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Abstract

Developmental machine learning studies how artificial agents can model the way
children learn open-ended repertoires of skills. Such agents need to create and
represent goals, select which ones to pursue and learn to achieve them. Recent
approaches have considered goal spaces that were either fixed and hand-defined
or learned using generative models of states. This limited agents to sample goals
within the distribution of known effects. We argue that the ability to imagine
out-of-distribution goals is key to enable creative discoveries and open-ended
learning. Children do so by leveraging the compositionality of language as a
tool to imagine descriptions of outcomes they never experienced before, targeting
them as goals during play. We introduce IMAGINE, an intrinsically motivated
deep reinforcement learning architecture that models this ability. Such imaginative
agents, like children, benefit from the guidance of a social peer who provides
language descriptions. To take advantage of goal imagination, agents must be
able to leverage these descriptions to interpret their imagined out-of-distribution
goals. This generalization is made possible by modularity: a decomposition
between learned goal-achievement reward function and policy relying on deep sets,
gated attention and object-centered representations. We introduce the Playground
environment and study how this form of goal imagination improves generalization
and exploration over agents lacking this capacity. In addition, we identify the
properties of goal imagination that enable these results and study the impacts of
modularity and social interactions.

1 Introduction

Building autonomous machines that can discover and learn open-ended skill repertoires is a long-
standing goal in Artificial Intelligence. In this quest, we can draw inspiration from children devel-
opment [12]. In particular, children exploration seems to be driven by intrinsically motivated brain
processes that trigger spontaneous exploration for the mere purpose of experiencing novelty, surprise
or learning progress [32, 42, 45]. During exploratory play, children can also invent and pursue their
own problems [19].
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Figure 1: IMAGINE overview. In the Playground environment, the agent (hand) can move, grasp
objects and grow some of them. Scenes are generated procedurally with objects of different types,
colors and sizes. A social partner provides descriptive feedback (orange), that the agent converts into
targetable goals (red bubbles).

Algorithmic models of intrinsic motivation were successfully used in developmental robotics [55, 6],
in reinforcement learning [16, 63] and more recently in deep RL [8, 56]. Intrinsically Motivated
Goal Exploration Processes (IMGEP), in particular, enable agents to sample and pursue their own
goals without external rewards [7, 26, 27] and can be formulated within the deep RL framework
[25, 53, 22, 58, 71, 60]. However, representing goal spaces and goal-achievement functions remains
a major difficulty and often requires hand-crafted definitions. Past approaches proposed to learn
image-based representations with generative models such as Variational Auto-Encoders [46, 53], but
were limited to the generation of goals within the distribution of already discovered effects. Moving
beyond within-distribution goal generation, out-of-distribution goal generation could power creative
exploration in agents, a challenge that remains to be tackled.

In this difficult task, children leverage the properties of language to assimilate thousands of years
of experience embedded in their culture, in a only a few years [67, 10]. As they discover language,
their goal-driven exploration changes. Piaget [57] first identified a form of egocentric speech where
children narrate their ongoing activities. Later, Vygotsky [72] realized that they were generating
novel plans and goals by using the expressive generative properties of language. The harder the
task, the more children used egocentric speech to plan their behavior [72, chap. 2]. Interestingly,
this generative capability can push the limits of the real, as illustrated by Chomsky [18]’s famous
example of a sentence that is syntactically correct but semantically original “Colorless green ideas
sleep furiously”. Language can thus be used to generate out-of-distributions goals by leveraging
compositionality to imagine new goals from known ones.

This paper presents Intrinsic Motivations And Goal INvention for Exploration (IMAGINE): a learning
architecture which leverages natural language (NL) interactions with a descriptive social partner (SP)
to explore procedurally-generated scenes and interact with objects. IMAGINE discovers meaningful
environment interactions through its own exploration (Figure 1a) and episode-level NL descriptions
provided by SP (1b). These descriptions are turned into targetable goals by the agent (1c). The agent
learns to represent goals by jointly training a language encoder mapping NL to goal embeddings and
a goal-achievement reward function (1d). The latter evaluates whether the current scene satisfies
any given goal. These signals (ticks in Figure 1d-e) are then used as training signals for policy
learning. More importantly, IMAGINE can invent new goals by composing known ones (1f). Its
internal goal-achievement function allows it to train autonomously on these imagined goals.

