
Cross-Scale Internal Graph Neural Network for
Image Super-Resolution
(Supplementary Materials)

Shangchen Zhou1 Jiawei Zhang2 Wangmeng Zuo3 Chen Change Loy1∗
1Nanyang Technological University 2SenseTime Research 3Harbin Institute of Technology
{s200094,ccloy}@ntu.edu.sg zhangjiawei@sensetime.com wmzuo@hit.edu.cn

https://github.com/sczhou/IGNN

In this supplementary material, we provide additional details and results to the paper. In Sec. A, we
first present the detailed architectures of two small sub-networks in the proposed Graph Aggregation
module (GraphAgg). Then, we give an illustration of operation details in the GraphAgg. Sec. B
presents further analysis and discussions on our proposed GraphAgg module and IGNN network.
Finally, we show more visual experimental results compared with other state-of-the-art SR networks
in Sec. C.

A Details in GraphAgg

A.1 Architecture Details

As presented in Sec. 2.2 in the manuscript, the proposed GraphAgg has two small sub-networks:
Edge-Conditioned sub-network (ECN) and Downsampled-Embedding sub-network (DEN). Tables 1
and 2 list the detailed configurations of ECN and DEN, respectively. In Graph Construction, we use
the first three layers of the VGG19 [5] with fixed pre-trained parameters.

Table 1: Architecture of the Edge-Conditioned sub-
network (ECN).

Layer Kernel Stride Padding Feature

Input (Dnr→q) 64

Conv/ReLU 1× 1 1 1 64
Conv/ReLU 1× 1 1 1 64
Conv 1× 1 1 1 1

Table 2: Architecture of the Downsampled-
Embedding sub-network (DEN).

Layer Kernel Stride Padding Feature

Input (FL↑s) 256

Conv/ReLU 5× 5 1 1 256
Conv/ReLU 3× 3 1 1 256
Conv 3× 3 1 1 256

A.2 Illustration of Detailed Processes in GraphAgg

To further clarify the operations in the GraphAgg, we illustrate the details as shown in Figure 1.

In Figure 1(a), we extract l × l LR patches using img2patch operation with a stride of g from
features EL↓s and EL, where we set l = 3 and g = 2 in our network. Thus we obtain m1 × n1 LR
patches (denoted as V l

1) and m2 × n2 LR patches (denoted as V l
2) from EL↓s and EL respectively.

Denote the feature shapes of EL↓s and EL as H/s ×W/s and H ×W respectively. Therefore,
m1 = b(H/s−l)/gc+1, n1 = b(W/s−l)/gc+1, and m2 = b(H−l)/gc+1, n2 = b(W−l)/gc+1.
Each LR patch in V l

2 find the k nearest neighboring LR patches from V l
1 according to the Euclidean

distance. Note that we do not consider the searching window in this discussion for simplicity.

To obtain k corresponding HR (ls× ls) patch regions in EL scale, we map each LR patch in EL↓s to
HR regions in EL scale, as shown in Figure 1(b). In EL scale, the ls× ls patch regions are obtained
∗Corresponding Author.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/sczhou/IGNN


!

"

#!

$!

…

#!× $!

!
!

Img2Patch

!

"

#"

$"

…

#"× $"

!
! Img2PatchFind k NNE&↓# E& (()

(*)

(*/,)

((/,)

…
…

"$%LR patch set "&%LR patch set

!

"

#!

$!

!,

",

#!

$!

Vertex MappingE&↓# E& (()

(*)
(*/,)

((/,)

…
…

!,

",

#"

$"

…

#"× $"

!,

!, Patch2Img
F&↑#

(*,)

((,)

…

"%(HR patch set

(a)	Find	k nearest	neighboring	patches	in	Graph	Construction. 

(b)	Vertex	Mapping	in	Graph	Construction. (c)	Patch2Img	in	Patch	Aggregation.

