
A Other Related Work

Self-training is related to the method of pseudo labels [57, 66–68] and consistency training [69–88].
There are many differences between these works and ours. First, self-training is different from
consistency training in that self-training uses two models (a teacher and a student) whereas consistency
training uses only one model. Secondly, previous works focus on image classification, whereas our
work studies object detection and segmentation. Finally, previous works do not study the interactions
between self-training and pre-training under modern data augmentation.

B Loss Normalization Analysis

In this work we noticed that the standard loss for self-training L̂ = Lh + ↵Lp can be quite unstable.
This is caused by the total loss magnitude drastically changing as ↵ is varied. We thus implement a
Loss Normalization method, which stabilizes self-training as we vary ↵: L̂ = 1

1+↵ (Lh + ↵ L̄h

L̄p
Lp),

where Lh, Lp, L̄h and L̄p are human loss, pseudo loss and their respective moving averages over
training. All moving averages are an exponential moving average with a decay rate of 0.9997.

Figure 2 shows the Loss Normalization performance as we vary the data augmentation strength,
training iterations, learning rate and ↵. These experiments are performed on RetinaNet with a
ResNet-101 backbone architecture on COCO object detection. ImageNet is used as the dataset for
self-training. As can be seen from the figure, Loss Normalization gets better results in almost all
settings, and more importantly, helps avoid training instability when ↵ is large. Across all settings of
varying augmentations, training iterations and learning rates we find Loss Normalization achieves an
average of +0.4 AP performance over the standard loss combination. Importantly, it also helps in our
highest performing Augment-S4 setting by +1.3 AP.

Figure 2: Performance of Loss Normalization across different data augmentation strengths, training
iterations and learning rates. All results are on COCO object detection using ImageNet for self-
training. The ⇥ symbol represents a run got NaNs and was unable to finish training.

Recent self-training works typically fix the ↵ parameter to be one across all of their experiments [12,
87]. We find in many of our experiments that setting ↵ to one is sub-optimal and that the optimal ↵
changes as the training iterations and augmentation strength varies. Table 9 shows the optimal ↵’s
as augmentation and training iterations vary. As the augmentation strength increases the optimal ↵
decreases. Additionally, as the training iterations increases the optimal ↵ increases.

Optimal Alpha Augment-S1 Augment-S2 Augment-S3
90k Iterations 3.0 2.0 0.5
180k Iterations 4.0 3.0 1.0

Table 9: Optimal ↵ as a function of augmentation strength and training iterations. For each augmen-
tation and training iteration settings the following ↵ were tried: 0.25, 0.5, 1.0, 2.0, 3.0, 4.0.

14



C Student Model Initialization Study for Self-training

Backbone Initialization Augment-S1 Augment-S2 Augment-S3 Augment-S4
Eff-B7 Random 39.2 41.5 43.9 44.3
Eff-B7 w/ Self-training Teacher 40.9 43.0 45.4 45.6
Eff-B7 w/ Self-training Random 41.0 42.7 45.0 45.2

Table 10: Study on whether to initialize the student model in self-training with the teacher checkpoint
or from random initialization. All models use the training methodology in Section 3.1.

In this section we study how the student model should be initialized in self-training. Table 10
shows the results of initializing the student from the teacher weights and using random initialization.
Across all four augmentation regimes we observe similar performance between the two settings,
with initializing from the teacher weights doing slightly better (0.3-0.4 AP). One added benefit of
initializing the student with the teacher weights is not only due to the increased performance, but the
speedup in convergence. Across all augmentation regimes the student model trained from scratch
had to train on average 2.25 times as long as the student model initialized with the teacher weights.
Therefore for all experiments in the paper we initialize the student with the teacher weights.

D Further Study of Augmentation, Supervised Dataset Size, and Pre-trained
Model Quality

We expand upon our previous analysis in Section 4.1 and show how all four augmentation strengths
across different COCO sizes interact with pre-trained checkpoint quality on COCO. Figure 3 shows the
interaction of all these factors. We again observe the same three points: 1) stronger data augmentation
diminishes the value of pre-training, 2) pre-training hurts performance if stronger data augmentation is
used, and 3) more supervised data diminishes the value of pre-training. Across all augmentations and
data sizes we also observe the better ImageNet pre-trained checkpoint, ImageNet++ , outperforming
the standard ImageNet pre-trained model. Interestingly, in the three out of four augmentation regimes
where pre-training hurts, the better the pre-trained checkpoint quality, the less it hurts.

