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S1 Supplementary methods

S1.1 Adaptive classification with minimax jackknife+ calibration

We can apply the minimax calibration technique of [2]] to obtain a non-trivial variation of Algorithm[2]
for which marginal coverage can be rigorously proved at level 1 — «, without modifying the current
input level. Here, we consider the jackknife+—i.e., K = n—for simplicity. The only difference with
Algorithm[2]is that the prediction set in is replaced by the following larger set:

C?:‘(‘;m(XnH) = {y ey:
(SD)

n

i1 Jeil,...,n

Theorem S1. Under the same assumptions of Theorem|l| the output of Algorithm |2|with K = n,
and (TI) replaced by (S])), satisfies:

P [Ynﬂ e é;fg““(xn“)] >1-a (S2)

S1.2 Adaptive classification with label-conditional coverage

Algorithm [ST| describes the extension of Algorithm [I] discussed in Section [2.5] which ensures
label-conditional coverage. The validity of this algorithm is established by the following result.

Theorem S2. If the samples (X;,Y;), for i € {1,...,n + 1}, are exchangeable and B from
Algorithm[S1)is invariant to permutations of its input samples, the output of Algorithm[S1|satisfies:

P[Yoi1 € G5 (K1) [ Yasa = 9] 210, (S4)

forally € ).

*Equal contribution.
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Algorithm S1: Split-conformal adaptive classification with label-conditional coverage
Input: data {(X;,Y;)};_,, X,+1, black-box learning algorithm B, level o € (0, 1),

i=1°
list of possible labels V.

Randomly split the training data into 2 subsets, Z;, Zo.

Sample U; ~ Uniform(0, 1) for each i € {1,...,n + 1}, independently of everything else.

Train B on all samples in Zy: 7 < B({(X;,Y:) biez, )-

Compute E; = E(X;,Y;, U;; 7r) for each ¢ € Z, with the function E defined in (7).

for y € Y do

Compute Qg@a({Ei}i€I2) asthe [(1 —a)(1+ |{i € Z» : Y; = y}|)]th largest value in
{Ei}iet,vi=y-

end
Compute 7 = maXyey Qg?i)a({Ei}ieIz)-
Use the function S defined in (3)) to construct the prediction set at X, ;1 as:

és%_lc(x7t+l) = S(Xnt1, Ung1; 7, 7). (53)

Output: A prediction set ég?'lc(X nt1) for the unobserved label Yy, 4 1.

[e3%

S1.3 Quantifying conditional coverage in finite samples

Similarly to the approach of [1]], we measure coverage over a slab
Spap={r€RP ra<v'z < b}

of the feature space, where the values of v € RP and a < b € R are chosen adversarially but

independently of the data. In particular, for any fixed classification prediction set Candd € (0,1),
we define

WSC(Ci0) = it {p[y €C(X) | X € Spap) st PIX € Spap] >1— 5]} .

In practice, we estimate WSC for a particular C by sampling 1000 independent vectors v on the
unit sphere in R? and optimizing the corresponding parameters a, b through a grid search. To avoid
finite-sample negative bias, we partition the test data into two subsets (e.g., containing 25% and 75%
of the samples respectively); then, we use the first subset to estimate the optimal values v*, a*, b*,
and the second subset to evaluate conditional coverage:

P[Y € C(X) | X € Sy av -] (S5)

Therefore, regardless of the quality of our solution v*, a*, b* to the above optimization problem,
the quantity in (S3) should be equal to the nominal coverage level 1 — « for any method with valid
conditional coverage. However, it is worth highlighting that controlling (S3) does not necessarily
imply that conditional coverage holds more generally, which is why we also look at alternative
measures of conditional coverage given either the value of certain features (e.g., X1), or that of the
true label Y.

S2 Supplementary proofs

Proof of Theorem[l] We begin by proving the lower bound on coverage. By construction of the
prediction set in @ we know that

}/’n+1 € éyslSX(Xn—i-l)
if and only if
min {7 € [0,1] : Yot1 € S(Xnt1, Uns1; 7, 7)} < Quoa({Eitic,),
or, equivalently, if and only if

Eni1 < Q1-o({Ei}ier,)- (S6)



Since all the conformity scores E,, 1 and {F; };c7, are exchangeable, the probability of the event
in (S6) can be no smaller than 1 — . The formal proof of this statement is standard at this point,
so we simply refer to [3] for the remaining technical details. The proof for the upper bound also
immediately follows from (S6) by applying Lemma 2 in [3]. O

Proof of Theorem 2] The proof is essentially an application of the main result in [2]. This will
become apparent after we reduce our claim to the setting in the aforementioned paper. We now
examine this reduction.

Imagine that we have access to m = n/K test points

(Xnt1, Yor1, Ung1), -+ s (Xogm, Yotms Ungm)

as well as the training data; we will call this data set the augmented data set. After partitioning the
training data into sets 7y, . .., Zx of size m, we define Zrr 1 = {n +1,...,n+ m} as the set of

test points. For any distinct k, k" € {1,..., K + 1}, let 7k*" define the class probability estimator
obtained by fitting the black box on the data in {1,...,n+m} \ (Z) UZy ). Note that 7%-K+1 = 7k
for any k.