Figure 1: In (a), n1 ×m1 LR patches and n2 ×m2 LR patches are extracted using img2patch operation with
a stride of g from features EL↓s and EL, respectively. Each LR patch of EL find the k nearest neighboring
LR patches from EL↓s. In (b), each found LR patch in EL↓s is mapped to a HR region in EL scale. In EL

scale, the HR patch regions are extracted using img2patch operation with the stride of gs. In (c), we transform
n2 ×m2 HR patches to the final HR feature FL↑s using a patch2img operation with the stride of gs. Note that
the sizes of LR and HR patches are l × l and ls× ls, respectively, where s is desired upsampling factor. Refer
to Sec. A.2 for more details.

using img2patch operation with the stride of gs. It exactly has the same number (m1×n1) of patches
as LR patches in EL↓s , i.e., b(H − ls)/gsc + 1 = m1, b(W − ls)/gsc + 1 = n1. Therefore, the
LR and HR patch regions from EL↓s and EL scales can be matched one-on-one.

As presented in Eq. (2) in the manuscript, we obtain one aggregated HR patch for each LR patch
in the LR patch set V l

2, which contains m2 × n2 LR patches. Thus, we obtain a HR patch set Vrs

containing m2 × n2 HR patches with ls× ls patch size. Figure 1(c) shows that we take the Vrs as
input and use a patch2img operation with the stride of gs to generate the HR features FL↑s.

B More Discussions on GraphAgg and IGNN

In this section, we first present more ablation experiments to demonstrate the effectiveness of the
proposed IGNN further, including the effect of using F ′L and FL↑s and number of GraphAgg modules
inserted in networks. In addition, we report and compare the runtime of the state-of-the-art networks
and the proposed IGNN.

B.1 Effectiveness of F ′L and FL↑s

To validate the effectiveness of both enriched features F ′L and aggregated HR features FL↑s, we
compare our network with three variant networks: replacing the enriched LR features F ′L by the
original LR features FL (w/o F ′L ), removing aggregated HR features FL↑s (w/o FL↑s) and without
both of them (baseline), i.e., EDSR. According to Table 3, these three variant networks generate
worse SR results compared to the completed network.

B.2 Effectiveness of of Multiple GraphAgg Module

To explore whether the number of GraphAgg module affects IGNN performance, we evaluate to
insert 1 (after 16th residual block), 2 (after 8th and 24th residual block), and 3 (after 8th, 16th, and
24th residual block) GraphAgg modules in the backbone network, respectively. As shown in Table 4,
using more GraphAgg module only leads to slight PSNR/SSIM gains. Thus we only employ one

2



Table 3: Results on Urban100 (×2) for different variants of networks. The (w/o F ′L) represents replacing the
enriched LR features F ′L by the original LR features FL, and (w/o FL↑s) represents removing the aggregated
HR features FL↑s. Note the EDSR is our baseline which is equivalent to removing both F ′L and FL↑s.

baseline (EDSR) w/o F ′L w/o FL↑s IGNN

PSNR 32.93 33.19 33.13 33.23
SSIM 0.9351 0.9379 0.9374 0.9383

GraphAgg module in our IGNN as a trade-off among the computational complexity and performance.
Compared with the baseline network (EDSR) without GraphAgg inserted, our proposed IGNN shows
a large performance gain.

Table 4: Results on Urban100 (×2) for different numbers of GraphAgg modules are inserted in the networks.

0 (baseline) 1 (after 16th) 2 (after 8th and 24th ) 3 (after 8th, 16th, and 24th )

PSNR 32.93 33.23 33.23 33.25
SSIM 0.9351 0.9383 0.9384 0.9385

B.3 Relationship between Performance Gain and Self-similarity Level

It is worth to analyze further on performance gains for different self-similarity levels. As shown
in Figure 2, our method performs better in regions with self-similarity, especially in regions where
texture patterns are extremely small. Besides, the performance can also be well maintained to that of
EDSR in regions with few self-similar patches.

Self-similarity Level PSNR Gain

Figure 2: Examples to show the relationship between self-similarity level and PSNR gain (over EDSR). The
brighter regions indicate larger values.

B.4 Runtime

Here, we report and compare the runtime of state-of-the-art networks [8, 4, 7, 2, 1] and the proposed
IGNN. All existing methods are evaluated using their publicly available code. As shown in Table 5,
the proposed network has comparable runtime as [8, 4, 7, 2], but it has better performance on all
benchmarks at all scales (Refer to Table 1 in the manuscript). As for SAN [1], the proposed IGNN
runs over two times faster than it, and performs better in most cases.

