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Appendix1

In this appendix, we provide several additional results:2

• Background mathematical concepts required for the proofs (A1)3

• Proof of the approximation bound (A2)4

• Proof of the Rademacher complexity bound (A3)5

• Proof of the metric learning generalization error bound (A4)6

• Discussion of the regression setting, including generalization error (A5)7

• Discussion of the case where K < n (A6)8

• Some additional details omitted from the discussion of the algorithms (A7)9

• Additional experimental results, including results on regression and classification (A8)10

A1 Covering number11

This is a brief overview of covering numbers from [1]. Let (Ω, ‖ · ‖) be a metric space and Ω ⊂ U.12

For any ε > 0, Xε ⊂ U is an ε-covering of Ω if:13

min
x̂∈Xε

‖x− x̂‖ ≤ ε ∀x ∈ Ω.

The covering number N (Ω, ε, ‖ · ‖) is defined as the minimum cardinallity of an ε-covering of Ω. By14

volumetric arguments, the covering number of the norm ball of radius R in d-dimension B(R) is15

bounded as below:16 (
R

ε

)d
≤ N (B(R), ε, ‖ · ‖) ≤

(
2R

ε
+ 1

)d
.

In this paper we only consider the ‖ · ‖∞ on the input space. We construct a covering set by dividing17

the space into hyper-cubes of side length 2ε as depicted in Figure 1. This construction provides us a18

covering set of size N (B(R), ε, ‖ · ‖∞) ≤ dR/εed.19

A2 Approximation Guarantees20

Before proceeding with the proof we state a useful lemma.21

Lemma 1. [6] For any two vectors r1, r2 ∈ Rd,22

23

sup
‖u‖∞≤ρ

〈r1 − r2,u〉 ≤ δ ⇐⇒ ‖r1 − r2‖1 ≤ δ/ρ.
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Figure 1: Sketch of a 2-dimensional hyper-cube of radius R, covered by∞-norm balls of radius ε.

Proof of Theorem 1.24

Let Xε = {x̂1, . . . , x̂K} be an ε-cover for B(R) as constructed in A1. We have:25

ε =
R

bK1/dc
≤ 2RK−1/d.

Let x̂ = arg minx̂i∈Xε ‖x− x̂i‖∞. We know ‖x− x̂‖∞ ≤ ε due to construction of Xε. Consider26

the piecewise linear function, h : Rd → R, defined as follows:27

h(x) , max
i
φ(x̂i) + 〈∇φ(x̂i),x− x̂i〉. (1)

We have:28

0 ≤ φ(x)− h(x)

≤ φ(x)− φ(x̂)− 〈∇φ(x̂),x− x̂〉
≤ 〈∇φ(x)−∇φ(x̂),x− x̂〉
≤ ‖∇φ(x)−∇φ(x̂)‖1‖x− x̂‖∞
≤ β‖x− x̂‖2∞ ≤ βε2 = 4βR2K−2/d.

Therefore (9) in the main paper is shown. For proving (10) consider covering points x̂i in a δ-ball29

around x.30

〈∇φ(x)−∇h(x),x− x̂i〉
= 〈∇φ(x)−∇φ(x̂i),x− x̂i〉
+ φ(x̂i) + 〈∇φ(x̂i),x− x̂i〉 ∗( < h(x)

)
− h(x̂i)− 〈∇h(x),x− x̂i〉 ∗∗( < −h(x)

)
≤ ‖∇φ(x)−∇φ(x̂i)‖1‖x− x̂i‖∞
≤ β‖x− x̂i‖2∞ ≤ βδ2. (2)

∗ is true due to the way h(x) is defined in (1). ∗∗ is true due to convexity. By a convex combination31

of inequalities in (2) we get:32

〈∇φ(x)−∇h(x),x−
∑
i

αix̂i〉 ≤ βδ2. (3)

Next we will prove x−
∑
i αix̂i can represent any vector r of size ‖r‖∞ ≤ δ − 2ε. From there by33

using Lemma 1 and choosing δ = 4ε we’ll get34

‖∇φ(x)−∇h(x)‖1 ≤ βδ2/(δ − 2ε) ≤ 16βRK−1/d.

