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A Cost and performance estimate of $2500 desktop PCs

According to several PC building websites (https://pcpartpicker.com, https://newegg.com),
most popular $2250–2750 desktops are equipped with RTX 2080/2080Ti or GTX 1080Ti GPU. These
GPUs are 50–80% as fast as Tesla V100 for deep learning [1]. As a rough estimate, the combined
throughput of 10,000 desktops is 8–15 times that of server pod with 512 V100 GPUs.

B A primer on Distributed Hash Tables

On a high level, DHT is a dictionary that can be accessed by every participant. Each key-value pair is
stored on a small subset of peers determined by the hash function of the key.

• Each participant has a unique identifier (ID) that is sampled uniformly from the space
possible outputs of the hash function.

• When storing a (key, value) pair, one should search for k peers whose IDs are closest to
hash(key). Then, request each of these k peers to store the (key, value) pair.

• When retrieving a value for a key, one should compute hash(key), search for peers with
IDs similar to that hash value and request value from those peers.

Specific DHT variants such as Chord [2] or Kademlia [3] employ different hash types and different
algorithms for finding nearest peers. For instance, Kademlia DHT selects nearest peers based on the
XOR distance function: d(x, y) = int(x⊕ y).

Each participant is directly aware of only a small subset of DHT peers. When storing or retrieving a
key, the participant requests additional peers from its neighbors in a semi-greedy search, minimizing
XOR distance until it finds k nearest peers. In Kademlia, nodes form a special navigable graph
structure that lets them find nearest peers in at most O(k + log2 N) requests to other DHT peers,
where N is the total number of participants.

C Finding best experts across the DHT

Recall that the gating function is defined as

g(x, f) =

d−1∑
i=0

gi(x)[ui],

where g0, . . . gd−1 are linear layers, ui is the i-th component of the expert unique identifier uid(f),
and [k] takes k-th component of a vector. Our objective is to find k experts with largest g(x, ·). In
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a centralized setting, one can find k largest scores from each linear layer gi using the algorithm
described in [4].

Unfortunately, in our case not all combinations of indices correspond to valid experts. Therefore, we
developed a specialized beam search algorithm similar to the one used in machine translation. The
core idea is to start with top-k indices along the first grid dimension and add one dimension at a time.

In order for this algorithm to work, participants maintain the following information on the DHT:

• For every expert UID, store its server address and the timestamp;
• For every prefix in expert UID, store all suffixes corresponding to active experts and the

timestamp.

For instance, if there are 6 experts: "ffn.1.3", "ffn.2.1", "ffn.2.2", "ffn.2.6" and "ffn.3.2" and "ffn.3.5";
the DHT will contain the following information:

Key ffn.1.* ffn.2.* ffn.3.* ffn.1.3 ffn.2.1 ffn.2.2 ffn.2.6 ffn.3.2 ffn.3.5
Value [3],t1 [1, 2, 6],t2 [2, 5],t3 [Address of a server that hosts the given expert]

Figure 1: DHT keys and values for 6 experts defined above, t corresponds to last update timestamp.

For higher grid dimensions, we store similar information for every grid prefix. For instance, an expert
with UID "transformer.10.20.30" will affect 3 keys: "transformer.10.*", "transformer.10.20.*" and
"transformer.10.20.30". Each prefix key stores at most as many values as there are indices in the next
grid dimension, typically 100 or 256.

With this data structure, DMoE can use beam search to select the best experts. Algorithm 1 starts
from the leftmost dimension of the grid and processes one dimension at each step. The worst case
complexity of this algorithm is O(dk logN) from O(dk) lookups to the DHT.

Algorithm 1 SelectExperts

Input: x, k, d,M, (g0, . . . , gd−1)
beam := [0, 1, ...,M − 1] // all 1-prefixes
scores := [g0(x, 0)...g0(x,M − 1)] // initial scores
// select k best starting points
beam, scores := TopK(beam, scores, k)
for i ∈ [1, . . . , d− 1] do

// expand all candidates in beam
new_beam, new_scores := [ ], [ ]
for prefix, score ∈ beam, scores do

for j ∈ ActiveSuffixes(prefix) do
new_beam.add(prefix

⊕
[j]) // concat

new_scores.add(score +gi(x, j))
end for

end for
// select at most k best prefixes
beam, scores := TopK(new_beam, new_scores, k)

end for
Return beam

The TopK function simply sorts the inputs by score and returns k inputs with highest scores. In turn,
the ActiveSuffixes function queries the DHT for a given prefix and returns a set of all active suffixes
as described above. Assuming that servers re-publish their experts every t seconds, the function can
simply check whether the timestamp for a given prefix is less than t seconds old.

D On gradient checkpointing in Learning@home

In general, gradient checkpointing increases computation per training batch by approximately 1/3,
but allows training larger models with the same GPU memory. More importantly, in our scenario
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checkpointing also removes the need to store intermediate activations. In our experiments, this has
led to both significantly higher training throughput and a smaller memory footprint.

Without gradient checkpointing, we would have to store intermediate activations in memory. Since
the GPU can only fit a few batches at a time, it quickly runs out of memory and is forced to wait for
the backward pass. For Transformer layers (see Figure 4, top), this results in approximately 9 times
less throughput at 100ms latency.

E Reducing the network load

One way to reduce the communication load is to convert tensors to a lower precision before transfer.
Prior work in this area suggests that distributed training works even when communicating with 8-bit
precision tensors [5, 6]. Many popular architectures, including Transformers, can train entirely in
that precision mode [7]. Consequently, low precision communication appears as a logical way of
reducing communication requirements.

In addition, the deep learning architectures discussed in this work rely on backpropagation for
training. With the advancement of optimization methods allowing nearly independent layer-wise
training [8, 9, 10], it might be even more suitable to use these techniques for asynchronous training
with fewer restrictions on the architectures being used.

Another solution is to use experts that have a higher capacity to input size ratio. The architectures
used in Section 4.1 are already somewhat biased in that direction, but they are far from optimal.
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