Related work. The idea that language understanding is grounded in one’s experience of the world
and should not be secluded from the perceptual and motor systems has a long history in Cognitive
Science [30, 74]. This vision was transposed to intelligent systems [66, 50], applied to human-
machine interaction [24, 49] and recently to deep RL via frameworks such as BabyAI [17].

In their review of RL algorithms informed by NL, Luketina et al. [48] distinguish between language-
conditional problems where language is required to solve the task and language-assisted problems
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where language is a supplementary help. In the first category, most works propose instruction-
following agents [59, 15, 4, 21, 40, 33, 20]. Although our system is language-conditioned, it is not
language-instructed: it is never given any instruction or reward but sets its own goals and learns its
own internal reward function. Bahdanau et al. [4] and Fu et al. [28] also learn a reward function but
require extensive expert knowledge (expert dataset and known environment dynamics respectively),
whereas our agent uses experience generated by its own exploration.

Language is also particularly well suited for Hindsight Experience Replay [2]: descriptions of the
current state can be used to relabel trajectories, enabling agents to transfer skills across goals. While
previous works used a hard-coded descriptive function [13, 40] or trained a generative model [20] to
generate goal substitutes, we leverage the learned reward function to scan goal candidates.

To our knowledge, no previous work has considered the use of compositional goal imagination to en-
able creative exploration of the environment. The linguistic basis of our goal imagination mechanism
is grounded in construction grammar (CG). CG is a usage-based approach that characterizes language
acquisition as a trajectory starting with pattern imitation and the discovery of equivalence classes
for argument substitution, before evolving towards the recognition and composition of more abstract
patterns [68, 31]. This results in a structured inventory of constructions as form-to-meaning mappings
that can be combined to create novel utterances [31]. The discovery and substitution of equivalent
words in learned schemas is observed directly in studies of child language [70, 68]. Computational
implementations of this approach have demonstrated its ability to foster generalization [38] and was
also used for data augmentation to improve the performance of neural seq2seq models in NLP [1].

Imagining goals by composing known ones only works in association with systematic generalization
[5, 37]: generalizations of the type grow any animal + grasp any plant→ grow any plant. These
were found to emerge in instruction-following agents, including generalizations to new combinations
of motor predicates, object colors and shapes [36, 37, 4]. Systematic generalization can occur when
objects share common attributes (e.g. type, color). We directly encode that assumption into our
models by representing objects as single-slot object files [34]: separate entities characterized by
shared attributes. Because all objects have similar features, we introduce a new object-centered
inductive bias: object-based modular architectures based on Deep Sets [73].

Contributions. This paper introduces:

1. The concept of imagining new goals using language compositionality to drive exploration.
2. IMAGINE: an intrinsically motivated agent that uses goal imagination to explore its environ-

ment, discover and master object interactions by leveraging NL descriptions from a social
partner.

3. Modular policy and reward function with systematic generalization properties enabling
IMAGINE to train on imagined goals. Modularity is based on Deep Sets, gated attention
mechanisms and object-centered representations.

4. Playground: a procedurally-generated environment designed to study several types of
generalizations (across predicates, attributes, object types and categories).

5. A study of IMAGINE investigating: 1) the effects of our goal imagination mechanism on
generalization and exploration; 2) the identification of general properties of imagined goals
required for any algorithm to have a similar impact; 3) the impact of modularity and 4)
social interactions.

2 Problem Definition

Open-ended learning environment. We consider a setup where agents evolve in an environment
filled with objects and have no prior on the set of possible interactions. An agent decides what and
when to learn by setting its own goals, and has no access to external rewards.

However, to allow the agent to learn relevant skills, a social partner (SP) can watch the scene and plays
the role of a human caregiver. Following a developmental approach [3], we propose a hard-coded
surrogate SP that models important aspects of the developmental processes seen in humans:

• At the beginning of each episode, the agent chooses a goal by formulating a sentence. SP
then provides agents with optimal learning opportunities by organizing the scene with: 1)
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the required objects to reach the goal (not too difficult) 2) procedurally-generated distracting
objects (not too easy and providing further discovery opportunities). This constitutes a
developmental scaffolding modelling the process of Zone of Proximal Development (ZPD)
introduced by Vygotsky to describe infant-parent learning dynamics [72].

