Supplementary Material:
Dual Manifold Adversarial Robustness: Defense
against L, and non-L, Adversarial Attacks

A  OM-ImageNet Details

A.1 Overview

In order to construct a dataset consisting of diverse images with exact manifold information, we
propose to first train a generator on natural images with a size 256 x 256 from 10 super-classes in
ImageNet. The natural images are then projected onto the range of the generator, yielding images that
lie completely on the manifold defined by the generator. Training generative models for a large-scale
natural image dataset (e.g. the complete ImageNet) is known to be a challenge task. Even with
the existence of large-scale training of (class-conditional) GANS [[1], the diversity of the generated
images is still not comparable to the original ImageNet. Therefore, we focus ourselves to a subset
of the ImageNet dataset, which is the Mix-10 dataset released by [2]]. The original Mix-10 dataset
has 77,237 training images and 3,000 test images. To create OM-ImgaeNet with a larger test set, we
manually select 69,480 image-label pairs as DY, = {z;,y; }¥.; and another 7,200 image-label pairs
as Dy, = {xj,y; };‘il We do not consider the Restricted ImageNet proposed in [3]] since Restricted
ImageNet has unbalanced classes.

A.2  StyleGAN training

We use StyleGAN [4] as our generator model, using the default training parameters for 256 x 256
images and for four GPUs (summarized in Table[I)). We used the training set of the Mix-10 dataset
for training. As pre-processing, each image was center-cropped to produce a square image, and
converted to 256 x 256 resolution.

Table 1: StyleGan Training Parameters

Latent space dimensionality 512
Batch size (at highest resolution) 16
Training time (total images) 25 x 10°

Formally, the StyleGAN can be written as G = g o h, where h : Z — W is a mapping network
and g : W — X is a synthesis network. We follow [5] and consider the extended latent space of
StyleGAN. In [3], it has been shown that embedding images into the extended latent space is easier
than Z or W space. Therefore, in the following, we consider g : Wt — X as the generator function
which approximates the image manifold With the trained StyleGAN, we project D9, = {z;, y; }}¥,
and Dy, = {x;,y; }JM:1 onto the learned manifold by solving:

w; = argmin LPIPS(g(w), z;) + ||g(w) — ;1. (1)
The resulting on-manifold training and test sets can be represented by: D, =

{(wi, g(wy), @iy yi) }y, and Dye = {(wj, g(w;), xj,y;)} )L, In Figure[1] we present a; (Orig-
inal) and g(w;) (Projected). We can see that the projected images have diverse textures and object
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Figure 1: Visual comparison between original images and projected images. Even though some
fine-grained details are lost after projection, the diversity of the projected images is still high. More
importantly, the manifold information for these projected images is exact.
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Figure 2: Learning rate scheduling during training.

sizes. Moreover, the manifold information for these projected images is exact, which is suitable for
investigating the potential benefits of using manifold information in more general scenarios compared
to MNIST-like [6} [7, [8] or the CelebA datasets [9].

B Implementation Details

B.1 Classification model training

All the classification models are trained using two P6000 GPUs with a batch size of 64 for 20 epochs.
We use the SGD optimizer with the cyclic learning rate scheduling strategy in [10] (see Figure[2),
momentum 0.9, and weight decay 5 x 1074,

B.2 Attack parameters

Formally, given an on-manifold image sample * = g(w), the adversarial perturbation § of the
standard PGD-K attack can be calculated by:

0o ~ Uniform[—e, €], d;41 = Clip, [0¢ + €iter - 5ign(Vs, L(fo(z + 01), Yuue))], 0 =k, (2)
where Clip, means we clip the perturbation to be within an L ball {0 : ||§]|cc < €}. Similarly, the
on-manifold PGD-K attack (OM-PGD-K) is given by:

Ao ~ Uniform[_nv 77]7 )\tJrl = Cth [)‘t + Niter - szgn(VAtC(fg(g(w + )\t))7 yu‘ue>)] ) A= Ax.
3)



The parameters for these known attacks are presented in Table [2]

Table 2: Parameter settings for standard and on-manifold attack threat models.

PGD-5 PGD-50 OM-FGSM OM-PGD-5 OM-PGD-50

€=4/255 €=4/255 n=0.02 n = 0.02 n=0.02
€iter = 1/255  €iter = 1/255  Miger = 0.005  Niger = 0.005  7iter = 0.005

For the unseen attacks proposed in [[11]], we consider attack parameters presented in Table 3] All
these attacks use 200 optimization steps.

