the equivalent quantity in the fugal game, the player switches actions. She
consults the fugal strategy as an oracle to pick which action to play, and the game continues. By some
algebraic manipulation, we show that the regret of the “simulated" fugal game, and the real game,
stay reasonably close. We can thus upper bound the ordinary minimax rate in terms of the fugal
minimax rate and an additive term which disappears in the limit of T , obtaining the stated result.

Proposition 29 (Asymptotic tightness of fugal lower bound). For any fixed K ≥ 1, we have the limit
limT→∞

1
TROCO(B1, B∗1,K, T ) = uK(0), where uK(0) is defined in Lemma 16 and denotes the

normalized minimax regret with no initial bias.

Proof. Let 1 = m1 < m2 < · · · < mKT denote all moving rounds. For any integer 1 < t ≤ T , let
p(t) be the largest integer such that mp(t) < t. Recall the regret of a T -round fugal game with a
maximum number of k − 1 switches and no initial bias is given by

sup
λ>0

(
k∑
i=1

Miwixi +

∣∣∣∣∣
k∑
i=1

Miwi

∣∣∣∣∣+ λ1[

k∑
i=1

Mi 6= T ]

)
.

Let x∗i (w1, . . . , wi−1) : {−1, 1}i−1 → [−1, 1] and M∗i (w1, . . . , wi) : {−1, 1}i → R≥0 be the
optimal strategy of the player in the fugal game, where i = 1, . . . ,K. We will use this strategy to
construct a player’ strategy for the switching-constrained OCO, which is presented in Algorithm 1.

First, we claim that KT ≤ K. According to the algorithm, the instruction Kt ← Kt−1 + 1 is
executed when t > 1 and either Wt ≥ Up(t) or Wt ≤ Lp(t) happens. In both cases, we have |Wt| ≥
M∗p(t)(w

′
1, w

′
2, . . . , w

′
p(t)). Since the t-th round is a moving round if the instruction Kt ← Kt−1 + 1

is executed, we get mp(t+1) = t. Since |Wt| ≤ t− 1−mp(t) + 1 = t−mp(t) = mp(t+1) −mp(t),
the inequality mp(t+1) − mp(t) = mKt − mKt−1 ≥ M∗p(t)(w

′
1, w

′
2, . . . , w

′
p(t)) must hold. Note

that the above equality is true only if the t-th round is a moving round. Additionally, notice that
for any k, Kmk = k and p(mk) = k − 1. If KT ≥ K + 1, summing the inequality over all
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Algorithm 1: Player’s strategy for switching-constrained OCO derived from fugal games
Output :Player’s moves x1, . . . , xT .

1 for t = 1, . . . , T do
2 Observe wt−1;
3 if t = 1 then
4 K1 ← 1;
5 Play x1 ← x∗1;
6 else
7 Wt ←

∑t−1
j=mp(t)

wj ;
8 Up(t) ←M∗p(t)(w

′
1, w

′
2, . . . , w

′
p(t)−1, 1);

9 Lp(t) ← −M∗p(t)(w
′
1, w

′
2, . . . , w

′
p(t)−1,−1);

10 if Wt ≥ Up(t) then
11 Kt ← Kt−1 + 1;
12 w′p(t) ← 1;
13 Play xt ← x∗p(t)+1(w′1, w

′
2, . . . , w

′
p(t));

14 else if Wt ≤ Lp(t) then
15 Kt ← Kt−1 + 1;
16 w′p(t) ← −1;
17 Play xt ← x∗p(t)+1(w′1, w

′
2, . . . , w

′
p(t));

18 else
19 Kt ← Kt−1;
20 Play xt ← xt−1;
21 end
22 end
23 end

t ∈ {mk|2 ≤ k ≤ K + 1} yields

K+1∑
k=2

(mKmk
−mKmk−1) =

K+1∑
k=2

(mk −mk−1) = mK+1 − 1

≥
K+1∑
k=2

M∗p(mk)(w
′
1, w

′
2, . . . , w

′
p(mk)

) =

K+1∑
k=2

M∗k−1(w′1, w
′
2, . . . , w

′
k−1) = T ,

where the last equality is because for any given sequence w′1, w
′
2, . . . , w

′
K , the sum∑K

k=1M
∗
k (w′1, w

′
2, . . . , w

′
k) must be T . Since we assume KT ≥ K + 1, we deduce T ≥ mKT ≥

mK+1 ≥ T + 1, which is a contradiction. Therefore, we establish KT ≤ K.

