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Abstract

We consider the task of sampling with respect to a log concave probability distribu-
tion. The potential of the target distribution is assumed to be composite, i.e., written
as the sum of a smooth convex term, and a nonsmooth convex term possibly taking
infinite values. The target distribution can be seen as a minimizer of the Kullback-
Leibler divergence defined on the Wasserstein space (i.e., the space of probability
measures). In the first part of this paper, we establish a strong duality result for
this minimization problem. In the second part of this paper, we use the duality
gap arising from the first part to study the complexity of the Proximal Stochastic
Gradient Langevin Algorithm (PSGLA), which can be seen as a generalization
of the Projected Langevin Algorithm. Our approach relies on viewing PSGLA
as a primal dual algorithm and covers many cases where the target distribution is
not fully supported. In particular, we show that if the potential is strongly convex,
the complexity of PSGLA is O(1/ε2) in terms of the 2-Wasserstein distance. In
contrast, the complexity of the Projected Langevin Algorithm isO(1/ε12) in terms
of total variation when the potential is convex.

1 Introduction

Sampling from a target distribution is a fundamental task in machine learning. Consider the Euclidean
space X = Rd and a convex function V : X→ (−∞,+∞]. Assuming that exp(−V ) has a positive
finite integral w.r.t. the Lebesgue measure Leb, we consider the task of sampling from the distribution
µ? whose density is proportional to exp(−V (x)) (we shall write µ? ∝ exp(−V )).

If V is smooth, Langevin algorithm produces a sequence of iterates (xk) asymptotically distributed
according to a distribution close to µ?. Langevin algorithm performs iterations of the form

xk+1 = xk − γ∇V (xk) +
√

2γW k+1, (1)

where γ > 0 and (W k)k is a sequence of i.i.d. standard Gaussian vectors in X. Each iteration of (1)
can be seen as a gradient descent step for V , where the gradient of V is perturbed by a Gaussian vector.
Hence, the iterations of Langevin algorithm look like those of the stochastic gradient algorithm;
however the noise in Langevin algorithm is scaled by

√
γ instead of γ. Nonasymptotic bounds

for Langevin algorithm have been established in [17, 20]. Moreover, Langevin algorithm can be
interpreted as an inexact gradient descent method to minimize the Kullback-Leibler (KL) divergence
w.r.t. µ? in the space of probability measures [1, 5, 14, 19, 23, 33].

In many applications, the function V is naturally written as the sum of a smooth and a nonsmooth
term. In Bayesian statistics for example, µ? typically represents some posterior distribution. In this
case, V is the sum of the log-likelihood (which is itself a sum over the data points) and the possibly
nonsmooth potential of the prior distribution [19, 21, 32], which plays the role of a regularizer. In
some other applications in Bayesian learning, the support of µ? is not the whole space X [9, 10] (i.e.,
V can take the value +∞). In order to cover these applications, we consider the case where V is
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written as
V (x) := Eξ(f(x, ξ)) +G(x), (2)

where ξ is a random variable, f(·, s) : X → R for every s ∈ Ξ, F (x) = Eξ(f(x, ξ)) is smooth
and convex and G : X → (−∞,+∞] is nonsmooth and convex. We assume to have access to the
stochastic gradient ∇xf(x, ξ) (where ξ is a random variable with values in Ξ) and to the proximity
operator proxγG of G. The template (2) covers many log concave densities [10, 13, 19, 21]. In
optimization, the minimization of V can be efficiently tackled by the proximal stochastic gradient
algorithm [3]. Inspired by this optimization algorithm, the Proximal Stochastic Gradient Langevin
Algorithm (PSGLA) [19] is the method performing proximal stochastic gradient Langevin steps of
the form

xk+1 = proxγG

(
xk − γ∇xf(xk, ξk+1) +

√
2γW k+1

)
, (3)

where γ > 0, (W k) is a sequence of i.i.d. standard Gaussian random vectors in X, and (ξk) is a
sequence of i.i.d. copies of ξ. Remarkably, the iterates xk of PSGLA remain in the domain of G, i.e.,
the support of µ?, a property that is useful in many contexts. When G is Lipschitz continuous, the
support of µ? is X and PSGLA can be interpreted as an inexact proximal gradient descent method for
minimizing KL, with convergence rates proven in terms of the KL divergence [19]. However, for
general G, the KL divergence can take infinite values along PSGLA. Therefore, a new approach is
needed.