• At the end of each episode, SP utters a set of sentences describing achieved and meaningful
outcomes (except sentences from a test set). Linguistic guidance given through descriptions
are a key component of how parents "teach" language to infants, which contrasts with
instruction following (providing a linguistic command and then a reward), that is rarely seen
in real parent-child interactions [69, 9]. By default, SP respects the 3 following properties:
precision: descriptions are accurate, exhaustiveness: it provides all valid descriptions for
each episode and full-presence: it is always available. Section 4.4 investigates relaxations of
the last two assumptions.

Pre-verbal infants are known to acquire object-based representations very early [65, 41] and, later,
to benefit from a simplified parent-child language during language acquisition [51]. Pursuing a
developmental approach [3], we assume corresponding object-based representations and a simple
grammar. As we aim to design agents that bootstrap creative exploration without prior knowledge of
possible interactions or language, we do not consider the use of pre-trained language models.

Evaluation metrics. This paper investigates how goal imagination can lead agents to efficiently and
creatively explore their environment to discover interesting interactions with objects around. In this
quest, SP guides agents towards a set of interesting outcomes by uttering NL descriptions. Through
compositional recombinations of these sentences, goal imagination aims to drive creative exploration,
to push agents to discover outcomes beyond the set of outcomes known by SP. We evaluate this
desired behavior by three metrics: 1) the generalization of the policy to new states, using goals from
the training set that SP knows and describes; 2) the generalization of the policy to new language goals,
using goals from the testing set unknown to SP; 3) goal-oriented exploration metrics. These measures
assess the quality of the agents’ intrinsically motivated exploration. Measures 1) and 2) are also useful
to assess the abilities of agents to learn language skills. We measure generalization for each goal as
the success rate over 30 episodes and report SR the average over goals. We evaluate exploration with
the interesting interaction count (IC). IC is computed on different sets of interesting interactions:
behaviors a human could infer as goal-directed. These sets include the training, testing sets and an
extra set containing interactions such as bringing water or food to inanimate objects. ICI measures
the number of times interactions from I were observed over the last epoch (600 episodes), whether
they were targeted or not (see Supplementary Section 3). Thus, IC measures the penchant of agents
to explore interactions with objects around them. Unless specified otherwise, we provide means µ
and standard deviations over 10 seeds and report statistical significance using a two-tail Welch’s t-test
with null hypothesis µ1=µ2, at level α=0.05 (noted by star and circle markers in figures) [23].

3 Methods

3.1 The Playground environment

We argue that the study of new mechanisms requires the use of controlled environments. We thus
introduce Playground, a simple environment designed to study the impact of goal imagination on
exploration and generalization by disentangling it from the problems of perception and fully-blown NL
understanding. The Playground environment is a continuous 2D world, with procedurally-generated
scenes containing N=3 objects, from 32 different object types (e.g. dog, cactus, sofa, water, etc.),
organized into 5 categories (animals, furniture, plants, etc), see Figure 1. To our knowledge, it
is the first environment that introduces object categories and category-dependent combinatorial
dynamics, which allows the study of new types of generalization. We release Playground in a
separate repository.2

Agent perception and embodiment. Agents have access to state vectors describing the scene: the
agent’s body and the objects. Each object is represented by a set of features describing its type,
position, color, size and whether it is grasped. Categories are not explicitly encoded. Objects are
made unique by the procedural generation of their color and size. The agent can perform bounded

2https://github.com/flowersteam/playground_env
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translations in the 2D plane, grasp and release objects with its gripper. It can make animals and plants
grow by bringing them the right supply (food or water for animals, water for plants).