Figure 3: Supervised object detection performance under various COCO dataset sizes, ImageNet
pre-trained checkpoint qualities and data augmentation strengths.

As a case study in the low data regime, we study the impact of pre-trained checkpoint quality and
augmentation strength on PASCAL VOC 2012. The results in Table 11 indicate that for training on

15



the PASCAL train dataset, which only has 1.5k images, checkpoint quality is very important and
improves results significantly. We observe that the gain from checkpoint quality begins to diminish
as the augmentation strength increases. Additionally, the performance of the ImageNet checkpoint is
again correlated with the performance on PASCAL VOC.

Setup Augment-S1 Augment-S4
Rand Init 28.4 41.5
ImageNet Init (+51.8) 80.2 (+39.9) 81.4
ImageNet++ Init (+55.5) 83.9 (+43.7) 85.2

Table 11: Supervised semantic segmentation performance on PASCAL with different ImageNet
pre-trained checkpoint qualities and data augmentation strengths.

E ResNet-101 Self-training Performance on COCO

In the paper we presented our experimental results on COCO with RetinaNet using EfficientNet-B7
and SpineNet backbones. Self-training also works well on other backbones, such as ResNet-101 [89].
Our results are presented in Table 12. Again, self-training achieves strong improvements across all
augmentation strengths.

Setup Augment-S1 Augment-S2 Augment-S3 Augment-S4
Supervised 37.0 39.5 41.9 42.6
Self-training w/ ImageNet (+2.0) 39.0 (+1.8) 41.3 (+0.9) 42.8 (+1.0) 43.6
Self-training w/ OID (+2.5) 39.5 (+2.4) 41.9 (+1.5) 43.4 (+1.3) 43.9

Table 12: Performance of our four different strength augmentation policies. The supervised model
is a ResNet-101 with image size 640 ⇥ 640 with RetinaNet using the same training protocol as
EfficientNet described in 3.1 with a few minor details. Float32 instead of bfloat16 precision is used
and batch norm beta/gamma are included in the weight decay regularization. This helps to improve
the training stability. Also the RandAugment magntiude was increased from 10 to 15.

F The Effects of Unlabeled Data Sources on Self-Training

An important question raised from recent experiments is how changing the additional dataset source
affects self-training performance. In our analysis we use ImageNet, a dataset designed for image
classification that mostly contains iconic images. The image contents are known to be quite different
from COCO, PASCAL, and Open Images, which contain more non-iconic images. Iconic images
typically only have one object with its conical view, while non-iconic images capture multiple objects
in a scene with their natural views [58]. Table 13 studies how changing the additional data from
ImageNet to Open Images Dataset [60] impacts the performance of self-training. Switching the
additional dataset source improves performance of self-training up to +0.6 AP over using ImageNet
across varying data augmentation strengths on COCO. Interestingly the Open Images Dataset was
found to not help COCO by pre-training in [45], but we do see improvements using it over ImageNet
for self-training.

Setup Augment-S1 Augment-S2 Augment-S3 Augment-S4
Supervised 39.2 41.5 43.9 44.3
Self-training w/ ImageNet (+1.7) 40.9 (+1.5) 43.0 (+1.5) 45.4 (+1.3) 45.6
Self-training w/ OID (+2.0) 41.2 (+2.1) 43.6 (+1.6) 45.5 (+1.7) 46.0

Table 13: Performance on different self-training dataset sources with varying augmentation strengths.
All models use an EfficientNet-B7 backbone model on COCO object detection starting from a random
initialization.

We also study the effects of changing the additional dataset source on PASCAL VOC 2012. In
Table 14, we observe that changing the additional data source from ImageNet to COCO improves
performance across all of our augmentation strengths. The best self-training dataset is PASCAL aug

16



set, which is in-domain data for the PASCAL task. The PASCAL aug set which has only about 9k
images improves performance more than COCO with 240k images.

Setup Augment-S1 Augment-S4
Supervised 83.9 85.2
Self-training w/ ImageNet (+1.1) 85.0 (+0.8) 86.0
Self-training w/ COCO (+1.4) 85.3 (+1.4) 86.6
Self-training w/ PASCAL(aug set) (+1.7) 85.6 (+1.5) 86.7

Table 14: Performance on different source datasets for PASCAL Segmentation. All models are
initialized using EfficientNet-B7 ImageNet++ checkpoint.