1.1 Related works

First, various instances of the PSGLA algorithm have already been considered. The only
instance allowing G(x) to be infinite (i.e., the support of µ? not to be X) is the Projected Langevin
Algorithm [10], which corresponds to our setting in the special case with G = ιC (i.e., the indicator
function of a convex body1 C), and ∇f(·, s) ≡ ∇F for every s (i.e., the full gradient of F ). In
this case, proxγG is the orthogonal projection onto C and µ? is supported by C. Bubeck et al [10]
provide complexity results in terms of sufficient number of iterations to achieve ε accuracy in terms
of the Total Variation between the target distribution µ? and the current iterate distribution. Assuming
that F is convex and smooth, the complexity of the Projected Langevin Algorithm is O(1/ε12)2, and
if F ≡ 0, the complexity is improved to O(1/ε8).

Other instances of PSGLA were proposed in the case where G is Lipschitz continuous or smooth (and
hence finite). Wibisono [33] considered the case with F = G and ∇f(·, s) ≡ ∇F , proposing the
Symmetrized Langevin Algorithm (SLA), and showed that the current iterate distribution converges
linearly in Wasserstein distance to the invariant measure of the SLA, if F is strongly convex and
smooth. Durmus et al [19] considered the case where G is Lipschitz continuous, and showed that the
complexity of PSGLA is O(1/ε2) in terms of the KL divergence and O(1/ε4) in terms of the Total
Variation distance if F is convex and smooth. If F is strongly convex, the complexity is O(1/ε2) in
Wasserstein distance and O(1/ε) in KL divergence. Bernton [5] studied a setting similar to [19] and
derived a similar result for the Proximal Langevin Algorithm (i.e., PSGLA without the gradient step)
in the strongly convex case. The Proximal Langevin Algorithm was also studied in a recent paper of
Wibisono [34], where a rapid convergence result was proven in the case where G is nonconvex but
satisfies further smoothness and geometric assumptions.

Second, the task of sampling w.r.t. µ?, where G is nonsmooth and possibly takes infinite values,
using Langevin algorithm, has also been considered. When F is strongly convex and G an
indicator function of a bounded convex set, the existence of an algorithm achieving O(1/ε2) in
Wasserstein and Total Variation distances was proven by Hsieh et al [22, Theorem 3]. However, an
actual algorithm is only given in a specific, although nonconvex, case. Besides, MYULA (Moreau-
Yosida Unadjusted Langevin Algorithm) [9, 21] can tackle the task of sampling from µ? efficiently.
MYULA is equivalent to Langevin algorithm (1) applied to sampling from µλ ∝ exp(−F −Gλ),
where Gλ is the Moreau-Yosida approximation of G [2]. By choosing the smoothing parameter
λ > 0 appropriately, and making assumptions that allow to control the distance between µλ and
µ? (e.g., G Lipschitz or G = ιC), complexity results for MYULA were established in [9, 21]. For
example, if G is the indicator function of a convex body, Brosse et al [9] show that the complexity

1A convex body is a compact convex set with a nonempty interior.
2Our big O notation ignores logarithm factors.
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of MYULA is O(1/ε6) in terms of the Total Variation distance (resp. 1-Wasserstein distance) if F
is convex and smooth (resp., if F is strongly convex and smooth), provided that the algorithm is
initialized from a minimizer of V . Similarly to PSGLA, MYULA involves one proximal step and
one gradient step per iteration. However, the support of the smoothed distribution µλ is always X
(even if µ? is not fully supported), and therefore the iterates of MYULA do not remain in the support
of the target distribution µ?, contrary to PSGLA.

Finally, the task of sampling w.r.t. µ?, where V is not smooth but finite, has also been consid-
ered. The Perturbed Langevin Algorithm proposed by Chatterji et al [12] allows to sample from µ?

in the case when G satisfies a weak form of smoothness (generalizing both Lipschitz continuity and
smoothness) and without accessing its proximity operator. Finally, if G is Lipschitz continuous, the
Stochastic Proximal Langevin Algorithm proposed by Salim et al [27] and Schechtman et al [28]
allows to sample from µ? using cheap stochastic proximity operators only.