Since KT ≤ K, for the purpose of analysis, let us modify Line 1 and wait until Kt = K + 1. In
other words, the algorithm terminates at the T0-th round whenever KT0 = K + 1 happens. We define
mK+1 = T0. The algorithm continues running even if t > T , provided that Kt ≤ K. We define
T ′ = T0 − 1 ≥ T . The T ′-th round is the last round such that KT ′ = K. Note that in the following
calculations, xt and w′t refer to the assignments made in Algorithm 1. Since the adversary can always
play 0 at the additional rounds (i.e., wT+1 = wT+2 = · · · = wT ′ = 0), we have

max
w1,...,wT

T∑
t=1

xt · wt +

∣∣∣∣∣
T∑
t=1

wt

∣∣∣∣∣ ≤ max
w1,...,wT ′

T ′∑
t=1

xt · wt +

∣∣∣∣∣∣
T ′∑
t=1

wt

∣∣∣∣∣∣
= max

w1,...,wT ′

K∑
i=1

x∗i (w
′
1, w

′
2, . . . , w

′
i−1)

mi+1−1∑
j=mi

wj +

∣∣∣∣∣∣
K∑
i=1

mi+1−1∑
j=mi

wj

∣∣∣∣∣∣ .
For any 1 ≤ i ≤ K, if w′i = 1, since |wt| ≤ 1 for all t, we have 0 ≤

∑mi+1−1
j=mi

wj −
M∗i (w′1, w

′
2, . . . , w

′
i) ≤ 1. If w′i = −1, similarly we get 0 ≤ −

∑mi+1−1
j=mi

wj −
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M∗i (w′1, w
′
2, . . . , w

′
i) ≤ 1. Combining these two cases gives 0 ≤ w′i

∑mi+1−1
j=mi

wj −
M∗i (w′1, w

′
2, . . . , w

′
i) ≤ 1. Multiplying through by w′i, we therefore obtain∣∣∣∣∣∣

mi+1−1∑
j=mi

wj − w′iM∗i (w′1, w
′
2, . . . , w

′
i)

∣∣∣∣∣∣ ≤ 1 .

Thus the following upper bound holds

ROCO(B1, B∗1,K, T )

≤ max
w1,...,wT

T∑
t=1

xt · wt +

∣∣∣∣∣
T∑
t=1

wt

∣∣∣∣∣
≤ max

w1,...,wT ′

K∑
i=1

x∗i (w
′
1, w

′
2, . . . , w

′
i−1)

mi+1−1∑
j=mi

wj +

∣∣∣∣∣∣
K∑
i=1

mi+1−1∑
j=mi

wj

∣∣∣∣∣∣
≤ max

w1,...,wT ′

K∑
i=1

x∗i (w
′
1, w

′
2, . . . , w

′
i−1)w′iM

∗
i (w′1, w

′
2, . . . , w

′
i) +

∣∣∣∣∣
K∑
i=1

w′iM
∗
i (w′1, w

′
2, . . . , w

′
i)

∣∣∣∣∣+ 2K

= rK(T, 0) + 2K ,

where rK is defined in (2) and denotes the minimax regret of a T -round fugal game with a maximum
number of K − 1 switches and no initial bias. Recalling Lemma 16 yields

1

T
ROCO(B1, B∗1,K, T ) ≤ 1

T
rK(T, 0) + 2K = uK(0) +

2K

T
.

Since the fugal game provides a lower bound forROCO(B1, B∗1,K, T ), it follows that

1

T
ROCO(B1, B∗1,K, T ) ≥ 1

T
rK(T, 0) = uK(0) .

By assumption, limT→∞
2K
T = 0. Thus the limit limT→∞

1
TROCO(B1, B∗1,K, T ) exists and equals

uK(0).

D Additional Lower Bounds for Higher-Dimensional
Switching-Constrained OCO

Proposition 30 proves a dimension-dependent lower bound. In other words, the problem is harder as
the dimension becomes higher. The proof is based on Proposition 9 and the observation that if both
the player and the adversary select from the∞-norm unit ball, the problem can be decomposed into
n fully decoupled one-dimensional sub-problems.
Proposition 30 (Lower bound for∞-norm). The minimax regretROCO(Bn∞, B

∗n
∞ ,K, T ) is at least

nT√
2K

.

Proof. By (1), we have

ROCO(Bn∞, B
∗n
∞ ,K, T ) = inf

‖x1‖∞≤1
sup

‖w1‖∞≤1
. . . inf
‖xT ‖∞≤1

sup
‖wT ‖∞≤1

sup
λ>0(

T∑
i=1

wi · xi +

∥∥∥∥∥
T∑
i=1

wi

∥∥∥∥∥
1

+ λ1[c(x1, . . . , xT ) ≥ K]

)
.

