
We thank Reviewers (R) 1, 2, 3, 4 and 5 (who gave us marks 7, 6, 8, 6, and 6, respectively) for their pertinent remarks.1

R2+R4 (also R1+R5): Main contribution. We recall our main contribution. Recall that proxG generalizes the2

projection onto convex set in a way that proxG(x) ∈ dom(G). Importantly, in PSGLA the iterates are feasible:3

xk+1 ∈ dom(G) = supp(µ?), contrary to alternative methods. The PSGLA method proposed in this paper extends in4

a natural way particular cases that were considered in the literature, namely i) the case where G is Lipschitz [18, Sec5

4.2] (in particular supp(µ?) = X) and ii) the case where G is the indicator of a convex compact set [9] (in particular6

supp(µ?) 6= X), in which case PSGLA has a high complexity O(1/ε12). All the other cases, where G is a general7

convex l.s.c, potentially with a domain dom(G) 6= X (for instance the G considered in the experiments l.456) where8

not analyzed before. Our main contribution is to analyze PSGLA in these new cases. This is a challenging problem:9

we had to develop new mathematical tools (e.g. the duality gap arising from the primal dual interpretation of PSGLA)10

for the analysis. Using these tools, we obtained surprising results: although G can have a domain (supp(µ?) 6= X),11

the complexity of PSGLA in these new cases is basically the same as in the case where G is Lipschitz (O(1/ε2)).12

R1+R3+R4: Numerical experiments. Although our paper is mainly of a theoretical nature, we provided detailed13

numerical experiments + the associated code. We will use the 9th page to move some experiments to the main text if14

our paper is accepted. We do not believe that our experiments are too simple as R4 says. We considered a sampling15

problem in a multidimensional half space of matrices relevant in the field of random matrices. The function G is given16

in l.456 and the computation of proxG in closed form relies on recent results on proximity operators. Particular cases17

of PSGLA considered previously are not able to tackle this sampling problem. The main message of the experiment18

section is: PSGLA only produces iterates in the support of µ?, contrary to alternative methods.19

R1: 1) G is a general convex l.s.c. but using [24, Th 25.5], G is almost surely differentiable on its domain, therefore20

the integral is well defined. 2) SGD can be written xk+1 = xk − γ∇F (xk) + γwk+1, where wk+1 is a martingale21

increment. In Langevin the noise W k is scaled by
√
γ instead. There is more noise in Langevin, that’s why Langevin22

explores the whole support of µ?, whereas SGD converges to arg maxµ?. 3) Yes, and we did it! In Appendix D, we23

used (cheap) stochastic proximity operators instead of full proximity operators and showed that the convergence rates24

remain unchanged. Another approach (that we will acknowledge) could be to adapt to our setting the proof technique of25

Pesquet and Combettes in a series of papers on primal dual optimization with approximate proximity operators. Note26

however that many proximity operators can be computed in closed form (hinge loss, logistic loss, many penalizations,27

etc., see also the experiments l.456) thanks to research efforts on this topic, see proximity-operator.net. 4) Convexity is28

needed to prove that the duality gap is nonnegative (Th3) which is fundamental in our approach (We iterated (27)). For29

nonconvex cases, see [30,33] that made nice connections between nonconvex Langevin and nonconvex optimization.30

R2: 1) We think that R2 has missed a key part of our main contribution, see above. 2) In the literature on Langevin31

algorithm, complexity results are indeed often expressed in terms of the parameters of the problem like the Lipschitz32

constants and d. IfG isM -Lipschitz, [18, discussion after Corollary 18] gives a complexity result for PSGLA in terms33

of σ2
F , L,M, d by using an approach similar to [[1, Lemma 5]]. Although the constants σ2

F , L,M implicitly depend34

on d, they have an explicit meaning. Using [[1, Lemma 5]] in our case, we can obtain the same complexity result as in35

[18], but by replacingM2 by I :=
∫
‖∇G‖2dµ?. We will acknowledge that I is a bit less intuitive thanM , but

√
I can36

be seen as a generalized Lipschitz constant since I ≤M2 ifG isM -Lipschitz. 3) x? is a measurable map Ω→ X, i.e.,37

a random vector (see l.246). Since x? : (x, y) 7→ x and Ω = X2 is endowed with π?, the distribution of x? is the first38

marginal of π?, i.e., µ? (such construction is sometimes used in probability theory). 4) l.303: we will acknowledge39

[[1]] (we did not know). 5) The meaning of the convergence of the duality gap to zero is an important interesting40

question that is the subject to further research. We are specifically interested in understanding its relationship with41

weak or KL convergence. It is also a difficult question, and we don’t have a clear answer for projected Langevin. In42

this paper, we focused on the convergence in W2 in the case where F is strongly convex and G general convex l.s.c,43

in order to cover new cases.44

R1+R3: Thank you for your positive feedback. We will use the 9th page to move some experiments to the main paper.45

R1+R4+R5 (also R3): Intuition. Regarding the FB, everything is made rigorous in Lemma 4. We provided a whole46

Appendix (C) to provide intuition on the relationship on primal dual convex optimization, FB and sampling, and how47

we had the idea of using a primal dual view to obtain our complexity results. Notably, our Lagrangian is similar to the48

one used in optimization, see C.2. We will go further by moving some material from C.2 to the introduction.49

R4: l.21, l.170: we corrected. l.198: (12) is valid only for any µ′, but only using Tµ
′

µ the optimal pushforward. This50

is the main difference with convexity, that makes things more challenging. Th2: w is a (random) vector because the51

elements of the subdifferential are (random) vectors (as in optimization), see l.195. Th2: If V ≡ 0, wρ = ∇ρ i.e.52

w = ∇ log(ρ). Then we take ρ = exp(−V ) which gives the result. γ: There is a trade-off: if γ is small, MYULA53

(or any Langevin algorithm) is more precise but slower to reach its invariant distribution. That’s why we compared54

MYULA vs PSGLA at equal learning rate γ.55