1.2 Contributions

In summary, PSGLA has complexity O(1/ε2) in 2-Wasserstein distance if F is strongly convex [19]
and G is Lipschitz. The only instance of PSGLA allowing G to be infinite is the Projected Langevin
Algorithm. It has complexity O(1/ε12) in Total Variation [10]3 and only applies to the case where
G is the indicator of a convex body. In the latter case, another Langevin algorithm called MYULA
has complexity O(1/ε6) in 1-Wasserstein distance [9], but allows the iterates to leave the support
of µ?. Besides, still in the case where G is an indicator function, there exists a Langevin algorithm
achieving O(1/ε2) rate in the Wasserstein distance [22].

In this paper, we consider other (i.e., new) cases where G can take infinite values. More precisely, we
consider a general nonsmooth convex function G and we assume that exp(−V ) has a mild Sobolev
regularity. We develop new mathematical tools (e.g., a Lagrangian for the minimization of KL), that
have their own interest, to obtain our complexity results. Our main result is to show that, surprisingly,
PSGLA still has the complexity O(1/ε2) in 2-Wasserstein distance if F is strongly convex, although
G can take infinite values. We also show that, if F is just convex, PSGLA has the complexity O(1/ε2)
in terms of a newly defined duality gap, which can be seen as the notion that replaces KL, since KL
can be infinite.

Our approach follows the line of works [5,14,19,23,25,31,33,34] that formulate the task of sampling
form µ? as the problem of minimizing the KL divergence w.r.t µ?. In summary, our contributions are
the following.

• In the first part of the paper, we reformulate the task of sampling from µ? as the resolution of
a monotone inclusion defined on the space of probability measures. We subsequently use this
reformulation to define a duality gap for the minimization of the KL divergence, and show that strong
duality holds.

• In the second part of this paper, we use this reformulation to represent PSGLA as a primal dual
stochastic Forward Backward algorithm involving monotone operators.

• This new representation of PSGLA, along with the strong duality result from the first part, allows
us to prove new complexity results for PSGLA that extend and improve the state of the art.

• Finally, we conduct some numerical experiments for sampling from a distribution supported by a
set of matrices (see appendix).

In the first part we combine tools from optimization duality [16] and optimal transport [1] and in the
second part we combine tools from the analysis of the Langevin algorithm [19], and the analysis of
primal dual optimization algorithms [11, 18].

The remainder is organized as follows. In Section 2 we provide some background knowledge on
convex analysis and optimal transport. In Section 3 we develop a primal dual optimality theory
for the task of sampling from µ?. In Section 4 we give a new representation of PSGLA using
monotone operators. We use it to state our main complexity result on PSGLA in Section 5. Numerical
experiments and all proofs are postponed to the appendix. Therein, we also provide further intuitions
on PSGLA, namely the connection between gradient descent and Langevin algorithm [19] and the

3This result also holds if F is not strongly convex.
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connection between primal dual optimization and our approach. Finally, an extension of PSGLA
for handling a third (stochastic, Lipschitz continuous and proximable) term in the definition of the
potential V (2) is provided at the end of the appendix.

2 Background

Throughout this paper, we use the conventions exp(−∞) = 0 and 1/0 = +∞.

2.1 Convex analysis

In this section, we recall some facts from convex analysis. These facts will be used in the proofs
without mention. For more details, the reader is referred to [4].

2.1.1 Convex optimization

By Γ0(X) we denote the set of proper, convex, lower semicontinuous functions X→ (−∞,+∞]. A
function F ∈ Γ0(X) is L-smooth if F is differentiable and its gradient∇F is L-Lipschitz continuous.
Consider G ∈ Γ0(X) and denote dom(G) := {x ∈ X : G(x) < ∞} its domain. Given x ∈ X, a
subgradient of G at x is any vector y ∈ X satisfying

G(x) + 〈y, x′ − x〉 ≤ G(x′), (4)

for every x′ ∈ X. If the set ∂G(x) of subgradients of G at x is not empty, then there exists a unique
element of ∂G(x) with minimal norm. This particular subgradient is denoted ∂0G(x). The set valued
map ∂G(·) is called the subdifferential. The proximity operator of G, denoted proxG, is defined by

proxG(x) := arg min
x′∈X

{
G(x′) + 1

2‖x− x
′‖2
}
. (5)