Both terms are decomposable by coordinates as follows: the jth coordinate of
∑T
i=1 wi · xi =∑n

j=1 wi,jxi,j and
∥∥∥∑T

i=1 wi

∥∥∥ =
∑n
j=1

∣∣∣∑T
i=1 wi,j

∣∣∣. Therefore by Proposition 9, we obtain

ROCO(Bn∞, B
∗n
∞ ,K, T ) = nROCO(B1, B∗1,K, T ) ≥ nT√

2K
.
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E Additional Upper Bounds for Switching-Constrained OCO

In this section, we derive upper bounds for switching-constrained OCO to match the lower bounds
in Propositions 6 and 7. We begin with a simple algorithm achieving the correct minimax regret,
O( T√

K
), for any player’s action set D and the function family F that the adversary chooses from.

Proposition 2. If D is a convex and compact set from which the player draws xi, and F is the family
of differentiable convex functions on D, with uniformly bounded gradient, from which the adversary
chooses fi, a mini-batching algorithm yields the upper boundR(T,K) ≤ d TK eO(

√
K) = O( T√

K
).

Proof. First, we claim that the minimax regret ROCO(D,F ,K, T ) is a non-decreasing function
in T . To see this, consider the situation where we have more rounds. The adversary can
play 0 in all additional rounds and this does not decrease the regret. Therefore, we obtain that
ROCO(D,F ,K, T ) ≤ ROCO(D,F ,K, T1), where T1 = d TK eK ≥ T .

In the sequel, we derive an upper bound for ROCO(D,F ,K, T1). To attain the upper bound, we
mini-batch the T1 rounds into K equisized epochs, each having size T1

K = d TK e. Let Ei denote the set
of all rounds that belong to the i-th epoch. We haveEi = {T1

K (i−1)+1, T1

K (i−1)+2, . . . , T1

K i}. The
epoch loss of the i-th epoch is the average of loss functions in this epoch, i.e., f̄i , 1

|Ei|
∑
j∈Ei fj . If

we run a minimax optimal algorithm for unconstrained OCO (for example, online gradient descent
[25]) on the epoch losses f̄1, . . . , f̄K and obtain the player’s action sequence x̄1, . . . , x̄K , our strategy
is to play x̄i at all rounds in the i-th epoch. This method was originally discussed in [6, 13]. Using this
mini-batching method, we deduce that the regret is upper bounded by T1

K O(
√
K) = d TK eO(

√
K) =

O( T√
K

), where O(
√
K) is the standard upper bound of the regret of a K-round OCO game.

In the next two propositions, we seek a more precise understanding of the exact minimax rate — i.e.
the constant in front of T√

K
— of switching-constrained online linear optimization, beginning with

n = 1. In Appendix C, Proposition 4 demonstrated that we cannot hope to improve the constant in the
lower bound, 1√

2
, for arbitrary T and K. Further, Proposition 29 showed that the fugal game captures

the correct constant, asymptotically. In the following proposition, we seek a direct, non-asymptotic
bound on the constant in front of the one-dimensional minimax rate, Õ( T√

K
). To do so, we more

carefully examine the mini-batching technique from Proposition 2. We observe that it actually allows
reuse of the exact minimax rate (including the constant) of vanilla unconstrained OCO, rather than
simply algorithms like projected gradient descent in our original application of the technique.
Lemma 31. If T andK are positive integers such that T ≥ K ≥ 1, the inequality d TK e ≤

2T√
K(K+1)

holds.

Proof. If T is divisible by K, we have d TK e = T
K . Since

√
K+1
K ≤ 2, we get 1

K ≤
2√

K(K+1)
and

thus d TK e = T
K ≤

2T√
K(K+1)

. In the sequel, we assume that K cannot divide T . We consider the

Euclidean division of T by K. There exists unique positive integers q and r such that T = qK + r
and 1 ≤ r ≤ K. The following inequality holds

q + 1

q + r/K
≤ q + 1

q + 1/K
≤ 2

1 + 1/K
= 2 · K

K + 1
≤ 2

√
K

K + 1
, (14)

where the first inequality is because q+1
q+r/K is a decreasing function in r and the second inequality is

because q+1
q+1/K is a decreasing function in q. In light of (14), we have⌈

T

K

⌉
= q + 1 ≤ 2(q + r/K)

√
K

K + 1
=

2(Kq + r)√
K(K + 1)

=
2T√

K(K + 1)
.