Next, define the matrix R € R +m)x(n+m) with entries
B _ [0, if k(1) = k(j),
S B(XG, Y, Uy @R RGN i k(i) # k),
and the comparison matrix A € {0, 1}("+™)x(n+7) with entries

Aij =1 [Rij > Rﬂ] . (S7)

Note that
Y1 & Coof (Xng1) <= (n+1) € F(A),
where the set F(A) is defined as in [2]:

n+m
FA)=Sie{l,...on+m}: Y Ai;>(1—-a)(n+1)y. (S8)

j=1
The rest of the proof follows directly by applying Lemma [ST|below, which is established by the proof

of Theorem 4 in [2]. To invoke this lemma, we only need to check that A 4 YAXT, where A is
defined as in (S7), and X is any permutation matrix that does not mix points assigned to different
folds (so that the unordered set of probability estimators {ﬁk}iil is invariant). This is easy to verify.
Let o(1),...,0(n + m) be the permutation of the data points corresponding to 3, so that

(BAZT)ij = As()o(s)-
Then, for any 4, j such that k(i) # k(j),
Aoy = 1| B(Xo(ws Yot Usn #CONHOID) > B(X,(5), Yo(y), Up(ys #HOOIH0)|
=1 [E(Xa(tia(z‘)a Uy (ay; T OH9) > B(Xo(5), Yo(), Ua(jﬁﬁk(i)’km)}
<1 [E(Xi,E,Ui;ﬁ’“(“”“(”) > B(X;,Y], Uj;ﬁ"’(“”“(“)]
= Ay

Above, the second equality holds because the black-box estimators #* are invariant to the ordering of

their input data points, and the third equality in distribution holds because the data points (X;, Y7, U;)
are exchangeable. Finally, we also trivially know that A,;,(;) = Ai; for any i,j such that
k(i) = k(j).

O



Lemma S1 (Proved in [2]). Consider any partition of {1,...,n + m} points into K + 1 folds

Ty,...,Ii 41, withm = n/K. If a random matrix A € {0, 1}(+m)x(4m) sarisfies A L ynAxT
for any (n+ m) x (n +m) permutation matrix X that does not mix points assigned to different folds,
then, for any fixed o € (0,1),

P[(n+1)ef(A)]<2a+min{2§ll/;(1+/ff)71[;f/1”}7 ($9)

where the set F(A) is defined as in (S8) and depends on . In the special case where K = n, this
bound simplifies to:

P[(n+1) € F(A)] < 2a. (S10)
Proof of Theorem[S1} The proof is effectively identical to that of Theorem 3 in [2], by the same

argument as in the proof of Theorem 2]
O

Proof of Theorem[S2] Fix any y € Y and suppose Y, 1 = y. Since (X1,Y7),...,(Xny1, Yni1)
are marginally exchangeable, it follows that (X,,11,Y,,11) is exchangeable with all data points in
{i € I, : Y; = y}. By construction of the prediction set in (S3)), we know that

y ¢ Cra “(Xn1)
if and only if
Enpr =min{r € [0,1] 1 y € S(Xpy1, Ups1:7,7)} > 7 > QY ({Ei Vier,)-
Since all the conformity scores F,,; and {Ei}iez2;}/i:y are exchangeable, the probability of the

above miscoverage event can be no larger than «, by the same argument as in [3]].
O

S3 Supplementary experiments with simulated data

S3.1 Implementation details
We have applied the following black-box classification methods to estimate label probabilities:

e a support vector classifier (SVC) with linear kernel, as implemented by the sklearn Python
package with default parameters;

e arandom forest classifier (RFC) with 1000 estimators of maximum depth 5, as implemented
by the sklearn Python package with default parameters (except for the maximum number
of features considered at each split, which we set equal to p).

For the CQC method, we carry out quantile regression on the classification scores using the same
deep neural network employed in [3]].

For simplicity, we split the data into subsets of equal size for all methods, including ours whenever
using split-conformal calibration (Section[2.2)). No effort was made to optimize the size of the splits
for any method, so the empirical comparisons are fair. We do not expect the results of our experiments
to change meaningfully if the sizes of the sample splits are optimized, since our method has the
advantage of requiring one fewer split, and it has a stronger optimality property in theory.

S3.2 Experiments with multinomial model and inhomogeneous features
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Figure S1: Different classification methods on simulated data with 10 classes, for different choices
of calibration and black-box models. The results correspond to 100 independent experiments with
10000 training samples and 5000 test samples each. JK+ is omitted for computational reasons. Other
details are as in Figure [T}



S3.3 Experiments with heteroscedastic decision-tree model and discrete features

We set p = 5 and generate each sample of features X € RP independently as follows: X; = +1 w.p.
3/4,and X1 = —1w.p. 1/4; Xo = +1 w.p. 3/4,and X5 = —2 w.p. 1/4; X3 = +1 w.p. 1/4, and
X3 = —2 w.p. 1/2; X4 is uniformly distributed on {1,...,4}; and X5 ~ N(0,1). The labels YV’
belong to one of 4 possible classes, and their conditional distribution given X = z is given by the
decision tree shown in Figure[S2] which only depends on the first four features.