Grammar. The following grammar generates the descriptions of the 256 achievable goals (GA):

1. Go: <go + zone> (e.g. go bottom left)
2. Grasp: < grasp + any + color + thing> (e.g. grasp any blue thing) OR

<grasp + color ∪ {any} + object type ∪ object category> (e.g. grasp red cat)
3. Grow: <grow + any + color + thing> (e.g. grow any red thing) OR

<grow + color ∪ {any} + living thing ∪ {living_thing, animal, plant}> (e.g. grow green
animal)

Bold and { } are sets of words while italics are specific words. The grammar is structured around
the 3 predicates go, grasp and grow. Objects can be referred to by a combination of their color
and either their object name or category, or simply by one of these. The set of achievable goals is
partitioned into training (G train) and testing (G test). G test maximizes the compound divergence with a
null atom divergence with respect to G train: testing sentences (compounds) are out of the distribution
of G train sentences, but their words (atoms) belong to the distribution of words in G train [44]. SP only
provides descriptions from G train. We limit the set of goals to better control the complexity of our
environment and enable a careful study of the generalization properties. Supplementary Section 1
provides more details about the environment, the grammar and SP as well as the pseudo-code of our
learning architecture.

3.2 The IMAGINE Architecture

IMAGINE agents build a repertoire of goals and train two internal models: 1) a goal-achievement
reward functionR to predict whether a given description matches a behavioral trajectory; 2) a policy
π to achieve behavioral trajectories matching descriptions. The architecture is presented in Figure 2
and follows this logic:

1. The Goal Generator samples a target goal gtarget from known and imagined goals (Gknown∪
Gim).

2. The agent (RL Agent) interacts with the environment using its policy π conditioned on gtarget.
3. State-action trajectories are stored in a replay buffer mem(π).
4. SP’s descriptions of the last state are considered as potential goals GSP(sT ) = DSP(sT ).
5. mem(R) stores positive pairs (sT , GSP(sT )) and infers negative pairs (sT , Gknown \GSP(sT )).
6. The agent then updates:

• Goal Gen.: Gknown ← Gknown∪GSP(sT ) and Gim ← Imagination(Gknown).
• Language Encoder (Le) and Reward Function (R) are updated using data from

mem(R).
• RL agent: We sample a batch of state-action transitions (s, a, s′) from mem(π). Then,

we use Hindsight Replay and R to bias the selection of substitute goals to train on
(gs) and compute the associated rewards (s, a, s′, gs, r). Substituted goals gs can be
known or imagined goals. Finally, the policy and critic are trained via RL.

Goal generator. It is a generative model of NL goals. It generates target goals gtarget for data
collection and substitutes goals gs for hindsight replay. When goal imagination is disabled, the goal
generator samples uniformly from the set of known goals Gknown, sampling random vectors if empty.
When enabled, it samples with equal probability from Gknown and Gim (set of imagined goals). Gim is
generated using a mechanism grounded in construction grammar that leverages the compositionality
of language to imagine new goals from Gknown. The heuristic consists in computing sets of equivalent
words: words that appear in two sentences that only differ by one word. For example, from grasp
red lion and grow red lion, grasp and grow can be considered equivalent and from grasp green tree
one can imagine a new goal grow green tree (see Figure 1f). Imagined goals do not include known
goals. Among them, some are meaningless, some are syntactically correct but infeasible (e.g. grow
red lamp) and some belong to G test, or even to G train before they are encountered by the agent and
described by SP. The pseudo-code and all imaginable goals are provided in Supplementary Section 4.
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Figure 2: IMAGINE architecture. Colored boxes show the different modules of IMAGINE. Lines
represent update signals (dashed) and function outputs (plain). The language encoder Le is shared.

Language encoder. The language encoder (Le) embeds NL goals (Le :GNL→R100) using an
LSTM [39] trained jointly with the reward function. Le acts as a goal translator, turning the goal-
achievement reward function, policy and critic into language-conditioned functions.