By ιC(·) we denote the indicator function of set C given by ιC(x) = 0 if x ∈ C and ιC(x) = +∞
if x /∈ C. If G = ιC , where C is a closed convex set, then proxG is the orthogonal projection onto
C. Moreover, proxG(x) is the only solution x′ to the inclusion x ∈ x′ + ∂G(x′). The Fenchel
transform of G is the function G∗ ∈ Γ0(X) defined by G∗(y) := supx∈X {〈y, x〉 −G(x)} . Several
properties relate G to its Fenchel transform G∗. First, the Fenchel transform of G∗ is G. Then,
the subdifferential ∂G∗ is characterized by the relation x ∈ ∂G∗(y)⇔ y ∈ ∂G(x). Finally, G∗ is
λ-strongly convex if and only if G is 1/λ-smooth.

2.1.2 Maximal monotone operators

A set valued function A : X ⇒ X is monotone if 〈y − y′, x − x′〉 ≥ 0 whenever y ∈ A(x) and
y′ ∈ A(x′). The inverse of A, denoted A−1, is defined by the relation x ∈ A−1(y) ⇔ y ∈ A(x),
and the set of zeros of A is Z(A) := A−1(0). If A is monotone, A is maximal if its resolvent, i.e.,
the map JA : x 7→ (I +A)−1(x), is single valued. If G ∈ Γ0(X), then ∂G is a maximal monotone
operator and J∂G = proxG. Moreover, Z(∂G) = arg minG and (∂G)−1 = ∂G∗. If S is a skew
symmetric matrix on X, the operator x 7→ Sx is maximal monotone. Finally, the sum ∂G + S is
also a maximal monotone operator. Many problems in optimization can be cast as the problem of
finding a zero x of the sum of two maximal monotone operators 0 ∈ (A+B)(x) [16]. For instance,
Z(∇F + ∂G) = arg minF +G. To solve this problem, the Forward Backward algorithm is given
by the iteration xk+1 = JP−1A(xk − P−1B(xk)), where P is a symmetric positive definite matrix
(P ∈ Rd×d++ ),4 and B is single valued. Using the definition of the resolvent, the Forward Backward
algorithm can equivalently be written as

P (xk+1/2 − xk) = −γB(xk), P (xk+1 − xk+1/2) ∈ −γA(xk+1). (6)

2.2 Optimal transport

In this section, we recall some facts from optimal transport theory. These facts will be used in the
proofs without mention. For more details, the reader is referred to Ambrosio et al [1].

4The operators P−1A and P−1B are not monotone in general, however they are monotone under the inner
product induced by P .
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2.2.1 Wasserstein distance

By B(X) we denote the σ-field of Lesbesgue measurable subsets of X, and by P2(X) the set of
probability measures µ over (X,B(X)) with finite second moment

∫
‖x‖2dµ(x) < ∞. Denote

supp(µ) the support of µ. The identity map I belongs to the Hilbert space L2(µ;X) of µ-square
integrable random vectors in X. We denote 〈·, ·〉µ (resp. ‖ · ‖µ) the inner product (resp. the norm)
in this space. Given T : X→ Z, where Z is some Euclidean space, the pushforward measure of µ
by T , also called the image measure, is defined by T#µ(A) := µ(T−1(A)) for every A ∈ B(Z).
Consider µ, ν ∈ P2(X). A coupling υ between µ and ν (we shall write υ ∈ Γ(µ, ν)) is a probability
measure over (X2,B(X2)) such that x?#υ = µ, where x? : (x, y) 7→ x, and y?#υ = ν, where
y? : (x, y) 7→ y. In other words, (X,Y ) is a random variable such that the distribution of X is
µ (we shall write X ∼ µ) and Y ∼ ν if and only if the distribution of (X,Y ) is a coupling. The
(2-)Wasserstein distance is then defined by

W 2(µ, ν) := inf
υ∈Γ(µ,ν)

∫
‖x− y‖2dυ(x, y). (7)

Let Pr2 (X) be the set of elements µ ∈ P2(X) such that µ is absolutely continuous w.r.t. Leb
(we shall write µ � Leb). Brenier’s theorem asserts that if µ ∈ Pr2 (X), then the inf defining
W 2(µ, ν) is actually a min achieved by a unique minimizer υ. Moreover, there exists a uniquely
determined µ-almost everywhere (a.e.) map T νµ : X → X such that υ = (I, T νµ )#µ, where
(I, T νµ ) : x 7→ (x, T νµ (x)). In this case, T νµ is called the optimal pushforward from µ to ν and satisfies