2



If δ ≥ 2ε and x is no closer than δ to the boundaries of B(R), we can consider hyper-cubes B(ε)35

fitted to each corner of B(δ) centered at x as in the 2-dimensional case depicted by Figure 2. There36

has to be covering points in each of these ε-hyper-cubes, otherwise their center is further away from37

all covering points by more than ε. As depicted by Figure 2 the convex hull of such covering points38

includes a (δ−2ε)-hyper-cube centered at x. Therefore any vector of size (δ−2ε) can be represented39

by (x−
∑
i αix̂i).
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Figure 2: The 2-dimensional sketch of the input space B(R) along with B(δ) centered at x. Four
dashed vectors represent x− x̂k. Using a convex combination of these vectors we can represent any
vector r (solid vector) of size ‖r‖∞ = δ − 2ε.

40

The proof of (11) in the main paper is done by combining the approximation error of the gradient and41

the convex function as follows:42

Dφ(x,x′)−Dh(x,x′) = φ(x)−φ(x′)−〈∇φ(x′),x−x′〉
− h(x)+h(x′)+〈∇h(x′),x−x′〉
≤ φ(x)− h(x)

+ 〈∇h(x′)−∇φ(x′),x− x′〉
≤ |φ(x)− h(x)|
+ ‖∇φ(x)−∇h(x)‖1‖x− x′‖∞
≤ 36βR2K−1/d.

The other side of the inequality can be shown similarly.43

A3 Rademacher complexity of piecewise linear Bregman divergences44

The Rademacher complexity Rm(F) of a function class F is defined as the expected maximum45

correlation of a function class with binary noise. Bounding the Radamacher complexity of a function46

class provides us with a measure of how complex the class is. This measure is used in computing47

probably approximately correct (PAC) bounds for learning tasks such as classification, regression,48

and ranking. Let49

FP,L , {h : Rd → R|h(x)= max
k∈[K]

aTk x + bk, ‖ak‖1 ≤ L}

be the class of L-Lipschitz max-affine functions. Also let50

DP,L , {h(x)− h(x′)−∇h(x′)T (x− x′)|h ∈ FP,L}
be the class of Bregman divergences parameterized by a max-affine functions.51

52
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Lemma 2. The Radamacher complexity of Bregman divergences parameterized by a max-affine53

function Rm(DP,L) ≤ 4KLR
√

(2 ln(2d+ 2))/m.54

Proof. Define: p(x) , arg maxk a
T
k x + bk55

DP,L = {h(x)− h(x′)−∇h(x′)T (x− x′) | h ∈ FP,L}
= {aTp(x)x + bp(x) − aTp(x′)x− bp(x′) | ‖ai‖1 ≤ L}

= {aTp(x)x + cp(x) − aTp(x′)x− cp(x′)
| ‖ai‖1 ≤ L, ci = bi − bp(0) + LR}.

Note that |ci| ≤ LR:56

−ci = bp(0) − bi − LR = max
k

bk − bi − LR ≥ −LR.

For the other side, consider x such that h(x) = aTi x + bi. If no such x exists, we can discard the ith57

hyper-plane. Therefore:58

−ci = bp(0) − bi − LR = max
k

bk − bi − LR

= h(0)− h(x) + aTi x− LR
≤ L‖0− x‖∞ + ‖ai‖1‖x‖∞ − LR ≤ LR.

Now we are ready to compute the Radamacher complexity:59

Rm(DP,L) =
1

m
Eσ sup

m∑
i=1

σiDh(xi,x
′
i)

=
1

m
Eσ sup

∀k ‖ak‖1≤L
∀k ‖ck‖1≤LR

m∑
i=1

σi(a
T
p(xi)

xi + cp(xi)

− aTp(x′i)
xi − cp(x′i))

≤ 2

m
Eσ sup

∀k ‖ak‖1≤L
∀k ‖ck‖1≤LR

m∑
i=1

K∑
k=1

|σi(aTk xi + ck)|

=
2K

m
Eσ sup

‖a1‖1≤L
‖c1‖1≤LR

m∑
i=1

∣∣∣∣σi [c1/Ra1

]T [
R
xi

] ∣∣∣∣.
The last expression is 2K times the complexity of a Lipschitz linear function which is computed in60

[9], Sec. 26.2. Therefore:61

Rm(DP,L) ≤ 2K

∥∥∥∥ [c1/Ra1

] ∥∥∥∥
1

× sup
i

∥∥∥∥ [Rxi
] ∥∥∥∥
∞

√
(2 ln (2d+ 2))/m

≤ 2K × 2L×R×
√

(2 ln(2d+ 2))/m.

