
Supplementary Materials for
Continual Learning with Node-Importance based

Adaptive Group Sparse Regularization

Sangwon Jung1∗, Hongjoon Ahn2∗, Sungmin Cha1 and Taesup Moon1,2

1Department of Electrical and Computer Engineering, 2 Department of Artificial Intelligence,
Sungkyunkwan University, Suwon, Korea 16419

{s.jung, hong0805, csm9493, tsmoon}@skku.edu

1 Proof of Lemma 1

From (Eq.(3), manuscript), proxαf (v) minimizes the convex function

`(θ) , c‖θ − θ0‖2 +
1

2α
‖θ − v‖22, (1)

and for brevity, denote θ∗ := proxαf (v) as the minimizer. Denoting ∂θ`(θ) as the set of subgradients
of `(θ), we know that θ∗ ∈ {θ : ∂θ`(θ) = 0} since `(θ) is convex. Also, by denoting w as the
subgradient of ‖θ − θ0‖2 at θ∗, we then have the optimality condition,

1

α
(v − θ∗) = cw. (2)

Since ‖θ − θ0‖2 is not differentiable at θ = θ0, we know

w =

{
θ∗−θ0

‖θ∗−θ0‖2
if θ∗ 6= θ0

∈ {w : ‖w‖2 < 1} if θ∗ = θ0
. (3)

Now, taking `2-norm on both sides of (2), we can deduce

θ∗ = θ0 if and only if ‖v − θ∗‖2 < αc. (4)

Moreover, if θ∗ 6= θ0, we can derive from (2) and (3) that

‖v − θ0‖2 − αc = ‖θ∗ − θ‖2 ≥ 0, (5)

and correspondingly,

θ∗ =
(

1− αc

‖θ0 − v‖2

)
v +

αc

‖θ0 − v‖2
θ0. (6)

Combining (4) and (6), we have the lemma.

2 Additional ablation studies

2.1 Ablation study of ρ

Here, we analyze the effect of ρ for the [Rand-init] described in Section 3.4 (manuscript) (I.2). Figure
1 below reports the average accuracy on CIFAR-100 for AGS-CL and MAS. For AGS-CL, we fixed
(µ, λ) = (10, 400) and varied ρ ∈ {0.1, . . . , 0.5}, and for MAS, we used the optimal hyperparameter.

∗Equal contribution.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

First, we observe that for ρ ≤ 0.5, AGS-CL is not very sensitive to ρ, and it outperforms MAS for all
ρ. Second, we observe that ρ affects the plasticity for learning new tasks. Namely, while ρ = 0.1 and
ρ = 0.5 achieve the same final average accuracy, we note ρ = 0.1 suffers earlier since it does not
sufficiently grow the network capacity for learning new tasks, whereas ρ = 0.5 suffers later since it
uses up the network capacity too much in early tasks and makes the network too stable for later tasks.
Thus, appropriate ρ may find the right trade-off between the sparsity and the used capacity of the
network and achieve higher average accuracy.

2 4 6 8 10
Task

0.62

0.64

0.66

0.68

0.70

Ac
cu

ra
cy

CIFAR-100

: 0.1
: 0.2

: 0.3
: 0.4

: 0.5
MAS

Figure 1: Average accuracy of AGS-CL on CIFAR-100 depending on ρ

2.2 Effect of PGD updates

2 4 6 8 10
Task

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Ac
cu

ra
cy

CIFAR-100

w/ PGD
w/o PGD

(a) Average accuracy with and without PGD.

2 4 6 8 10
Task

0.00

0.05

0.10

0.15

0.20

Sp
ar

sit
y

w/ PGD
w/o PGD

0.0

0.2

0.4

0.6

0.8

1.0

Us
ed

 c
ap

ac
ity

(b) Sparsity (decreasing curves) and used capacity (in-
creasing curves) with and without PGD.