W 2(µ, ν) =

∫
‖x− T νµ (x)‖2dµ(x). (8)

2.2.2 Geodesically convex functionals

We shall consider several functionals defined on the space P2(X). For every µ ∈ Pr2 (X) with density
denoted µ(x) w.r.t. Leb, the entropy is defined by

H(µ) :=

∫
log(µ(x))dµ(x), (9)

and if µ /∈ Pr2 (X), thenH(µ) := +∞. Given V ∈ Γ0(X), the potential energy is defined for every
µ ∈ P2(X) by

EV (µ) :=

∫
V (x)dµ(x). (10)

Finally, if µ′ ∈ P2(X) such that µ� µ′, the Kullback-Leibler (KL) divergence is defined by

KL(µ|µ′) :=

∫
log
(
dµ
dµ′ (x)

)
dµ(x), (11)

where dµ
dµ′ denotes the density of µ w.r.t. µ′, and KL(µ|µ′) := +∞ if µ is not absolutely continuous

w.r.t. µ′. The functionalsH, EV and KL(·|µ?) satisfy a form of convexity over P2(X) called geodesic
convexity. If F : P2(X) → (−∞,+∞] is geodesically convex, then for every µ ∈ Pr2 (X), µ′ ∈
P2(X), and α ∈ [0, 1], F

(
(αTµ

′

µ + (1− α)I)#µ
)
≤ αF(µ′) + (1− α)F(µ). Given µ ∈ Pr2 (X),

a (Wasserstein) subgradient of F at µ is a random variable Y ∈ L2(µ;X) such that for every
µ′ ∈ P2(X),

F(µ) + 〈Y, Tµ
′

µ − I〉µ ≤ F(µ′). (12)

Moreover, if Y ′ is a subgradient of F at µ′, then the following monotonicity property holds

〈Y ′ ◦ Tµ
′

µ − Y, Tµ
′

µ − I〉µ ≥ 0. (13)

If the set ∂F(µ) ⊂ L2(µ;X) of subgradients of F at µ is not empty, then there exists a unique
element of ∂F(µ) with minimal norm. This particular subgradient is denoted ∂0F(µ). However, the
set ∂F(µ) might be empty. A typical condition for nonemptiness requires the density µ(x) to have
some Sobolev regularity. For every open set Ω ⊂ X, we denote S1,1(Ω) the Sobolev space of Leb-
integrable functions u : Ω→ R admitting a Leb-integrable weak gradient ∇u : Ω→ X. We say that
u ∈ S1,1

loc (Ω) if u ∈ S1,1(K) for every bounded open set K ⊂ Ω. Obviously, S1,1(Ω) ⊂ S1,1
loc (Ω).
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2.3 Assumptions on F and G

Consider F : X→ R and G : X→ (−∞,+∞]. We make the following assumptions.

Assumption 1. The function F is convex and L-smooth. Moreover, G ∈ Γ0(X).

Note that V := F + G ∈ Γ0(X). We denote λF (resp. λG∗) the strong convexity parameter of F
(resp. G∗), equal to zero if F (resp. G∗) is not strongly convex.

Assumption 2. The integral
∫

exp(−V )dLeb is positive and finite.

Assumption 2 is needed to define the target distribution µ? ∝ exp(−V ), and implies that int(D) 6= ∅,
where D := dom(V ).

Lemma 1. If Assumptions 1 and 2 hold, then∫
|V (x)| exp(−V (x))dx <∞, and

∫
‖x‖2 exp(−V (x))dx <∞.

Lemma 1 implies that µ? ∈ P2(X) and using Assumption 1, ‖∇F‖ ∈ L2(µ?;R). Since G ∈ Γ0(X),
G is differentiable Leb-a.e. (almost everywhere) on int(D), see [24, Theorem 25.5].

Assumption 3. The integral
∫

int(D)
‖∇G‖2 exp(−V )dLeb is finite.

Assumption 3 is equivalent to requiring ‖∇G‖ ∈ L2(µ?;R), see below. Moreover, we assume the
following regularity property for the function exp(−V ).

Assumption 4. The function exp(−V ) belongs to the space S1,1
loc (X).