1 1 1
(36 307 307 10)

w|

X;=+1

pyix] *2=71

=N

Figure S2: A toy model for Py |x in a classification setting with 4 labels.

The performances of the different methods on data generated from this model are compared in
Figure Here, the size of the training sample is equal to 10000 and the size of the test sample
is equal to 5000; all experiments are repeated 100 times. Since these training sets are fairly large,
for computational convenience we do not apply the JK+ method; see Figure [S4|for a comparison
including JK+ with smaller sample sizes.

These results are qualitatively consistent with those from Section [3.2] confirming that our methods
have good approximate conditional coverage compared to the alternatives while not suffering from
a significant power loss. It is interesting to note that the conditional distribution of Y | X is more
complicated here than in the previous example, hence the reason for a larger sample size. Despite this
large sample size, the SVC black-box is unable to learn good estimates of the class probabilities. This
is why methods with marginal coverage have relatively low power and poor conditional coverage. By
contrast, the RFC black-box can learn these class probabilities quite accurately, and thus it allows our
SC and CV+ methods to perform on par with the oracle (especially CV+, as expected). Again, the
alternative methods do not achieve conditional coverage even with the help of the oracle.
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Figure S3: Performance of alternative classification methods on simulated data with 4 classes. Results
from 100 independent experiments with 10000 training samples and 5000 test samples each. Other
details as in Figure[T]
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Figure S4: Performance of alternative classification methods on simulated data with 4 classes. Results
from 100 independent experiments with 1000 training samples and 5000 test samples each. Other
details are as in Figure[S3]



S4 Supplementary experiments with real data

We compare the performance of our methods to that of HCC and CQC on four popular benchmark
data sets:

1. MNIST is a handwritten digit classification data set, containing 60000 grayscale images of
size 28 x 28 pixels, each associated with one of C' = 10 classes. As a pre-processing step,
we apply Principal Component Analysis (PCA) to each image, resulting in a feature vector
X of length p = 50.

2. CIFARI1O is another image classification data set. The data includes 50000 RGB images,
each of size 32 x 32 x 3, belonging to one of C' = 10 classes. We also use PCA to reduce
the dimension to p = 50.

3. Fashion-MNIST contains 60000 images associated with C' = 10 classes of clothes. We run
the same pre-processing step as in MNIST and CIFAR10, resulting in p = 50 features.

4. The task in the Mice Protein Expression data seﬂis to identify the class of a mouse based
on genetic, behavioral and treatment covariates. After applying standard data cleaning, we
have 1080 samples, p = 77 features, and C' = 8 classes.

We use the same baseline predictive algorithms as in Section[S3.1] although with slightly different
RFC parameters—here the number of estimators is 100, and the minimum number of samples at
a leaf node is 3. Additionally, we also consider a neural network (NNet) with one hidden layer of
size 64 and ReL.U activation function. We use the adam optimizer, with a minibatch of size 128, a
learning rate of 0.01, and a total number of epochs equal to 20. The CQC method is implemented as
described in Section In the real data experiments we present a second variant of CQC, namely
CQC-RF, where we replace the quantile neural network algorithm with quantile random forest. To
this end, we use the default skgarden hyper-parameters for quantile random forest, except for the
number of estimators and the minimum number of samples required to split an internal node, which
we set to 100 and 3, respectively.

In the numerical experiments, we set the target coverage level to 90% and compare the coverage,
conditional coverage, and length of the different calibration methods combined with the above
predictive algorithms. The performance metrics are averaged over 100 experiments. The results
in Table [S1|are obtained by randomly selecting ny,;, € {500, 1000} training examples from the
Mice Protein Expression data set, used to fit and calibrate the predictive models. The remaining
Neest € {580, 80} unseen samples formulate a test set, in which we evaluate the methods’ performance.
Tables [S2] [S3] and [S4] correspond to MNIST, Fashion-MNIST, and CIFARIO0 data sets. Each
experiment is conducted by randomly selecting i, € {500, 1000, 5000, 10000} training examples
as well as a disjoint set of 5000 unseen test samples, selected at random.

In sum, all the calibration methods achieve an exact 90% marginal coverage, as guaranteed by the
theory. CV+ and JK+ tend to achieve conditional coverage as well (green colored numbers), and
SC performs slightly worse. In contrast, in most cases CQC, CQC-RF, and HCC fail (red colored
numbers) to obtain the desired conditional coverage. As for the statistical efficiently, HCC often
results in the shortest prediction sets—while failing to attain conditional coverage. Here, our methods
are typically competitive and can even produce smaller prediction sets in some cases.

S5 Supplementary tables

"https://archive.ics.uci.edu/ml/datasets/Mice+Protein+Expression
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