Figure 2: Ablation study on PGD for CIFAR-100

As mentioned in Section 3.3 (manuscript), our PGD update plays a critical role in achieving high
accuracy. Here, we compare with a method without PGD. Figure 2(a) and Figure 2(b) show the
average accuracy and the sparsity and used capacity on CIFAR-100. ‘w/o PGD’ in Figure 2 indicates
training the network without PGD, i.e., the Adam step was used for optimizing Lt(θ) (Eq.(2),
manuscript) which implies the combined loss of LTS,t(θ) and group sparse regularizations(term (a)
and term (b) of Eq.(2), manuscript). Since optimizing Lt(θ) using Adam cannot achieve the global
optimal point of group sparse regularization, we used a proper threshold τ to modify the definition of
G0 in (Eq.(1), manuscript) and the used capacity. Thus, we define Gt−10 , {n` : Ωt−1n`

< τ} ⊆ G, and
used capacity as |{n` : ‖θ̂(t)n` − θ̂

(t−1)
n` ‖2 < τ}|/|G|. Except for above definitions, all the common

hyperparameters and training settings are same as ‘w/ PGD’, and we set the threshold τ = 10−4.

Followings are our observations. First, the average accuracy (Figure 2(a)) of ‘w/o PGD’ is much
lower than ‘w/ PGD’, which indicates that our PGD updates not only require less hyperparameters
(i.e., does not need τ threshold), but also does a much more accurate sparsification and freezing for
achieving high accuracy. Second, we observe the sparsity (Figure 2(b)) of ‘w/o PGD’ decreases

2

much faster than ‘w/ PGD’. The reason is because the weights associated with the nodes in Gt0 are
not exactly zero, hence, the gradients for those weights do not vanish, which cause the unimportant
nodes in Gt0 also continuously learn in every task. From these results, we conclude our PGD update is
essential in AGS-CL.

2.3 Comparison with EWC

0.75 0.80 0.85 0.90 0.95
Plasticity

0.94

0.96

0.98

1.00

St
ab

ilit
y

AGS-CL
EWC
MAS

Figure 3: Plasticity (P) and stability
(S) for CIFAR-100

We additionally evaluate the performance of EWC with
two measures, plasticity (P) and stability (S), which are
proposed in (Figure 5(c), manuscript). Figure 3 reports
the trade-offs between P and S for AGS-CL, MAS and
EWC. The plotted trade-offs of EWC are over the λ and the
others are the same as (Figure 5(c), manuscript). Note that
although EWC has comparable P-S trade-offs with MAS,
AGS-CL apparently has the better P-S trade-offs than EWC
and MAS.

3 Implementation details

3.1 Supervised learning

In CIFAR-100, CIFAR-10/100 and Omniglot 2, we train all methods with mini-batch size of 256 for
100 epochs using Adam optimizer [1] with initial learning rate 0.001 and decaying it by a factor of
3 if there is no improvement in the validation loss for 5 consecutive epochs, similarly as in [4]. In
CUB2003, we train all methods with mini-batch size 64 for 40 epochs using SGD with momentum
0.9 with initial learning rate 0.005 and decay it by a factor of 10 after training 30 epochs.

3.1.1 Hyperparameters for supervised learning experiments

The details on hyperparameters are in Table 1. For AGS-CL, we set η to 0.9 and for RWALK, we set
α to 0.9 for all datasets. We extensively searched the best hyperparameter for each method to make
the comparison as fair as possible.

Table 1: Hyperparameters for supervised learning experiments

Methods\Dataset CIFAR-100 CIFAR-10/100 Omniglot CUB200 Sequence of
8 different datasets

AGS-CL λ (400)
µ(10), ρ(0.3)

λ (7000)
µ(20), ρ(0.2)

λ (1000)
µ(7), ρ(0.5)

λ (1.5)
µ(0.5), ρ(0.1)

λ (400000)
µ(40), ρ(0.4)

EWC λ (10000) λ (25000) λ (500000) λ (40) λ (1000)
SI c (1.0) c (0.7) c (0.85) c (0.75) -

RWALK λ (8) λ (6) λ (70) λ (50) -
MAS λ (4) λ (1) λ (7) λ (0.6) λ (0.1)
HAT c (2.5), smax(400) c (0.1), smax(400) c (2.5), smax(400) - -

3.1.2 Details on network architectures

The details on network architectures for CIFAR-100, CIFAR-10/100 and Omniglot are in Table 2 and
3. Since the number of classes for each task is different in Omniglot, we denoted the classes of ith
task as Ci. For CUB200, we use the AlexNet architecture from PyTorch official models. 4. For the
sequence of 8 different datasets, we use the model of which the size of kernel is changed to 3× 3 and
the rest is the same as AlexNet.