62

A4 PAC bounds for piecewise Bregman divergence metric learning63

In this section we use the Rademacher complexity bounds derived in section A3 along with ap-64

proximation guarantees of section A2 to provide standard generalization bounds for empirical risk65

minimization under our divergence learning framework.66

Proof of Theorem 267

The proof is very similar to that of Radamacher complexity bounds for soft-SVM given in [9]. First68

from Theorem 26.12 in [9] for a ρ-Lipschitz loss function L(f, z) ≤M with probability of at least69

1− δ we have for all f ∈ F :70

Lµ(f) ≤ LSm(f) + 2ρRm(F) +M
√

(2 ln (2/δ))/m.
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Now note that the hinge loss is 1-Lipschitz, bounded by 1. By substituting F = DP,L, f = hm and71

L = Lhinge we get:72

Lhingeµ (Dhm) ≤ LhingeSm
(Dhm) + 4Rm(DP,L)

+
√

(2 ln (2/δ))/m w.p. ≥ 1− δ. (4)

Since we are also learning the Lipschitz constant L, for having a generalization bound we should73

express a uniform result for all L. We use the trick used in [9] for providing the union bound. To74

proceed for any integer i take Li = 2i and take δi = δ/(2i2). Using (4) we have for any L ≤ Li,75

Lhingeµ (Dhm) ≤ LhingeSm
(Dhm) + 4Rm(DP,L)

+
√

(2 ln (2/δi))/m w.p. ≥ 1− δi.

Applying the union bound and noting
∑∞
i=1 δi ≤ δ this holds for all i with probability at least 1− δ.76

Now take i = dlog2 Le ≤ log2 L+ 1 then 2
δi

= (2i)2

δ ≤ 4 log2 L
δ . Therefore:77

Lhingeµ (Dhm) ≤ LhingeSm
(Dhm) + 4Rm(DP,L)

+ (
√

4 ln(4 log2 L) + ln (1/δ))/
√
m,

with probability at least 1− δ.78

A5 Regression Setting79

Next we consider the regression scenario, and discuss generalization bounds. Here we are interested80

in the expected squared loss between the Bregman divergence obtained from the minimizer of the81

regression loss (5) and the true divergence value, on unseen (test) data.82

Suppose the function `t consists of a pair of points from X , say xit and xjt , and the yt value is a83

noisy version of the the target (ground truth) Bregman divergence between xit and xjt . A standard84

least squares loss function (with no regularization) would seek to solve85

min
φ∈F

m∑
t=1

(Dφ(xit ,xjt)− yt)2.

86

Suppose we observe the data Sm = {(xit ,xjt , yt)|t ∈ [m]}, where x ∈ Rd and y ∈ R. We will87

model the response random variable y as a Bregman divergence Dh(xi,xj) with h ∈ FP,L. Let88

hm : Rd → R be the empirical risk minimizer of89

min
h∈FP,L

1

m

m∑
t=1

(Dh(xit ,xjt)− yt)2. (5)

We know from (4) in the main paper that Dh(xi,xj) = bi − bj − aTj (xi − xj), subject to the90

constraints given in Lemma 1 of the main paper. Therefore (5) can be solved as a quadratic program.91

For the following generalization error bounds, we require that the training data be drawn iid. Note that92

while there are known methods to relax these assumptions, as shown for Mahalanobis metric learning93

in Bellet and Habrard [2], we assume here for simplicity that data is drawn iid1 from X × X × Y94

(and analogously for the relative distance case) with distribution µ. Each instance, t ∈ [m], is a triple,95

(xit ,xjt , yt) drawn iid from µ.96

We have the following result:97

Theorem 1. Consider Sm = {(xit ,xjt , yt), t ∈ [m]} ∼ µm. Let ‖ · ‖2µ = E
[
| · |2

]
and assume,98

A1: ‖x‖∞ ≤ R and sup |yt − E[yt|xit ,xjt ]| ≤ σ, i.e. both the input and noise are bounded.99

1In many cases this is justified. For instance, in estimating quality scores for items, one often has data
corresponding to item-item comparisons [8]; for each item, the learner also observes contextual information.
The feedback, yt depends only on the pair (xit ,xjt), and as such is independent of other comparisons.
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A2: E[yi|xit ,xjt ] = Dφ(xit ,xjt), for a L-Lipschitz β-smooth function φ.100

The generalization error of the empirical risk minimizer Dhm of the regression loss on Sm,101

‖Dhm − yt‖2µ ≤ ‖Dhm − yt‖2Sm
+ 16MKLR

√
2 ln(2d+ 2)/m

+ M2
√

ln(1/δ)/(2m),

with probability at least 1− δ. Furthermore, Dhm converges to the ground truth Bregman divergence102