Table 3: Parameter settings for the novel attacks.

Fog Snow  Elastic  Gabor JPEG Lo

€ 128 0.062  0.500 12.500 1024 1200
Step Size  0.002 0.002  0.035 0.002 72407 170

C Additional Experiments

C.1 Effect of the perturbation budgets A and A in DMAT

In DMAT, A and A control the strengths of the off-manifold and on-manifold threat models. We
study how different choices affect the robustness of the trained networks against unseen attacks.
We do not evaluate on known attacks since the performance depends on the type of threat models
considered during training.

With the default setting ¢ = 4/255,7 = 0.02 in the main paper, we manipulate € (upper-half of
Table[d) and 7 (lower-half of Table ) respectively and evaluate the classification performance. With
a stronger off-manifold attack during training, the robustness against unseen attack is higher with the
cost of reduced standard accuracy. Interestingly, a stronger on-manifold attack during training leads
to both higher standard accuracy and robustness to unseen attacks.

Table 4: Classification accuracy against unseen attacks applied to OM-ImageNet test set.

Standard Fog Snow  Elastic Gabor JPEG Lo

€ =4/255, €iter = 1/255 77.96% 31.718% 51.19% 56.09% 51.61% 14.31% 51.36%
€ =2/255, €iger = 0.5/255 79.29% 3191% 43.45% 52.82% 39.15% 5.84% 43.67%
€ =1/255, €iter = 0.25/255  79.84% 29.20% 35.35% 49.51% 24.35% 271%  32.28%

1 = 0.02, iter = 0.005 77.96% 31.78% 51.19% 56.09% 51.61% 14.31% 51.36%
1 = 0.01, niter = 0.004 77.34% 2635% 49.49% 54.07% 51.63% 13.22% 47.81%
1 = 0.005, niter = 0.002 76.24% 22.40% 46.17% 51.28% 50.00% 13.79% 43.85%

C.2 TRADES for DMAT

The proposed DMAT framework is general and can be extended to other adversarial training ap-
proaches such as TRADES [12]. In the following, we adopt TRADES in DMAT by considering the

following loss function:

min'> " £(Fo(2),Yorue) + B max £(fa(ai), folai +8)) + Bmax £(fo(@:). folglwi + V), &)

where z; = g(w;). The first two terms in (@) are the original TRADES in the image space, and the
third term is the counterpart in the latent space. To solve for the two maximization problems in (@),
we use PGD-5 and OM-PGD-5 with the same parameter setting in Table 2] Results are presented in

Table



Table 5: Classification accuracy against known (PGD-50 and OM-PGD-50) and unseen attacks
applied to OM-ImageNet test set. Even for TRADES, the benefit of using manifold information can

also be observed.

) OM- :
Method PGD-50 PGD-50 Fog Snow Elastic Gabor JPEG Lo
Normal Training 0.00% 0.26% 0.03% 0.06% 1.20% 0.03% 0.00% 1.70%
AT [PGD-5] 38.88% 723% | 19.716%  46.39% 50.32% 50.43% 10.23%  41.98%
OM-AT [OM-FGSM] 0.03% 20.19% | 11.12% 13.82% 34.07% 1.50% 0.26% 2.27%
OM-AT [OM-PGD-5] 025% 27.53% | 22.39% 28.38%  48.74% 5.19% 0.49% 5.92%
DMAT 37.86%  20.53% | 31.78% 51.19% 56.09% 51.61% 14.31% 51.36%
TRADES 46.06 % 892% | 18.14% 47.63%  53.32% 54.33% 14.06%  46.36%
DMAT + TRADES 42.57%  26.82% | 30.64%  46.62% 56.38%  53.43% 23.62%  55.09%
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Figure 3: Visual comparison between adversarial training methods when the adversarial examples are
crafted using natural (out-of-manifold) images. Brighter colors indicate larger absolute differences.
We can observe that the classifier trained with DMAT is more robust and needs stronger distortions to

break.

C.3 Additional Visual Comparisons

We present visual comparisons when the normal images are natural (out-of-manifold) images. Results
presented in Figure [3] show that attackers need to apply larger perturbations in order to break the

models trained by DMAT.
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