3

Table 2: Network architecture for CIFAR-100 and CIFAR-10/100

Layer Channel Kernel Stride Padding Dropout
32×32 input 3

Conv 1 32 3×3 1 1
Conv 2 32 3×3 1 1

MaxPool 2 0 0.25
Conv 3 64 3×3 1 1
Conv 4 64 3×3 1 1

MaxPool 2 0 0.25
Conv 5 128 3×3 1 1
Conv 6 128 3×3 1 1

MaxPool 2 1 0.25
Dense 1 256

Task 1 : Dense 10
· · ·

Task i : Dense 10

Table 3: Network architecture for Omniglot

Layer Channel Kernel Stride Padding Dropout
28×28 input 1

Conv 1 64 3×3 1 0
Conv 2 64 3×3 1 0

MaxPool 2 0 0
Conv 3 64 3×3 1 0
Conv 4 64 3×3 1 0

MaxPool 2 0 0
Task 1 : Dense C1

· · ·
Task i : Dense Ci

3.1.3 Result tables

Table 4 shows the detailed results used to generate (Figure 4, manuscript). The number in the
paranthesis with± sign stands for the standard deviation of the accuracy obtained from 5 independent
runs with different random seeds.

3.2 Reinforcement learning

3.2.1 Details on network architectures

For training Atari 8 tasks, we used the same architecture which was proposed in [2]. However, to
secure the model capacity for training 8 tasks well enough, we implemented each layer that has four
times more filters than the original architecture. Figure 5 shows the details of our model.

3.2.2 Hyperparameters of PPO

We used PPO [3] as an algorithm for training Atari 8 tasks. Figure 6 shows hyperparameters that we
used for 8 tasks, and these hyperparameters are equally applied to each baseline. We evaluate each
method every 40 updates, i.e. we have 30 evaluation results during training each task. We trained the
model using Adam optimizer with the initial learning rate of 0.0003 and the other hyperparameters
are same as [3].

2https://drive.google.com/file/d/1WxFZQyt3v7QRHwxFbdb1KO02XWLT0R9z/view?usp=sharing
3https://github.com/visipedia/tf_classification/wiki/CUB-200-Image-Classification
4https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

4

Table 4: Average accuracy(%) and standard deviation for 5 random seeds

AGS-CL EWC SI RWLAK MAS HAT
CIFAR-100 64.1 (±1.7) 60.2 (±1.1) 60.3 (±1.3) 58.1 (±1.7) 61.5 (±0.9) 59.2 (±0.7)

CIFAR-10/100 76.1 (±0.4) 70.0 (±0.3) 71.5 (±0.5) 69.6 (±1.1) 72.1 (±0.7) 59.8 (±1.6)
Omniglot 82.8 (±1.8) 76.0 (±20.2) 54.9 (±16.2) 71.0 (±5.6) 81.4 (±2.1) 5.5 (±11.1)
CUB200 81.9 (±0.7) 80.5 (±1.2) 80.4 (±0.8) 81.0 (±1.3) 79.6 (±1.0) -

Sequence of
8 different datasets 57.7 (±0.7) 52.2 (±2.9) - - 41.5 (±4.2) -

Table 5: Network architecture for Atari

Layer Channel Kernel Stride Padding Dropout
84×84 input 4

Conv 1 32×4 8×8 4 0
ReLU
Conv 2 32×4 4×4 2 0
ReLU
Conv 2 64×4 3×3 1 0
ReLU
Flatten
Linear1 32×4×7×7

