
A Experimental details

Icosahedral MNIST We use node and edge neighbourhoods with k “ 1. We find the edge
neighbourhood isomorphism classes and for each class, the generators of the automorphism group
using software package Nauty. The MNIST digit input is a trivial feature, each subsequent feature is
a vector feature of the permutation group, except for the last layer, which is again trivial. We find a
basis for the kernels statisfying the kernel contstraint using SVD. The parameters linearly combine
these basis kernels into the kernel used for the convolution. The trivial baseline uses trivial features
throughout, with is equivalent to a simple Graph Convolutional Network. The baseline uses 6 times
wider channels, to compensate for the smaller representations.

We did not optimize hyperparameters and have copied the architecture from Cohen et al. [2019]. We
use 6 convolutional layers with output multiplicities 8, 16, 16, 23, 23 ,32, 64, with stride 1 at each
second layer. After each convolution, we use batchnorm. Subsequently, we average pool over the
nodes and use 3 MLP layers with output channels 64, 32 and 10. We use the Adam optimizer with
learning rate 1E-3 for 200 epochs. Each training is on one NvidiaV100 GPU with 32GB memory and
lasts about 2 hours.

Different from the results in the IcoCNN paper, we are equivariant to full icosahedral symmetry,
including mirrors. This harms performance in our task. Further differnt is that we use an icosahedron
with 647 nodes, instead of 2.5k nodes, and do not reduce the structure group, so for all non-corner
nodes, we use a 7 dimensional representation of S7, rather than a regular 6D representation of D6.

Graph Classification For the graph classification experiments, we again use node and edge neigh-
bourhoods with k “ 1. This time, we use a GCN message network. At each input of the message
network, we add two one-hot vectors indicating p and q. The bioinformatics data sets have as initial
feature a one-hot encoding of a node class. The others use the vertex degree as initial feature.

We use the 10-fold cross validation method as described by Zhang et al. [2018]. On the second fold,
we optimize the hyperparameters. Then for the best hyperparams, we report the averaged accuracy
and standard deviation across the 10-folds, as described by Xu et al. [2018]. We train with the Adam
optimizer for 1000 epochs on one Nvidia V100 GPU with 32GB memory. The slowest benchmark
took 8 hours to train.

We use 6 layers and each message network has two GCN layers. All dimensions in the hidden layers
of the message network and between the message networks are either 64 or 256. The learning rate is
either 1E-3 or 1E-4. The best model for MUTAG en PTC used 64 channels, for the other datasets we
selected 256 channels. For IMDB-BINARY and IMDB-MULTI we selected learning rate 1E-3, for
the others 1E-4.

B Additional Experiments Model Random Regular Str. Regular Isom.

GCN 1 6E-8 0 0
PPGN 1 0.97 0 6E-8
GCN2 1 1 1 6E-8

Table 3: Rate of pairs of graphs in set found dissimilar in
expressiveness experiment. An ideal method finds only iso-
morphic graphs not dissimilar.

Expressiveness Similar to Bourit-
sas et al [2020], we empirically evalu-
ate the expressiveness of our method.
We use a neural network with ran-
dom weights on a graph and compute
a graph embedding by mean-pooling.
Then we say that the neural network
finds two graphs in a set of graphs to
be different if the graph embeddings differ by an L2 norm of more then a multiple of ε “ 10´3 of the
mean L2 norms of the embeddings of the graphs in the set. The networks is most expressive if it only
finds isomorphic graphs to be not different. We test this on (A) a set 100 of random non-isomorphic,
non-regular graphs, (B) a set of 100 non-isomorphic regular graphs, (C) a set 15 of non-isomorphic
strongly regular graphs (see http://users.cecs.anu.edu.au/~bdm/data/graphs.html) and
(D) a set of 100 isomorphic graphs, where all graphs have 25 nodes and average of degree 6. We
measure average difference rate between pairs of graphs in the sets over 100 different weight ini-
tialisations. We compare the simple invariant message passing (GCN), PPGN [Maron et al., 2019],
and our GCN2. We see that only our GCN2 can disambiguate between the strongly regular graphs,
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showing the expressivity of GCN2. A version of PPGN that uses higher order tensors should also be
able to discriminate strongly regular graphs, but at even higher computational cost.
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Figure 7: Runtime cost of one forward-
pass on square lattices.