Object-centered modular architectures. The goal-achievement reward function, policy and critic
leverage novel modular-attention (MA) architectures based on Deep Sets [73], gated attention mecha-
nisms [14] and object-centered representations. The idea is to ensure efficient skill transfer between
objects, no matter their position in the state vector. This is done through the combined use of a
shared neural network that encodes object-specific features and a permutation-invariant function
to aggregate the resulting latent encodings. The shared network independently encodes, for each
object, an affordance between this object (object observations), the agent (body observations) and its
current goal. The goal embedding, generated by Le, is first cast into an attention vector in [0, 1], then
fused with the concatenation of object and body features via an Hadamard product (gated-attention
[14]). The resulting object-specific encodings are aggregated by a permutation-invariant function and
mapped to the desired output via a final network (e.g. into actions or action-values). Supplementary
Section 5 provides visual representations.

Reward function. Learning a goal-achievement reward function (R) is framed as binary classifi-
cation: R(s,g) : S×R100→{0,1}. We use the MA architecture with attention vectors αg , a shared
network NNR with output size 1 and a logical OR aggregation. NNR computes object-dependent
rewards ri in [0,1] from the object-specific inputs and the goal embedding. The final binary reward is
computed by NNOR which outputs 1 whenever ∃j : rj > 0.5. We pre-trained a neural-network-based
OR function to enable end-to-end training with back-propagation. The overall function is:

R(s,g) = NNOR([NNR(sobj(i)�αg)]i∈[1..N ])

Data. Interacting with the environment and SP, the agent builds a set of entries [sT , g, r] with
g ∈ Gknown where r∈{0, 1} rewards the achievement of g in state sT : r = 1 if g∈GSP(sT ) and 0
otherwise. Le andR are periodically updated jointly by back-propagation on this dataset.

Multi-goal RL agent. Our agent is controlled by a goal-conditioned policy π [62] based on the
MA architecture (see Supplementary Figure 9b). It uses an attention vector βg, a shared network
NNπ, a sum aggregation and a mapper NNa that outputs the actions. Similarly, the critic produces
action-values via γg , NNQ and NNa-v respectively:

π(s,g) = NNa(
∑

i∈[1..N ]

NNπ(sobj(i)�βg)) Q(s,a,g) = NNa-v(
∑

i∈[1..N ]

NNQ([sobj(i), a]�γg)).

Both are trained using DDPG [47], although any other off-policy algorithm can be used. As detailed
in Supplementary Section 6, our agent uses a form of Hindsight Experience Replay [2].
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4 Experiments and Results

This section first showcases the impact of goal imagination on exploration and generalization
(Section 4.1). For a more complete picture, we analyze other goal imagination mechanisms and
investigate the properties enabling these effects (Section 4.2). Finally, we show that our modular
architectures are crucial to a successful goal imagination (Section 4.3) and discuss more realistic
interactions with SP (Section 4.4). IMAGINE agents achieve near perfect generalizations to new
states (training set of goals): SR = 0.95±0.05. We thus focus on language generalization and
exploration. Supplementary Sections 2 to 7 provide additional results and insights organized by theme
(Generalization, Exploration, Goal Imagination, Architectures, Reward Function and Visualizations).

4.1 How does Goal Imagination Impact Generalization and Exploration?

Global generalization performance. Figure 3a shows SR on the set of testing goals, when the
agent starts imagining new goals early (after 6 ·103 episodes), half-way (after 48 ·103 episodes) or
when not allowed to do so. Imagining goals leads to significant improvements in generalization.
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Figure 3: Goal imagination drives exploration and generalization. Vertical dashed lines mark the
onset of goal imagination. (a) SR on testing set. (b) Behavioral adaptation, empirical probabilities
that the agent brings supplies to a plant when trying to grow it. (c) IC computed on the testing set.
Stars indicate significance (a and c are tested against never).

A particular generalization: growing plants. Agents learn to grow animals from SP’s descrip-
tions, but are never told they could grow plants. When evaluated offline on the growing-plants goals
before goal imagination, agents’ policies perform a sensible zero-shot generalization and bring them
water or food with equal probability, as they would do for animals (Figure 3b, left). As they start
to imagine and target these goals, their behavior adapts (Figure 3b, right). If the reward function
shows good zero-shot abilities, it only provides positive rewards when the agent brings water. The
policy slowly adapts to this internal reward signal and pushes agents to bring more water. We call
this phenomenon behavioral adaptation. Supplementary Section 2 details the generalization abilities
of IMAGINE for 5 different types of generalizations involving predicates, attributes and categories.