Task 1 : Dense C1

· · ·
Task i : Dense Ci

3.2.3 Detailed experimental results with µ = 0.1

0 30 60 90 120 150 180 210 240
0

1

2

3

4

5
Task1

30 60 90 120 150 180 210 240
0.00

0.25

0.50

0.75

1.00

Task2

60 90 120 150 180 210 240
0.0

0.2

0.4

0.6

0.8

1.0
Task3

90 120 150 180 210 240
0.0

0.2

0.4

0.6

0.8

1.0
Task4

120 150 180 210 240
0.0

0.2

0.4

0.6

0.8

1.0
Task5

150 180 210 240

0.5

1.0

1.5

2.0
Task6

180 210 240
0

2

4

6

8
Task7

210 240

0.8

1.0

1.2

1.4

1.6

1.8
Task8

EWC1

Fine-tuning
EWC2

AGS-CL1
EWC3

AGS-CL2
MAS1

MAS2

Figure 4: Reinforcement learning results. λ = {1, 2.5, 10} × 104 for EWC1,2,3, λ = {1, 10} for
MAS1,2, and µ = 0.1, λ = {1, 10} × 102 for AGS-CL1,2 were used, respectively.

Figure 4 shows detailed rewards during training each task. From this figure, we can clearly observe
that AGS-CL outperforms EWC for Task 1, 2 and 7 significantly. Especially, for Task 7, AGS-CL
showed higher rewards than Fine-tuning, which means it achieves significantly higher plasticity. We
also note that AGS-CL has higher stability than other baselines for all λ.

3.2.4 Additional experimental results with µ = 0.125

To show the other result with a different µ, we selected µ = 0.125 and experimented in Atari 8
tasks. From Figure 5, we observed that AGS-CL also achieves the highest reward , which is proposed
in the manuscript, using µ = 0.1 if we set an appropriate λ for AGS-CL. Figure 6 shows detailed
experimental results with µ = 0.125. There is a little difference with the reward of each task in
Figure 4 but we observed that AGS-CL shows similar advantages which we already mentioned in
Section 3.2.3.

5

Table 6: Details on hyperparameters of PPO.

Hyperparameters Value
of steps of each task 107

of processes 128
of steps per iteration 64

PPO epochs 10
entropy coefficient 0

value loss coefficient 0.5
γ for accumulated rewards 0.99

λ for GAE 0.95
mini-batch size 64

1 2 3 4 5 6 7 8
Task

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Ac

cu
m

ul
at

ed
 p

er
fo

rm
an

ce

AGS-CL1

AGS-CL2

EWC1

EWC2

EWC3

MAS1

MAS2

Fine-tuning

Figure 5: Normalized accumulated rewards. λ = {1, 2.5, 10} × 104 for EWC1,2,3, λ = {1, 10} for
MAS1,2, and µ = 0.125, λ = {1, 10} × 102 for AGS-CL1,2 were used, respectively.

0 30 60 90 120 150 180 210 240
0

1

2

3

4
Task1

30 60 90 120 150 180 210 240
0.00

0.25

0.50

0.75

1.00

Task2

60 90 120 150 180 210 240
0.0

0.2

0.4

0.6

0.8

1.0
Task3

90 120 150 180 210 240
0.0

0.2

0.4

0.6

0.8

1.0
Task4

120 150 180 210 240
0.0

0.2

0.4

0.6

0.8

1.0
Task5

150 180 210 240

0.5

1.0

1.5

Task6

180 210 240
0

2

4

6

8

Task7

210 240
0.75

1.00

1.25

1.50

1.75

Task8

EWC1

Fine-tuning
EWC2

AGS-CL1
EWC3

AGS-CL2
MAS1

MAS2

Figure 6: Reinforcement learning results. λ = {1, 2.5, 10} × 104 for EWC1,2,3, λ = {1, 10} for
MAS1,2, and µ = 0.125, λ = {1, 10} × 102 for AGS-CL1,2 were used, respectively.

References

[1] Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations (ICLR), 2015.

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[3] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[4] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International Conference on Machine Learning

6

(ICML), pages 4548–4557, 2018.

7

	Proof of Lemma 1
	Additional ablation studies
	Ablation study of
	Effect of PGD updates
	Comparison with EWC

	Implementation details
	Supervised learning
	Hyperparameters for supervised learning experiments
	Details on network architectures
	Result tables

	Reinforcement learning
	Details on network architectures
	Hyperparameters of PPO
	Detailed experimental results with = 0.1
	Additional experimental results with = 0.125