Assumption 4 is a necessary condition for ∂H(µ?) 6= ∅, see below. This assumption precludes µ?
from being a uniform distribution. However, Assumption 4 is quite general, e.g., exp(−V ) need
not be continuous or positive (see the numerical experiment section). Finally, we assume that the
stochastic gradients of F have a bounded variance. Consider an abstract measurable space (Ξ,G ),
and a random variable ξ with values in (Ξ,G ).

Assumption 5. For every x ∈ X, f(x, ξ) is integrable and F (x) = Eξ(f(x, ξ)). Moreover, there
exists σF ≥ 0 such that for every x ∈ X, Vξ(‖∇f(x, ξ)‖) ≤ σ2

F , where V denotes the variance.

The last assumption implies that the stochastic gradients are unbiased: Eξ(∇f(x, ξ)) = ∇F (x) for
every x ∈ X.

3 Primal dual optimality in Wasserstein space

Let F : P2(X)→ (−∞,+∞] be defined by

F(µ) := H(µ) + EV (µ) = H(µ) + EF (µ) + EG(µ). (14)

Using Lemma 1,H(µ?) and EV (µ?) are finite real numbers. Moreover, using [19, Lemma 1.b], for
every µ ∈ P2(X) such that EV (µ) <∞, we have the identity

F(µ)−F(µ?) = KL(µ|µ?). (15)

Equation (15) says that µ? is the unique minimizer of F : µ? = arg minF .

3.1 Subdifferential calculus

The following result is a consequence of [1, Theorem 10.4.13].

Theorem 2. Let µ ∝ ρ be an element of dom(F). Then, supp(µ) ⊂ D and µ(D \ int(D)) = 0.
Moreover, ∂F(µ) 6= ∅ if and only if ρ ∈ S1,1

loc (int(D)) and there exists w ∈ L2(µ) such that

w(x)ρ(x) = ∇ρ(x) + ρ(x)∇V (x), (16)

for µ-a.e. x. In this case, w = ∂0F(µ).
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If Assumptions 1 and 2 hold, then F(µ?) < ∞ using Lemma 1. Then, Theorem 2 implies that
µ?(int(D)) = 1. Therefore, using [24, Theorem 25.5], G and V are µ?-a.s. differentiable.

Moreover, applying Theorem 2 with V ≡ 0, we can replace F by H and D by X. We obtain that
∂H(µ) 6= ∅ if and only if ρ ∈ S1,1

loc (X) and wρ = ∇ρ for some w ∈ L2(µ;X). Now, we set µ = µ?

and ρ = exp(−V ). Using Assumption 4 and w = −∇V , we obtain that ∂0H(µ?) = −∇V µ?-a.e.
Therefore, using that ∇G is well defined µ?-a.e., µ? satisfies

0 = ∇F (x) + ∂0H(µ?)(x) +∇G(x), for µ? − a.e. x. (17)
Equation (17) can be seen as the first order optimality conditions associated with the minimization of
the functional F . Consider the "dual" variable Y ? : x 7→ ∇G(x) defined µ? a.e. Using Assumption 3
and µ?(int(D)) = 1, Y ? ∈ L2(µ?;X). We can express the first order optimality condition (17) as 0 =
∇F (x)+∂0H(µ?)(x)+Y ?(x), µ? a.e. Besides, Y ?(x) ∈ ∂G(x), therefore 0 ∈ −x+∂G∗(Y ?(x))
using ∂G∗ = (∂G)−1. Denote ν? := Y ?#µ? ∈ P2(X) and π? := (I, Y ?)#µ? ∈ P2(X2). The
relationship between µ? and Y ? can be summarized as[

0
0

]
∈
[
∇F (x) + ∂0H(µ?)(x) +y

−x +∂G∗(y)

]
for π? a.e. (x, y). (18)

In the sequel, we fix the probability space (Ω,F ,P) = (X2,B(X2), π?), denote E the mathematical
expectation and L2 the space L2(Ω,F ,P;X). The expression "almost surely" (a.s.) will be under-
stood w.r.t. P. Recall that x? is the map (x, y) 7→ x and y? : (x, y) 7→ y. Using Assumption 3,
x?, y? ∈ L2, x? ∼ µ?, y? ∼ ν?, (x?, y?) ∼ π? and y? = ∇G(x?) a.s.