Dφ and the approximation error is bounded by103

‖Dhm −Dφ‖2µ ≤ 362β2R4K
−2
d

+ 16MKLR
√

2 ln(2d+ 2)/m

+ M2
√

2 ln(2/δ)/m,

where M = 4LR+ σ. By choosing K = dm
d

4+2d e we get: ‖Dhm −Dφ‖2µ = Op(m−
1
d+2 ).104

Consider Sm ∼ µm be a set of m i.i.d data points. If |f(x)− y| ≤M for all f ∈ F ,x and y, by a105

standard Rademacher generalization result:106

‖f(x)− y‖2µ ≤ ‖f(x)− y‖2Sm + 2MRm(F) +M2

√
ln 1/δ

2m
,

with probability greater than 1 − δ. By substituting f = Dhm , and F = DP,L in the above we107

immediately get the first line of the proposition.108

Further for the empirical risk minimizer fm we have that for all f̂ ∈ F that doesn’t depend on the109

training data Sm:110

‖fm(x)−f∗(x)‖2µ ≤ ‖f̂(x)−f∗(x)‖2µ + 2MRm(F)

+ 2M2
√

(ln 2/δ)/(2m), (6)

where f∗ is E[y|x]. This comes from the fact that during training fm was chosen and not f̂ . By111

substituting fm = Dhm , f∗ = Dφ, f̂ = Dh = arg infh∈FP,L ‖Dφ −Dh‖∞ and F = DP,L in (6)112

we have:113

‖Dhm −Dφ‖2µ ≤‖Dh −Dφ‖2µ + 2MRm(DP,L)

+2M2
√

(ln 2/δ)/(2m)

≤‖Dh −Dφ‖2∞ + 2MRm(DP,L)

+2M2
√

(ln 2/δ)/(2m)

Thm1
≤ (36R2βK

−1
d )2 + 2MRm(DP,L)

+2M2
√

(ln 2/δ)/(2m).

Now by substituting M = 4LR + σ and Rm(DP,L) from the value given by Lemma 2 we get the114

proposition. The only thing left to prove is to show ∀h ∈ FP,L and ∀(x,x′, y); the error is bounded,115

i.e.|y −Dh(x,x′)| ≤M = 4LR+ σ:116

|y −Dh| ≤ |Dh − E[y|x,x′]|+ |y − E[y|x,x′]|
≤ |Dh −Dφ|+ σ

≤ max{|Dh|, |Dφ|}+ σ

= |φ(x)− φ(x′)−∇φ(x′)T (x− x′)|+ σ

≤ 2‖∇φ(x′)‖1‖x− x′‖∞ + σ = 4LR+ σ.

A6 Farthest-point clustering and K < n117

The algorithm given in the paper assumes that the number of hyperplanes K is equal to n; this is118

mainly for simplicity of presentation. In practice we often want to have K < n. Here we discuss119

details of this approach, which we utilize in our experiments.120
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We apply a farthest-point clustering to the data first into K clusters, and then fix the assignments121

of points to hyperplanes using this clustering. With this assignment in place, we can then apply a122

minor modification to the PBDL algorithm to approximate the Bregman divergence. Farthest-point123

clustering is a simple greedy algorithm for a K-center problem, where the objective is to divide the124

space into K partitions such that the farthest distance between a data point and its closest partition125

center µi is minimized. This problem can be formulated as: given a set of n points x1, . . . , xn a126

distance metric ‖·‖ and a predefined partition sizeK, find a partition of data C1, . . . , Ck and partition127

centers µ1, . . . , µK to minimize the maximum radius of the clusters:128

max
i

max
x∈Ci

‖x− µi‖.

The farthest point clustering introduced in [5] initially picks a random point x00 as the center of129

the first cluster and adds it to the center set C. Then for iterations t = 2 to k does the following:130

at iteration t, computes the distance of all points from the center set d(x,C) = minµ∈C ‖x − µ‖.131

Add the point that has the largest distance from the center set (say xt0) to the center set. Report132

x00 , . . . , xK0
as the partition centers and assign each data point to its closest center.133

Authors of [5] proved that farthest-point clustering is a 2-approximation algorithm (i.e. , it computes134

a partition with maximum radius at most twice the optimum) for any metric. Therefore there is135

a relation between the partition found by farthest-point clustering and covering set. Assume a set136