Exploration. Figure 3c presents the IC metric computed on the set of interactions related to G test

and demonstrates the exploration boost triggered by goal imagination. Supplementary Section 3
presents other IC metrics computed on additional interactions sets.

4.2 What If We Used Other Goal Imagination Mechanisms?

Properties of imagined goals. We propose to characterize goal imagination mechanisms by two
properties: 1) Coverage: the fraction of G test found in Gim and 2) Precision: the fraction of the
imagined goals that are achievable. We compare our goal imagination mechanism based on the
construction grammar heuristic (CGH) to variants characterized by 1) lower coverage; 2) lower
precision; 3) perfect coverage and precision (oracle); 4) random goal imagination baseline (random
sequences of words from G train leading to near null coverage and precision). These measures are
computed at the end of experiments, when all goals from G train have been discovered (Figure 4a).

Figure 4b shows that CGH achieves a generalization performance on par with the oracle. Reducing the
coverage of the goal imagination mechanism still brings significant improvements in generalization.
Supplementary Section 4 shows, for the Low Coverage condition, that the generalization performance
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on the testing goals that were imagined is not statistically different from the performance on similar
testing goals that could have been imagined but were not. This implies that the generalization for
imagined goals also benefits similar non-imagined goals from G test. Finally, reducing the precision
of imagined goals (gray curve) seems to impede generalization (no significant difference with the
no imagination baseline). Figure 4c shows that all goal imagination heuristics enable a significant
exploration boost. The random goal baseline acts as a control condition. It demonstrates that the
generalization boost is not due to a mere effect of network regularization introduced by adding
random goals (no significant effect w.r.t. the no imagination baseline). In the same spirit, we also ran
a control using random goal embeddings, which did not produce any significant effects.

Cov. Pre.
CGH 0.87 0.45
Oracle 1 1
Low Cov. 0.44 0.45
Low Pre. 0.87 0.30
Random G. ≈0 ≈0
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Figure 4: Goal imagination properties. (a) Coverage and precision of different goal imagination
heuristics. (b) SR on testing set. (c) IC on G test. We report sem (standard error of the mean) instead
of std to improve readability. Stars indicate significant differences w.r.t the no imagination condition.

4.3 How Does Modularity Interact with Goal Imagination?

Table 1: Policy architectures perfor-
mance. SRtest at convergence.

MA * FA
Im. 0.76±0.1 0.15±0.05
No Im. 0.51±0.1 0.17±0.04
p-val 4.8e-5 0.66

We compared MA to flat architectures (FA) that consider the
whole scene at once. As the use of FA for the reward function
showed poor performance on G train, Table 1 only compares the
use of MA and FA for the policy. MA shows stronger gener-
alization and is the only architecture allowing an additional
boost with goal imagination. Only MA policy architectures can
leverage the novel reward signals coming from imagined goals
and turn them into behavioral adaptation. Supplementary
Section 5 provides additional details.

4.4 Can We Use More Realistic Feedbacks?
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Figure 5: Influence of social feedbacks.
SR on G test for different social strategies.
Stars indicate significant differences w.r.t.
ex:1 no imag.. sem plotted, 5 seeds.

We study the relaxation of the full-presence and exhaus-
tiveness assumptions of SP. We first relax full-presence
while keeping exhaustiveness (blue, yellow and purple
curves). When SP has a 10% chance of being present
(yellow), imaginative agents show generalization perfor-
mance on par with the unimaginative agents trained in
a full-presence setting (green), see Figure 5). However,
when the same amount of feedback is concentrated in
the first 10% episodes (purple), goal imagination en-
ables significant improvements in generalization (w.r.t.
green). This is reminiscent of children who require less
and less attention as they grow into adulthood and is con-
sistent with Chan et al. [13]. Relaxing exhaustiveness,
SP only provides one positive and one negative descrip-
tion every episode (red) or in 50% of the episodes (gray).
Then, generalization performance matches the one of
unimaginative agents in the exhaustive setting (green).