Proposition 32 (Upper bound for 2-norm and dimension at least 2). The minimax regret
ROCO(Bn2 , B

∗n
2 ,K, T ) satisfiesROCO(Bn2 , B

∗n
2 ,K, T ) ≤

⌈
T
K

⌉√
K ≤ 2T√

K
for all n ≥ 2.
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Proof. LetR(T ) denote the minimax regret of the vanilla T -round n-dimensional OCO without a
switching constraint. It is defined by

R(T ) = inf
x1∈Bn2

sup
w1∈B∗n2

. . . inf
xT∈Bn2

sup
wT∈B∗n2

(
T∑
i=1

wi · xi +

∥∥∥∥∥
T∑
i=1

wi

∥∥∥∥∥
)
.

Using the mini-batching argument that we used to show Proposition 2, we have
ROCO(Bn, B∗n,K, T ) ≤ d TK eR(K). 7 By Theorem 6 of Abernethy et al. [1], R(K) =

√
K

when n > 2. In fact, when n = 2, the upper bound of Lemma 9 carries through, so R(K) =
√
K

when n = 2 as well. Thus by Lemma 31, we have

ROCO(Bn2 , B
∗n
2 ,K, T ) ≤

⌈
T

K

⌉
R(K) =

⌈
T

K

⌉√
K ≤ 2T√

K(K + 1)

√
K =

2T√
K + 1

<
2T√
K
.

Proposition 33. For any p and q such that 1 ≤ p, q ≤ ∞, the minimax regretROCO(Bnp , B
∗n
q ,K, T )

is non-decreasing in the dimension n.

Proof. We will show that for any m < n, it holds that ROCO(Bmp , B
∗m
q ,K, T ) ≤

ROCO(Bnp , B
∗n
q ,K, T ). We view Bmp (B∗mq , respectively) as the subset of Bnp (B∗nq , respectively)

by setting the last n − m coordinates to 0. Next, we show how to convert a minimax optimal
player’s strategy in the n-dimensional game into a player’s strategy in the m-dimensional game.
Let x∗i (x1, w1, . . . , xi−1, wi−1) : Bnp × B∗nq × · · · × Bnp × B∗nq → Bnp be the optimal strategy
of the player in the n-dimensional game. Note that any adversary’s choice wt ∈ B∗mq can be
viewed as a choice in B∗nq . At the t-th round of the m-dimensional game, given the adversary’s
previous choices w1, . . . , wt−1 and the player’s previous choices x1, . . . , xt−1, the player computes
x′t = x∗t (x1, w1, . . . , xt−1, wt−1) and plays xt = P (x′t), where P is the orthogonal projection
onto Bmp (i.e., setting the last n − m coordinates to 0). Notice that wt · xt = wt · x′t. There-
fore, in light of (1), the regret of the m-dimensional game

∑T
t=1 wt · xt + ‖

∑T
t=1 wt‖p/(p−1)

equals the regret of the n-dimensional game
∑T
t=1 wt · x′t + ‖

∑T
t=1 wt‖p/(p−1), and is thus at most

ROCO(Bnp , B
∗n
q ,K, T ).

Proposition 34 (Upper bound for one dimension). The minimax regretROCO(B1, B∗1,K, T ) satis-
fies

(a) For all K ≥ 1,ROCO(B1, B∗1,K, T ) ≤
⌈
T
K

⌉
min{

√
2(K+1)

π ,
√
K} ≤ 2

√
2
π

T√
K
< 1.6T√

K
; and

(b) For all K ≥ 2,ROCO(B1, B∗1,K, T ) ≤
√
3
2 d

T
K e
√
K < 0.87d TK e

√
K.

Proof. As in Proposition 32, a more careful inspection of the mini-batching argument reveals that the
minimax regretROCO(B1, B∗1,K, T ) is at most d TK e timesR(K), the minimax rate of vanilla OCO.

If K is even, Theorem 10 of [21] implies thatR(K) = K
2K

(
K
K
2

)
≤
√

2K
π . McMahan and Abernethy

[21] did not report the minimax regret if K is odd. If K is odd, according to (10) of [21], we have

R(K) =
1

2K

K∑
i=0

(
K

i

)
|2i−K| = 4

2K

(K−1)/2∑
i=0

(
K

i

)
(
K

2
− i) .

The minuend equals
(K−1)/2∑
i=0

(
K

i

)
K

2
=
K

2
· 2K

2
=
K2K

4
.