{x1, . . . , xn} ⊂ Ω has a ε-cover of size K over a metric ‖ · ‖. The partition found by farthest point137

clustering of size K is a 2ε-cover for {x1, . . . , xn}.138

A7 Parameterizing Bregman divergences by piecewise linear functions139

We parameterize the Bregman divergence using max-affine functions h(x) = maxk=1,...,K a
T
k x+bk.140

Using Lemma 1 from our paper with a predefined partition of the training data points x1, . . . , xn141

to C = {C1, . . . , CK} and defining the mapping pi=̇k given xi ∈ Ck, we can write any pairwise142

divergence on training set as143

Dh(xi, xj) = h(xi)− h(xj)−∇h(xj)
T (xi − xj)

= (aTpixi + bpi)− (aTpjxj + bpj )− aTpj (xi − xj)

= bpi − bpj + (api − apj )Txi,

which is linear in terms of the parameters ak, bk, k = 1, . . . ,K. Therefore if the loss function144

L(φ) =

m∑
i=1

ci(Dφ, X, y) + λr(φ),

is a convex function of pairwise divergences, it will be a convex loss in terms of parameters. Further-145

more one needs to satisfy the constraints given by Lemma 1 in our paper to make sure h(x) remains146

convex, i.e:147

bpj + aTpjxj ≥ bk + aTk xj , j = 1, . . . , n, k = 1 . . . ,K,

which are linear inequality constraints. Therefore one can minimize the loss L(φ) as a convex148

optimization problem.149

A8 Additional Experimental Results150

Bregman divergence regression on synthetic data151

In this section, we experiment with regression tasks on synthetic data. In particular, we show that if152

data arises from a particular Bregman divergence, our method can discover the underlying divergence153

whereas Mahalanobis metric learning methods cannot.154

Data: We generate 100 synthetic data points in three ways: i) discrete probability distributions155

{(p1, p2)}|p1 + p2 = 1, p1, p2 ≥ 0} sampled from a Dirichlet probability distribution Dir([1]1×2),156

with a target value y computed as the KL divergence between pairs of distributions; ii) symmetric157

2-2 matrices sampled from a Wishart distribution W2([1]1×2, 10) with target value y computed158

as the LogDet divergence between pairs; iii) data points are sampled uniformly from a unit-ball159

B([0.6]1×2, 1)) with target value y computed as the Itakura-Saito distance between pairs; iv) data160

points are sampled uniformly from a unit-ball B([0.6]1×2, 1)) with target value y computed as the161
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Figure 3: Regression with data from various Bregman divergences using PBDL and linear metric
learning.

Mahalanobis distance between pairs. In each case we add Gaussian noise with stdev 0.05 to the ground162

truth divergences. For training, we provide all pairs of an increasing set of points ({(xi,xj), yi,j}163

for (i, j) in the power set of {x1, . . . ,xm}) and the target values yi as noisy Bregman divergence of164

those pairs. For testing, we generate 1000 data points from the same distribution and use noiseless165

Bregman divergences as targets. Results are averaged over 50 runs.166

Details and observations: For Bregman regression, we choose the Lipschitz constraint of PBDL for167

regression to be∞ since the result was not sensitive to the choice of L. For Mahalanbis regression168

we do gradient descent for optimizing the least-square fit of a general Mahalanobis metric with the169

observed data which is done until convergence (as the problem is convex). We see from Figure 2170

that Mahalanobis metric learning is not flexible enough to model the data coming from the first three171

divergences, whereas the proposed divergence learning framework PBDL is shown to drastically172

improve the fit and seems to be a consistent estimator as motivated earlier in Theorem 1.173

Nearest neighbor classification and additional data sets174

We also present results on nearest neighbor classification and more data sets. Table 2 gives some175

additional performance numbers; in particular, we have added two new data sets and shown results of176

k-nearest neighbor classification.177
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Table 1: Learning Bregman divergences (PDBL) compared to existing linear and non-linear metric
learning approaches on standard UCI benchmarks. PDBL performs first or second among these
benchmarks in 22 of 30 comparisons, outperforming all of the other methods. Note that the top two
results for each setting are indicated in bold.