8



5 Discussion and Conclusion

IMAGINE is a learning architecture that enables autonomous learning by leveraging NL interactions
with a social partner. As other algorithms from the IMGEP family, IMAGINE sets its own goals
and builds behavioral repertoires without external rewards. As such, it is distinct from traditional
instruction-following RL agents. This is done through the joint training of a language encoder for goal
representation and a goal-achievement reward function to generate internal rewards. Our proposed
modular architectures with gated-attention enable efficient out-of-distribution generalization of the
reward function and policy. The ability to imagine new goals by composing known ones leads to
further improvements over initial generalization abilities and fosters exploration beyond the set of
interactions relevant to SP. Our agent even tries to grow pieces of furniture with supplies, a behavior
that can echo the way a child may try to feed his doll.

IMAGINE does not need externally-provided rewards but learns which behaviors are interesting from
language-based interactions with SP. In contrast with hand-crafted reward functions, NL descriptions
provide an easy way to guide machines towards relevant interactions. A posteriori counterfactual
feedback is easier to communicate for humans, especially when possible effects are unknown and,
thus, the set of possible instructions is undefined. Hindsight learning also greatly benefits from
such counterfactual feedback and improves sample efficiency. Attention mechanisms further extend
the interpretability of the agent’s learning by mapping language to attentional scaling factors (see
Supplementary Figure 12). In addition, Section 4.4 shows that agents can learn to achieve goals from
a relatively small number of descriptions, paving the way towards human-provided descriptions.

Playground is a tool that we hope will enable the community to further study under-explored
descriptive setups with rich combinatorial dynamics, as well as goal imagination. It is designed for
the study of goal imagination and combinatorial generalization. Compared to existing environments
[36, 17, 13], we allow the use of descriptive feedback, introduce the notion of object categories and
category-dependent object interactions (Grow refer to different modalities for plants or animals).
Playground can easily be extended by adding objects, attributes, category- or object-type-dependent
dynamics.

IMAGINE could be combined with unsupervised multi-object representation learning algorithms
[11, 35] to work directly from pixels, practically enforcing object-centered representations. The
resulting algorithm would still be different from goal-as-state approaches [53, 58, 52]. Supplementary
Section 8 discusses the relevance of comparing IMAGINE to these works. Some tasks involve
instruction-based navigation in visual environments that do not explictly represent objects [54, 64].
Here, also, imagining new instructions from known ones could improve exploration and generalization.
Finally, we believe IMAGINE could provide interesting extensions in hierarchical settings, like in
Jiang et al. [40], with novel goal imagination boosting low-level exploration.

Future work. A more complex language could be introduced, for example, by considering object
relationships (e.g. Grasp any X left of Y), see [43] for a preliminary experiment in this direction.
While the use of pre-trained language models [61] does not follow our developmental approach, it
would be interesting to study how they would interact with goal imagination. Because CGH performs
well in our setup with a medium precision (0.45) and because similar mechanisms were successfully
used for data augmentation in complex NLP tasks [1], we believe our goal imagination heuristic
could scale to more realistic language.

We could reduce the burden on SP by considering unreliable feedbacks (lower precision), or by
conditioning goal generation on the initial scene (e.g. using mechanisms from Cideron et al. [20]).
One could also add new interaction modalities by letting SP make demonstrations, propose goals or
guide the agent’s attention. Our modular architectures, because they are set functions, could also
directly be used to consider variable numbers of objects. Finally, we could use off-policy learning [29]
to reinterpret past experience in the light of new imagined goals without any additional environment
interactions.

Links. Demonstration videos are available at https://sites.google.com/view/imagine-
drl. The source code of playground environment can be found at https://github.com/
flowersteam/playground_env and the source code of the IMAGINE architecture https://
github.com/flowersteam/Imagine.
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Broader Impact Statement

We present a reinforcement learning architecture where autonomous agents interact with a social
partner to explore a large set of possible interactions and learn to master them. As a result, our work
contributes to facilitating human intervention in the learning process of a robot, which we believe is a
key step towards more explainable and safer autonomous robots. Besides, by releasing our code, we
believe that we help efforts in reproducible science and allow the wider community to build upon
and extend our work in the future. In that spirit, we also provide clear explanations on the number of
seeds, error bars, and statistical testing when reporting the results.
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