G Visualization of Pseudo Labels in Self-training

PASCAL VOC dataset: The original PASCAL VOC 2012 dataset contains 1464 labeled in train
set. Extra annotations are provided by [18] resulting in 10582 images in train+aug. Most previous
works have used the train+aug set for training. However, we find that with strong data augmentation
training with the aug set actually hurts performance (see Table 8). Figure 4 includes selected examples
from the aug set. We observe the annotations in aug set are less accurate compared to the train
set. For example, some of the images do not include annotation for all the objects in the image and
segmentation masks are not precise. The third column of the figure shows pseudo labels generated
from our teacher model. From the visualization, we observe that the pseudo labels can have more
precise segmentation masks. Empirically, we find that training with this pseudo label set improves
performance more than training with the human annotated aug set (see Table 8).

Human Label [18] Pseudo Label

Figure 4: Human labels and pseudo labels on examples selected from PASCAL aug dataset. We
select the examples where pseudo labels are more accurate than noisy human labels from [18].

ImageNet dataset: Figure 5 shows segmentation pseudo labels generated by the teacher model
on 14 randomly-selected images from ImageNet. Interestingly, some of the ImageNet classes that

17



don’t exist in the PASCAL VOC 2012 dataset are predicted as one of its 20 classes. For instance, saw
and lizard are predicted as bird. Although pseudo labels are noisy they still improve accuracy of the
student model (Table 14).

Figure 5: Pseudo segmentation masks on images randomly selected from ImageNet dataset.

18



H Optimal Model Training Iterations and Alpha Weighting

In all experiments, we allow our models to train until convergence (validation set performance no
longer improves). For the self-training experiments we search over a few different alpha values:
[0.25, 0.5, 1.0, 2.0, 3.0] (see Appendix B for more details). Below we list all of the optimal training
iterations and alphas to promote reproducibility for all of our experiments. For each table the optimal
training iteration found is represented by (45k), which means the model was trained for 45000 steps.
The optimal alpha is represented as (1.0). An alpha value of (—) represents that no alpha is used in
the experiment as our supervised learning experiments do not make use of pseudo labeled data. One
table (Table 7) jointly trains ImageNet and COCO at the same time. For this setup we simply use a
scalar to combine the ImageNet loss and the COCO loss, which is represented as (0.2). The total
training loss is computed by LossCOCO + 0.2 · LossImageNet.

Setup Augment-S1 Augment-S2 Augment-S3 Augment-S4
Rand Init 39.2 (45k) (—) 41.5 (90k) (—) 43.9 (90k) (—) 44.3 (120k) (—)
ImageNet Init 39.5 (22.5k) (—) 40.7 (45k) (—) 43.2 (90k) (—) 43.3 (90k) (—)
Rand Init w/ ImageNet Self-training 40.9 (45k) (1.0) 43.0 (90k) (1.0) 45.4 (90k) (0.5) 45.6 (90k) (0.5)

Optimal training iterations and alpha for Table 2.

Setup 20% Dataset 50% Dataset 100% Dataset
Rand Init 30.7 (45k) (—) 39.6 (90k) (—) 44.3 (120k) (—)
Rand Init w/ ImageNet Self-training 34.1 (90k) (3.0) 41.4 (90k) (1.0) 45.6 (90k) (0.5)
ImageNet Init 33.3 (5.625k) (—) 38.8 (22.5k) (—) 43.3 (90k) (—)
ImageNet Init w/ ImageNet Self-training 36.0 (90k) (3.0) 40.5 (45k) (1.0) 44.6 (90k) (1.0)
ImageNet++ Init 35.9 (5.625k) (—) 39.9 (11.25k) (—) 43.8 (45k) (—)
ImageNet++ Init w/ ImageNet Self-training 37.2 (90k) (3.0) 41.5 (45k) (1.0) 44.6 (45k) (0.25)

Optimal training iterations and alpha for Table 3.

Setup COCO AP
Rand Init 41.1 (200k) (—)
ImageNet Init (Supervised) 40.4 (160k) (—)
ImageNet Init (SimCLR) 40.4 (160k) (—)
Rand Init w/ Self-training 41.9 (120k) (0.25)

Optimal training iterations and alpha for Table 4.