Clustering Ranking KNN ACC

Data-set Algorithm Rand-Ind % Purity % AUC % Ave-P %

PBDL 94.5± 0.8 95.6± 0.7 96.5± 0.4 93.5± 0.7 95.3± 0.7
ITML [3] 96.4± 0.8 97.0± 0.7 97.5± 0.3 95.3± 0.5 97.4± 0.6

Iris LMNN [10] 90.0± 1.3 91.0± 1.3 94.3± 0.6 89.9± 0.8 96.1± 0.6
GB-LMNN [7] 88.7± 1.5 89.9± 1.5 94.0± 0.6 89.7± 0.8 95.6± 0.6
GMML [11] 93.8± 0.9 94.5± 0.9 95.7± 0.4 92.0± 0.6 96.6± 0.5
Kernel NCA [4] 89.9± 1.3 90.3± 1.1 93.4± 0.6 88.3± 0.9 91.8± 1.4

PBDL 65.2± 1.9 77.2± 1.9 65.8± 0.8 71.1± 0.8 81.4± 1.0
ITML 72.2± 1.5 83.3± 1.2 71.5± 0.7 74.6± 0.6 85.0± 1.0

Ionosphere LMNN 58.3± 1.2 70.8± 1.2 62.2± 1.3 69.8± 0.9 87.1± 0.8
GB-LMNN 58.5± 0.9 70.9± 1.0 64.4± 1.3 71.2± 1.0 88.3± 0.9
GMML 61.7± 1.8 73.9± 1.7 66.3± 0.8 71.3± 0.6 82.3± 1.0
Kernel NCA 65.4± 1.7 77.7± 1.5 68.8± 1.1 72.0± 0.9 84.3± 1.0

PBDL 84.4± 0.7 87.8± 0.5 86.0± 0.4 82.9± 0.5 91.4± 0.4
ITML 68.9± 0.9 77.5± 0.7 80.1± 0.7 74.3± 0.8 90.0± 0.6

Balance LMNN 69.5± 1.8 77.0± 1.7 75.9± 1.3 70.0± 1.2 87.4± 0.5
Scale GB-LMNN 71.4± 1.5 79.7± 1.4 78.1± 1.1 72.2± 1.0 87.8± 0.6

GMML 72.9± 0.8 80.2± 0.8 79.0± 0.4 72.8± 0.5 87.2± 0.6
Kernel NCA 65.3± 1.5 73.0± 1.6 68.7± 1.8 63.7± 1.9 79.9± 1.7

PBDL 83.7± 2.9 85.0± 3.2 91.0± 0.9 86.7± 1.2 94.3± 0.9
ITML 82.8± 2.6 82.5± 3.1 89.1± 1.1 84.6± 1.4 93.8± 1.0

Wine LMNN 70.0± 0.8 68.8± 1.2 82.4± 0.8 76.2± 1.1 91.7± 0.8
GB-LMNN 70.6± 0.9 69.3± 1.4 83.7± 0.1 78.5± 1.3 93.8± 0.8
GMML 83.2± 2.9 81.0± 3.2 91.0± 0.7 88.5± 0.7 96.5± 0.8
Kernel NCA 70.4± 1.3 71.3± 1.4 75.1± 0.9 67.7± 1.1 67.5± 1.2

PBDL 57.9± 1.2 75.9± 0.7 54.9± 0.4 68.2± 0.6 75.7± 0.7s
ITML 60.2± 1.0 75.8± 0.7 54.2± 0.4 66.4± 0.7 74.5± 0.6

Transfusion LMNN 59.4± 1.3 76.3± 0.6 54.0± 0.5 67.1± 0.7 75.0± 0.7
GB-LMNN 58.9± 1.2 76.3± 0.6 54.8± 0.6 67.2± 0.7 74.1± 0.7
GMML 59.3± 1.3 76.6± 0.7 54.0± 0.5 67.5± 0.7 76.1± 0.6
Kernel NCA 63.7± 0.7 76.2± 0.7 52.2± 0.8 65.7± 0.8 74.7± 0.8

PBDL 98.2± 0.3 98.6± 0.2 97.3± 0.3 95.6± 0.5 99.1± 0.2
ITML 76.2± 1.6 74.9± 2.5 90.5± 0.5 83.7± 0.5 99.0± 0.2

Figure 1 LMNN 73.4± 1.7 69.3± 2.6 90.4± 0.7 83.2± 0.7 98.8± 0.2
data GB-LMNN 73.3± .5 71.3± 2.6 90.5± 0.8 83.4± 1.0 99.2± 0.2

GMML 73.9± 1.8 70.8± 2.8 91.4± 0.2 84.2± 0.3 98.9± 0.2
Kernel NCA 76.5± 2.4 73.9± 3.7 90.4± 0.6 83.9± 0.6 98.0± 0.5
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