Runtime Cost As an additional experiment we show the
runtime cost of one forward-pass of GCN, PPGN and our
GCN2. The models have three layers and 32 dimensional
activations. For simplicity, we use a square lattice as graph,
in which the number of edges is proportional to the number
of nodes. In the results below, we observe that GCN2 has
indeed a linear scaling and a multiplicative constant about
2x compared to GCN. If the average degree of the graph
is higher, this constant may be higher. The global PPGN
methods scales superlinearly. Experiments are run on a
NVidia GeForce RTX 2080 GPU.

C Neighbourhood Selection

Definition C.1. A neighbourhood assignmentN , consists
of

• a mapping from a graph G and a node p P VpGq to node neighbourhood NppGq Ď G

• a mapping from a graph G and an edge pp, qq P VpGq to edge neighbourhood NpqpGq Ď G

such that

1. any graph isomorphism φ : GÑ G1 restricts to a local node isomorphisms for each node
p P VpGq: φp :“ φ|NppGq : NppGq Ñ NφppqpG1q and to a local edge isomorphism for each
edge pp, qq P EpGq: φpq :“ φ|NpqpGq : NpqpGq Ñ NφppqφpqqpG1q

2. for any graph G and edge pp, qq P EpGq we have that NppGq Ď NpqpGq Ě NqpGq

3. any local edge isomorphism ψ : NpqpGq Ñ Np1q1pG1q restricts to local node isomorphisms:
ψ0 :“ ψ|NppGq : NppGq Ñ Np1pG1q, ψ1 :“ ψ|NqpGq : NqpGq Ñ Nq1pG1q.

The first criterion ensures that global graph isomorphisms translate to local isomorphisms, so that
that local naturality implies global naturality. The second and third criteria guarantee that local edge
isomorphisms translate into local node isomorphisms, which is necessary for the local naturality
criterion to be well-defined. For notational simplicity, we write Gp :“ NppGq and Gpq :“ NpqpGq.

D Proof of global naturality of local NGN kernel

Theorem 2. Let k be a local NGN kernel between node representations ρ and ρ1, consisting of
for each node neighbourhood Gpq a map kpq : ρpGpq Ñ ρ1pGqq satisfying for any local edge
isomorphism ψ : Gpq Ñ G1p1q1 that

ρ1pψqq ˝ kpq “ kp1q1 ˝ ρpψpq. (7)

Denote by ρ̂ and ρ̂1 the global graph representations induced by local node representations ρ and ρ1.
Then the layer

KGpvqq “
ÿ

pp,qqPEpGq

kpqpvpq (8)

satisfies the global NGN naturality condition, for any global graph isomorphism φ : GÑ G1

ρ̂1pφq ˝KG “ KG1 ˝ ρ̂pφq. (9)

Proof. We need to show that for any feature v P ρ̂pGq, that ρ̂1pφqpKGpvqq “ KG1pρ̂pφqpvqq P ρ̂1pG1q,
which we do by showing the node features are equal at each q1 P VpG1q. Denote φp and φq as
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the restriction of graph isomorphism φ : G Ñ G1 to the node neighbourhoods of p and q. Let
p1 “ φppq, q1 “ φpqq. Then we have that

ρ̂1pφqpKGpvqqq1 “ ρ1pφqqpKGpvqqq

“ ρ1pφqq

¨

˝

ÿ

pp,qqPEpGq

kpqpvpq

˛

‚

“
ÿ

pp,qqPEpGq

ρ1pφqqpkpqpvpqq

“
ÿ

pp,qqPEpGq

kp1q1pρpφpqpvpqq

“
ÿ

pp,qqPEpGq

kp1q1pρ̂pφqpvqp1q

“
ÿ

pp1,q1qPEpG1q

kp1q1pρ̂pφqpvqp1q

“ KG1pρ̂pφqpvqqq1 .

where in the third line we use linearity of ρ1, in the fourth line we recognise that φ restricts to local
edge isomorphism φpq and apply the constraint on the local NGN kernel and in the fifth line we use
the bijection between EpGq and EpG1q.