3.2 Lagrangian function and duality gap

We introduce the following Lagrangian function defined for every µ ∈ P2(X) and y ∈ L2 by
L (µ, y) := EF (µ) +H(µ)− EG∗(ν) + E〈x, y〉, (19)

where x = Tµµ?(x?). This Lagrangian is similar to the one used in Euclidean optimization; see the
appendix. We also define the duality gap by

D(µ, y) := L (µ, y?)−L (µ?, y). (20)
The next theorem, which is of independent interest, can be interpreted as a strong duality result for
the Lagrangian function L , see [24, Lemma 36.2].
Theorem 3 (Strong duality). Let Assumptions 1–4 hold true. Then, for every µ ∈ P2(X), y ∈ L2,
D(µ, y) ≥ 0 and L (µ, y) ≤ F(µ). Moreover, (µ?, y?) is a saddle point of L with saddle value
F(µ?), i.e.,

L (µ?, y) ≤ F(µ?) = L (µ?, y?) ≤ L (µ, y?). (21)
Finally, L (µ?, y) = F(µ?) if and only if y = y?, and, if F is strictly convex, F(µ?) = L (µ, y?) if
and only if µ = µ?.

The proof of Theorem 3 relies on using (18) to write the duality gap as the sum of the Bregman
divergences of F , G∗ andH. We shall use the nonnegativity of the duality gap to derive convergence
bounds for PSGLA.

4 Forward Backward representation of PSGLA

In this section, we present our viewpoint on PSGLA (3). More precisely, we represent PSGLA as a
(stochastic) Forward Backward algorithm involving (stochastic) monotone operators which are not
necessarily subdifferentials.

Intuition. Let π ∈ P2(X2) and consider A,B(π) ∈ L2(π;X2) the set valued maps

A : (x, y) 7→
[

y
−x +∂G∗(y)

]
, B(π) : (x, y) 7→

[
∇F (x) + ∂H(µ)(x)

0

]
, (22)

where µ = x?#π. The maps π 7→ A and π 7→ B(π) satisfy a monotonicity property similar
to (13) (note that A is a maximal monotone operator as the sum of S : (x, y) 7→ (y,−x) and the
subdifferential of the Γ0(X2) function (x, y) 7→ G∗(y)). Inclusion (18) can be rewritten as

0 ∈ (A+B(π?)) (x, y), for π? a.e. (x, y). (23)
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Rigorous Forward Backward representation. The “monotone” inclusion (23) intuitively sug-
gests the following stochastic Forward Backward algorithm for obtaining samples from π? (and
hence from µ? by marginalizing):

P

[
xk+1/2 − xk
yk+1/2 − yk

]
= −γ

[
∇f(xk, ξk+1)−

√
2
γW

k+1

0

]
(24)

P

[
xk+1 − xk+1/2

yk+1 − yk+1/2

]
∈ −γA(xk+1, yk+1). (25)

Above, P ∈ Rd×d++ is an appropriately chosen matrix. Indeed, Algorithm (24)-(25) looks like a
stochastic Forward-Backward algorithm [6, 7, 15, 26] where the gradient is perturbed by a Gaussian
vector, as in the Langevin algorithm (1). In Algorithm (24)-(25), we cannot set P to be the identity
map of X2 because the inclusion (25) is intractable in this case. We take P : (x, y) 7→ x, i.e.,
with our notations, P = x?. Although the matrix P is only semi-definite positive, the next lemma
shows that Algorithm (24)-(25) is still well defined. More precisely, the next lemma shows that
xk+1 = proxγG(xk+1/2) (by taking z = (xk+1/2, yk+1/2) in the lemma) and hence the resulting
algorithm (24)-(25) is PSGLA. Based on the representation (24)-(25) of PSGLA, the next lemma
also provides an important inequality used later in the proof of Theorem 5.
Lemma 4. Let z = (x, y), z′ = (x′, y′) ∈ X2. Then P (z′ − z) ∈ −γA(z′) if and only if
x′ = proxγG(x) and y′ = proxG∗/γ(x/γ). Moreover, if G ∈ Γ0(X) is 1/λG∗ -smooth, then

‖x′ − x?‖2 ≤‖x− x?‖2 − 2γ (G∗(y′)−G∗(y?)− 〈y′, x?〉+ 〈y?, x〉)
− γ(λG∗ + γ)‖y′ − y?‖2 + γ2‖y?‖2. (26)

5 Main results

We now provide our main result on PSGLA (3). For r ∈ N/2, denote µr (resp. νr) the distribution of
xr (resp. yr), defined in the previous section.
Theorem 5. Let Assumptions 1, 2, 3 and 5 hold true. If F is λF -strongly convex and G is 1/λG∗-
smooth, then for every γ ≤ 1/L,

W 2(µk+1, µ?) ≤(1− γλF )W 2(µk, µ?)− γ(λG∗ + γ)W 2(νk+1, ν?)