Table 5: Runtime of different networks. All methods are evaluated on an NVIDIA Tesla V100 GPU.

RDN [8] EDSR [4] RNAN [7] OISR-RK3 [2] SAN [1] IGNN (Ours)

PSNR 32.89 32.93 32.73 33.03 33.10 33.23
Time (sec) 1.538 1.416 2.280 1.833 5.971 2.676

3



C Qualitative Comparisons

In this section, we provide more visual comparisons with seven state-of-the-art SISR networks,
i.e., VDSR [3], EDSR [4], RDN [8], RCAN [6], OISR [2], SAN [1], and RNAN [7], on standard
benchmark datasets. As shown in Figure 3 and Figure 4, the proposed IGNN recovers richer and
sharper details from the LR images especially in the regions with recurring patterns.

BSD100 (4×):
78004

HR Bicubic VDSR [3] EDSR [4] RDN [8]

RCAN [6] OISR [2] SAN [1] RNAN [7] IGNN (Ours)

Manga109 (4×):
KyokugenCyclone

HR Bicubic VDSR [3] EDSR [4] RDN [8]

RCAN [6] OISR [2] SAN [1] RNAN [7] IGNN (Ours)

Urban100 (4×):
img_030

HR Bicubic VDSR [3] EDSR [4] RDN [8]

RCAN [6] OISR [2] SAN [1] RNAN [7] IGNN (Ours)

Urban100 (4×):
img_046

HR Bicubic VDSR [3] EDSR [4] RDN [8]

RCAN [6] OISR [2] SAN [1] RNAN [7] IGNN (Ours)

Figure 3: Visual comparison for ×4 SR on benchmark datasets.

4



Urban100 (4×):
img_044

HR Bicubic VDSR [3] EDSR [4] RDN [8]

RCAN [6] OISR [2] SAN [1] RNAN [7] IGNN (Ours)

Urban100 (4×):
img_054

HR Bicubic VDSR [3] EDSR [4] RDN [8]

RCAN [6] OISR [2] SAN [1] RNAN [7] IGNN (Ours)

Urban100 (4×):
img_012

HR Bicubic VDSR [3] EDSR [4] RDN [8]

RCAN [6] OISR [2] SAN [1] RNAN [7] IGNN (Ours)

Urban100 (4×):
img_033

HR Bicubic VDSR [3] EDSR [4] RDN [8]

RCAN [6] OISR [2] SAN [1] RNAN [7] IGNN (Ours)

Urban100 (4×):
img_008

HR Bicubic VDSR [3] EDSR [4] RDN [8]

RCAN [6] OISR [2] SAN [1] RNAN [7] IGNN (Ours)

Figure 4: Visual comparison for ×4 SR on benchmark datasets.

5



References
[1] Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and Lei Zhang. Second-order attention network for

single image super-resolution. In CVPR, 2019.

[2] Xiangyu He, Zitao Mo, Peisong Wang, Yang Liu, Mingyuan Yang, and Jian Cheng. Ode-inspired network
design for single image super-resolution. In CVPR, 2019.

[3] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep
convolutional networks. In CVPR, 2016.

[4] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual
networks for single image super-resolution. In CVPRW, 2017.

[5] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[6] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution using
very deep residual channel attention networks. In ECCV, 2018.

[7] Yulun Zhang, Kunpeng Li, Kai Li, Bineng Zhong, and Yun Fu. Residual non-local attention networks for
image restoration. In ICLR, 2019.

[8] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Residual dense network for image
super-resolution. In CVPR, 2018.

6


	Details in GraphAgg
	Architecture Details
	Illustration of Detailed Processes in GraphAgg

	More Discussions on GraphAgg and IGNN
	Effectiveness of F'L and FL"3222378 s
	Effectiveness of of Multiple GraphAgg Module
	Relationship between Performance Gain and Self-similarity Level
	Runtime

	Qualitative Comparisons