7To be concrete, the minimax regret,ROCO(B1, B∗1,K, T ) can only increase when we restrict the player to
switch precisely every T

K
rounds. Then, conditioned on this player strategy, the regret term

∑
wtxt + |

∑
wt|

is unchanged by forcing the adversary to also pick the same function on each T
K

-sized block. Thus, T
K
R(K)

provides a valid upper bound as claimed.

32



The subtrahend is given by

(K−1)/2∑
i=0

(
K

i

)
i = K

(K−1)/2∑
i=1

(
K − 1

i− 1

)
= K

(K−3)/2∑
i=0

(
K − 1

i

)
=
K

2

(
2K−1 −

(
K − 1
K−1
2

))
.

Putting them together yields

R(K) =
K

2K−1

(
K − 1
K−1
2

)
.

Next, we verify that if K is odd,R(K) = R(K + 1). We have

R(K + 1) =
K + 1

2K+1

(
K + 1
K+1
2

)
=
K + 1

2K+1
· K + 1

K+1
2

(
K
K−1
2

)
=
K + 1

2K

(
K
K+1
2

)
=
K + 1

2K
· K
K+1
2

(
K − 1
K−1
2

)
= R(K) .

In other words, the regretR(K) obeys the following pattern

R(1) = R(2) < R(3) = R(4) < · · · < R(2n− 1) = R(2n) < · · · .

Therefore, if K is odd, it holds that

R(K) = R(K + 1) ≤
√

2(K + 1)

π
.

As a result, for any K, even or odd, the following inequality holds

R(K) ≤
√

2(K + 1)

π
.

By Lemma 31, we obtain

ROCO(B1, B∗1,K, T ) ≤
⌈
T

K

⌉
R(K) ≤

⌈
T

K

⌉√
2(K + 1)

π

≤ 2T√
K(K + 1)

√
2(K + 1)

π
= 2

√
2

π

T√
K
.

Additionally, Proposition 33 and Proposition 32 imply

ROCO(B1, B∗1,K, T ) ≤ ROCO(B2
2 , B

∗2
2 ,K, T ) ≤

⌈
T

K

⌉√
K .

As a consequence, we prove part (a)

ROCO(B1, B∗1,K, T ) ≤
⌈
T

K

⌉
min{

√
2(K + 1)

π
,
√
K} ≤ 2

√
2

π

T√
K

<
1.6T√
K

.

Next, we show part (b). Notice that if K is odd,

R(K + 2)/
√
K + 2

R(K)/
√
K

=

√
K(K + 2)

K + 1
< 1 .

Hence, for any odd K ≥ 3,R(K)/
√
K ≤ R(3)/

√
3 =

√
3
2 .
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Recall thatR(K)/
√
K ≤

√
2
π for when K is even. Therefore, for all K ≥ 2, we have

R(K) ≤
√

3

2

√
K ≤ 0.87

√
K .

Thus we obtain

ROCO(B1, B∗1,K, T ) ≤
√

3

2

⌈
T

K

⌉√
K < 0.87

⌈
T

K

⌉√
K .

We now easily show an upper bound on the minimax rate for the∞-norm by the same idea.
Proposition 35 (Upper bound for∞-norm). The minimax regretROCO(Bn∞, B

∗n
∞ ,K, T ) is at most

2
√

2
π
nT√
K

.

Proof. The argument in Proposition 30 shows

ROCO(Bn∞, B
∗n
∞ ,K, T ) = nROCO(B1, B∗1,K, T ) .

The desired upper bound follows fromROCO(B1, B∗1,K, T ) ≤ 2
√

2
π

T√
K

shown in Proposition 34.

Proposition 36 (Unequal block length for K = 3, informal). The minimax game between player and
adversary when K = 3 has the player choose to make unequally spaced switches. In particular, the
first switch happens at approximately 0.29T through the game, strictly before 0.33T .

Proof. The proof of Proposition 22 showed that z+ and z− are ±(
√

2− 1), via considering Case 2
of the proof and setting i = 2 and z = 0. Without loss of generality, we assume the optimal z is√

2− 1 (z+ and z− are symmetric). Then, we translate the optimal z into the location of the optimal
first switch. Plugging z′ =

√
2 − 1, z = 0, w = 1 into the reparametrization z′(t) = Tz+tw

T−t of
Corollary 12, we get t = (1 −

√
2/2)T ≈ 0.29T . Therefore, the optimal first switch happens at

approximately 0.29T .
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