− 2γ
(
L (µk+1/2, y?)−L (µ?, yk+1

? )
)

+ γ2C, (27)

where C :=
∫

int(D)
‖∇G(x)‖2dµ?(x) + 2(Ld + σ2

F ) and yk+1
? := proxG∗/γ(x

k+1/2
? /γ) ∼ νk+1,

where xk+1/2
? := Tµ

k+1/2

µ? (x?).

The proof of Theorem 5 relies on using Lemma 4 along with [19, Lemma 30]. Inspecting the proof
of Theorem 5, one can see that any µ̄, ȳ can replace µ?, y?5. The situation is similar to primal dual
algorithms in optimization [11, 18] and Evolution Variational Inequalities in optimal transport [1].

The next corollary is obtained by using D(µk+1/2, yk+1
? ) ≥ 0 (Theorem 3) and iterating (27).

Corollary 6. Let Assumptions 1–5 hold true. If γ ≤ 1/L, then

min
j∈{0,...,k−1}

D(µj+1/2, yj+1
? ) ≤ 1

2γkW
2(µ0, µ?) + γ

2C, (28)

min
j∈{1,...,k}

W 2(νj , ν?) ≤ 1
γ(λG∗+γ)kW

2(µ0, µ?) + γ
λG∗+γC. (29)

Finally, if λF > 0, then

W 2(µk, µ?) ≤ (1− γλF )kW 2(µ0, µ?) + γ
λF
C. (30)

If G is Lipschitz continuous (in particular if G ≡ 0), then our Assumptions hold true. More-
over, inequality (28) recovers [19, Corollary 18] but with the duality gap instead of the KL

5The proof does not rely on specific properties of the latter like being primal dual optimal.
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divergence. Obtaining a result in terms of KL divergence is hopeless for PSGLA in general
because the KL divergence is infinite; see the appendix. Connecting the convergence of the
duality gap to zero to known modes of convergence is left for future work. Besides, obtain-
ing an inequality like (29) that holds when F is just convex is rather not standard in the lit-
erature on Langevin algorithm, see [25, 35]. Corollary 6 implies the following complexity re-
sults. Given ε > 0, choosing γ = min(1/L, ε/C) and k ≥ max(L/ε,C/ε2)W 2(µ0, µ?) in
inequality (28) leads to minj∈{0,...,k−1}D(µj+1/2, yj+1

? ) ≤ ε. If λG∗ > 0 (i.e., if G is smooth),
choosing γ = min(1/L, λG∗ε

2C ) and k ≥ max( 2L
λG∗ε

, 4C
λ2
G∗ε

2 )W 2(µ0, µ?) in inequality (29) leads

to minj∈{1,...,k}W
2(νj , ν?) ≤ ε. Finally, if λF > 0 (i.e., if F is strongly convex), choosing

γ = min(1/L, λF ε
2C ) and k ≥ 1

γλF
log(2W 2(µ0, µ?)/ε) i.e.,

k ≥ max
(
L
λF
, 2C
λ2
F ε

)
log
(

2W 2(µ0,µ?)
ε

)
, C =

∫
int(D)

‖∇G(x)‖2dµ?(x) + 2(Ld+ σ2
F ) (31)

in inequality (30), leads to W 2(µk, µ?) ≤ ε. 6 In the case where G is M -Lipschitz continuous, the
complexity (31) improves [19, Corollary 22] since

∫
int(D)

‖∇G(x)‖2dµ?(x) ≤M2 .

6 Conclusion

We made a step towards theoretical understanding the properties of the Langevin algorithm in the
case where the target distribution is not smooth and not fully supported. This case is known to be
difficult to analyze and has many applications [9, 10, 21]. Our analysis improves and extends the state
of the art.

Moreover, our approach is new. We developed a primal dual theory for a minimization problem over
the Wasserstein space, which is of independent interest. A broader duality theory for minimization
problems in the Wasserstein space would be of practical and theoretical interest.
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