E Message Network gives Local NGN Kernel

To define the message network, we first need to define node features ρ, ρ1 and edge features τ, τ 1,
completely analog to how node features are defined. Furthermore, we need for each edge pp, qq
embedding map αpq : ρpGpq Ñ τpGpqq and projection map βpq : τ 1pGpqq Ñ ρ1pGqq. These
should satisfy that for any edge isomorphism ψ : Gpq Ñ G1p1q1 , αp1q1 ˝ ρpψpq “ τpψq ˝ αpq
and βp1q1 ˝ τ 1pψq “ ρ1pψqq ˝ βpq, meaning that isomorphisms commute with embeddings and
projections. For each edge pp, qq the adjacency matrix can be encoded as an edge feature τ as matrix
Apq P τApGpqq.

When all representations are tensor products of the standard representation of the permutation group,
we can use a single message network Ψ taking as input the embedding of the input node feature
αpqpvpq and the adjacency matrix Apq and outputting an output edge feature τ 1pGpqq. When Ψ
is an equivariant graph network, we have that σΨpv,Aq “ Ψpσv, σAq for any permutation σ in
the appropriate permutation representation. The local NGN kernel is then defined as kpqpvpq “
βpqpΨpαpqpvpq, Apqqq.

Then this kernel satisfies the local NGN naturality for any edge isomorphism ψ : Gpq Ñ G1p1q1 (Eq.
4):

kp1q1pρpψpqpvqq “ βp1q1pΨpαp1q1pρpψpqpvpqq, Ap1q1qq

“ βp1q1pΨpτpψqpαpqpvpqq, Ap1q1qq

“ βp1q1pΨpτpψqpαpqpvpqq, τpψqpApqqqq

“ βp1q1pτ 1pψqpΨpαpqpvpq, pApqqqqq

“ ρ1pψqqβpqpΨpαpqpvpq, pApqqqqq

“ ρ1pψqqpkpqpvpqq

where in the second line we used the commutation of α, in the third line we use that Ap1q1 “

τpψqpApqq as an immediate consequence of the fact that ψ is an edge neighbourhood isomorphism,
in the fourth line the equivariance of Ψ, in the fifth line the commutation of β,
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Figure 8: Node and edge neighbourhood on a triangular tiling.

F Reduction to Group & Manifold Gauge Equivariance

The two dimensional plane has several regular tilings. These are graphs with a global symmetry
that maps transitively between all faces, edges and nodes of the graph. For such a tiling with
symmetry group G¸ T , for some point group G and translation group T , we can show that when
the neighbourhood sizes and representations are chosen appropriately, the natural graph network is
equivalent to a Group Equivariant CNN of group G Cohen and Welling [2016].

For sufficiently large node neighbourhoods, the node automorphisms equal the point group G of the
lattice, thus, from any representation ρG ofGwith representation space V , we can build a node feature
ρ with for each node p, ρpGpq “ V and in which all node isomorphisms ψ have ρpψq “ ρGpgq for
some group element g P G. The way to construct this, is to pick one reference node p, make an
identification of the automorphism group AutpGpq with G and then for all isomorphic nodes p1 pick
one isomorphism ψ : Gp Ñ G1p1 with ρpψq “ idV . The functor axioms then fully specify ρ.

Now, as an example consider one of the tilings of the plane, the triangular tiling. As shown in figure 8,
the node neighbourhood has as automorphism group the dihedral group of order 6, D6, so we can use
features with reduced structure group D6. The kernel kpq is constrained by one automorphism, which
mirrors along the edge. A Natural Graph Network on these reduced features is exactly equivalent
to HexaConv [Hoogeboom et al., 2018]. Furthermore, the convolution is exactly equivalent to the
Icosahedral gauge equivariant CNN [Cohen et al., 2019] on all edges that do not contain a corner
of the icosahedron. A similar equivalence can be made for the square tiling and a conventional D4

planar group equivariant CNN [Cohen and Welling, 2016] and a gauge equivariant CNN on the
surface of a cube.
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