Model # FLOPs # Params AP (val) AP (test-dev)
SpineNet-143† (1280) 524B 67M 50.9 (472k) (—) 51.0
SpineNet-143 (1280) w/ Self-training 524B 67M 52.4 (472k) (0.25) 52.6
SpineNet-190† (1280) 1885B 164M 52.6 (370k) (—) 52.8
SpineNet-190 (1280) w/ Self-training 1885B 164M 54.2 (370k) (0.5) 54.3

Optimal training iterations and alpha for Table 5. Note due to the high computational demands of
this experiment only a subset of alphas and training iterations were tried. For SpineNet-143 alphas of
(0.25, 0.5, 1.0) were tried and only a single training iteration. For SpineNet-190 only a single alpha
and training iteration were tried.

Model Pre-trained # FLOPs # Params mIOU (val) mIOU (test)
Eff-B7 ImageNet++ 60B 71M 85.2 (40k) (1.0) —
Eff-B7 w/ Self-training ImageNet++ 60B 71M 86.7 (40k) (1.0) —
Eff-L2 ImageNet++ 229B 485M 88.7 (20k) (1.0) —
Eff-L2 w/ Self-training ImageNet++ 229B 485M 90.0 (20k) (1.0) 90.5

Optimal training iterations and alpha for Table 6.

Setup Sup. Training w/ Self-training w/ Joint Training w/ Self-training w/ Joint Training
Rand Init 30.7 (45k) (—) (—) 34.1 (90k) (3.0) (—) 33.6 (45k) (—) (0.5) 35.1 (90k) (2.0) (0.2)
ImageNet Init 33.3 (5.625k) (—) (—) 36.0 (90k) (3.0) (—) 34.0 (90k) (—) (0.5) 36.6 (90k) (2.0) (0.2)

Optimal training iterations, alpha and ImageNet loss weighting for Table 7.

19



Setup train train + aug train + aug w/ Self-training
ImageNet Init w/ Augment-S1 83.9 (40k) (1.0) 84.7 (40k) (1.0) 85.6 (40k) (1.0)
ImageNet Init w/ Augment-S4 85.2 (40k) (1.0) 84.8 (40k) (1.0) 86.7 (40k) (1.0)

Optimal training iterations and alpha for Table 8.

Backbone Initialization Augment-S1 Augment-S2 Augment-S3 Augment-S4
EfficientNet-B7 Random 39.2 41.5 43.9 44.3
EfficientNet-B7 w/ Self-training Teacher (45k) 40.9 (90k) 43.0 (90k) 45.4 (90k) 45.6
EfficientNet-B7 w/ Self-training Random (180k) 41.0 (135k) 42.7 (180k) 45.0 (135k) 45.2

Optimal training iterations and alpha for Table 10.

Setup Augment-S1 Augment-S2 Augment-S3 Augment-S4
Supervised 37.0 (45k) (—) 39.5 (90k) (—) 41.9 (90k) (—) 42.6 (180k) (—)
Self-training w/ ImageNet 39.0 (90k) (1.0) 41.3 (90k) (1.0) 42.8 (90k) (0.5) 43.6 (180k) (0.25)
Self-training w/ OID 39.5 (90k) (2.0) 41.9 (90k) (2.0) 43.4 (90k) (0.5) 43.9 (180k) (0.5)

Optimal training iterations and alpha for Table 12.

Setup Augment-S1 Augment-S2 Augment-S3 Augment-S4
Supervised 39.2 (45k) (—) 41.5 (90k) (—) 43.9 (90k) (—) 44.3 (120k) (—)
Self-training w/ ImageNet 40.9 (45k) (1.0) 43.0 (90k) (1.0) 45.4 (90k) (0.5) 45.6 (90k) (0.5)
Self-training w/ OID 41.2 (90k) (3.0) 43.6 (90k) (2.0) 45.5 (90k) (0.5) 46.0 (120k) (0.5)

Optimal training iterations, alpha and ImageNet loss weighting for Table 13.

Setup Augment-S1 Augment-S4
Supervised 83.9 85.2
Self-training w/ ImageNet 85.0 (40k) (1.0) 86.0 (40k) (1.0)
Self-training w/ COCO 85.3 (40k) (1.0) 86.6 (40k) (1.0)
Self-training w/ PASCAL(aug set) 85.6 (40k) (1.0) 86.7 (40k) (1.0)

Optimal training iterations and alpha for Table 14.

20


